Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions

We analyze the flavor changing decay h → μt in the framework of a two Higgs doublet model with a fourth generation of fermions (4G2HDM) which couples only to the heavy scalar doublet. We find that the respective branching ratio at one-loop level can reach values as high as 10-4-10-6 for masses of 30...

Full description

Autores:
Chamorro Solano, Sindy Mirella
Moyotl, A
Perez Angon, Miguel Angel
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1204
Acceso en línea:
https://hdl.handle.net/11323/1204
https://repositorio.cuc.edu.co/
Palabra clave:
Flavor changing neutral currents
Fourth family
Higgs boson
Radiative corrections
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_40ca3778635e6f1be3c4961893936125
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1204
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
title Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
spellingShingle Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
Flavor changing neutral currents
Fourth family
Higgs boson
Radiative corrections
title_short Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
title_full Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
title_fullStr Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
title_full_unstemmed Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
title_sort Lepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermions
dc.creator.fl_str_mv Chamorro Solano, Sindy Mirella
Moyotl, A
Perez Angon, Miguel Angel
dc.contributor.author.spa.fl_str_mv Chamorro Solano, Sindy Mirella
Moyotl, A
Perez Angon, Miguel Angel
dc.subject.eng.fl_str_mv Flavor changing neutral currents
Fourth family
Higgs boson
Radiative corrections
topic Flavor changing neutral currents
Fourth family
Higgs boson
Radiative corrections
description We analyze the flavor changing decay h → μt in the framework of a two Higgs doublet model with a fourth generation of fermions (4G2HDM) which couples only to the heavy scalar doublet. We find that the respective branching ratio at one-loop level can reach values as high as 10-4-10-6 for masses of 300 GeV-1 TeV for the heavy leptons in the fourth family and the new heavy Higgs bosons. These radiative corrections are of the same order of magnitude as the tree level prediction of the 4G2HDM.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-16T23:40:50Z
dc.date.available.none.fl_str_mv 2018-11-16T23:40:50Z
dc.date.issued.none.fl_str_mv 2018-06
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 09543899
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1204
dc.identifier.doi.spa.fl_str_mv DOI: 10.1088/1361-6471/aac458
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 09543899
DOI: 10.1088/1361-6471/aac458
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1204
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Phys. Rev. D, vol. 2, pp. 1285–1292, (1970). [2] M. A. Perez, G. Tavares-Velasco, and J. J. Toscano, “New physics effects in rare Z decays,” Int. J. Mod. Phys, vol. A19, pp. 159–178, (2004). [arXiv:hep-ph/0305227]. [3] F. Larios, R. Martinez, and M. A. Perez, “New physics effects in the flavor-changing neutral couplings of the top quark,” Int. J. Mod. Phys, vol. A21, pp. 3473–3494, (2006). [arXiv:hepph/0605003]. [4] V. Khachatryan et al., “Search for Lepton-Flavour-Violating Decays of the Higgs Boson,” Phys. Lett, vol. B749, pp. 337–362, (2015). [arXiv:hep-ex/1502.07400]. [5] G. Aad et al., “Search for lepton-flavour-violating H → µτ decays of the Higgs boson with the ATLAS detector,” JHEP, vol. 11, p. 211, (2015). [arXiv:hep-ex/1508.03372]. [6] A. Pilaftsis, “Lepton flavour nonconservation in h 0 decays,” Physics Letters B, vol. 285, no. 1, pp. 68–74, (1992). [7] L. Diaz-Cruz and J. J. Toscano, “Lepton flavor violating decays of Higgs bosons beyond the standard model,” Phys. Rev, vol. D62, p. 116005, (2000). [arXiv:hep-ph/9910233]. [8] C. Alvarado et al., “Minimal models of loop-induced lepton flavor violation in Higgs boson decays,” Phys. Rev, vol. D94, no. 7, p. 075010, (2016). [arXiv:hep-ph/1602.08506]. [9] J. Lee and K. Lee, “Bs → µτ and h → µτ decays in the general two Higgs doublet model,” 2016. [arXiv:hep-ph/1612.04057]. [10] A. Lami and P. Roig, “H → ``0 in the simplest little Higgs model,” Phys. Rev, vol. D94, no. 5, p. 056001, (2016). [arXiv:hep-ph/1603.09663]. [11] J. Herrero-Garcia et al., “Full parameter scan of the Zee model: exploring Higgs lepton flavor violation,” Journal of High Energy Physics, vol. 2017, p. 130, Apr 2017. [arXiv:hepph/1701.05345v2]. [12] D. Aristizabal Sierra and A. Vicente, “”Explaining the CMS Higgs flavor-violating decay excess”,” Phys. Rev. D, vol. 90, p. 115004, Dec 2014. [arXiv:hep-ph/1409.7690v2]. [13] D. Das and A. Kundu, “Two hidden scalars around 125 GeV and h → µτ ,” Phys. Rev. D, vol. 92, p. 015009, Jul 2015. [arXiv:hep-ph/1504.01125v2]. [14] “Observation of the SM scalar boson decaying to a pair of τ leptons with the CMS experiment at the LHC,” Tech. Rep. CMS-PAS-HIG-16-043, CERN, Geneva, (2017). [15] F. del Aguila et al., “Lepton Flavor Changing Higgs decays in the Littlest Higgs Model with T-parity,” (2017). [arXiv:hep-ph/1705.08827]. [16] S. Chamorro-Solano, A. Moyotl, and M. A. Perez, “The decay h → µτ in the Littlest Higgs Model with T-parity,” J. Phys. Conf. Ser, vol. 761, no. 1, p. 012051, (2016). [17] A. Moyotl, S. Chamorro-Solano, and M. Perez, “The h → µτ decay in a two higgs doublet model with a fourth generation of fermions,” Nucl. Particle Phys. Proce, vol. 287-288, pp. 205–207, (2017). The 14th International Workshop on Tau Lepton Physics. [18] F. J. Botella, G. C. Branco, M. Nebot, and M. N. Rebelo, “Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models,” Eur. Phys. J, vol. C76, no. 3, p. 161, (2016). [arXiv:hep-ph/1508.05101]. [19] M. Sher and K. Thrasher, “Flavor Changing Leptonic Decays of Heavy Higgs Bosons,” Phys. Rev, vol. D93, no. 5, p. 055021, (2016). [arXiv:hep-ph/1601.03973]. [20] O. Eberhardt, A. Lenz, and J. Rohrwild, “Less space for a new family of fermions,” Phys. Rev. D, vol. 82, no. 20, p. 095006, 2010. [arXiv:hep-ph]/1005.3505v31]. [21] C. Patrignani et al., “Review of Particle Physics,” Chin. Phys, vol. C40, no. 10, p. 100001, (2016). [22] O. Eberhardt et al., “Status of the fourth fermion generation before ICHEP2012: Higgs data and electroweak precision observables,” Phys. Rev, vol. D86, p. 074014, (2012). [arXiv:hepph/1207.0438]. [23] O. Eberhardt et al., “Impact of a Higgs Boson at a Mass of 126 GeV on the Standard Model with Three and Four Fermion Generations,” Phys. Rev. Lett., vol. 109, p. 241802, Dec 2012. [24] Q. Li et al., “Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations,” Phys. Rev. D, vol. 83, p. 094018, May 2011. [arXiv:hep-ph/1011.4484]. [25] S. Bar-Shalom, S. Nandi, and A. Soni, “Two Higgs doublets with 4th generation fermions - models for TeV-scale compositeness,” Phys. Rev, vol. D84, p. 053009, (2011). [arXiv:hepph/1105.6095]. [26] M. Hashimoto, “Constraints on the mass spectrum of fourth generation fermions and higgs bosons,” Phys. Rev. D, vol. 81, p. 075023, Apr (2010). [27] M. Baak et al., “Updated status of the global electroweak fit and constraints on new physics,” Eur. Phys. J. C, vol. 72, no. 5, p. 2003, (2012). [28] S. Banerjee, M. Frank, and S. K. Rai, “Higgs data confronts Sequential Fourth Generation Fermions in the Higgs Triplet Model,” Phys. Rev., vol. D89, no. 7, p. 075005, (2014). [arXiv/hep-ph:1312.4249]. [29] N. Chen and H.-J. He, “LHC Signatures of Two-Higgs-Doublets with Fourth Family,” JHEP, vol. 04, p. 062, (2012). [arXiv/hep-ph:1202.3072]. [30] D. Das, A. Kundu, and I. Saha, “Higgs data does not rule out a sequential fourth generation,” (2017). [arXiv/hep-ph:1707.03000]. [31] S. Bar-Shalom and A. Soni, “Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not,” Physics Letters B, vol. 766, pp. 1 – 10, (2017). [arXiv:1607.04643]. [32] S. Kanemura, M. Kikuchi, and K. Yagyu, “Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements,” Nucl. Phys, vol. B896, pp. 80–137, (2015). [arXiv:hep-ph/1502.07716]. [33] L. Bellantoni et al., “Masses of a Fourth Generation with Two Higgs Doublets,” Phys. Rev, vol. D86, p. 034022, (2012). [arXiv:hep-ph/1205.5580]. [34] A. Denner et al., “Higgs Production and Decay with a Fourth Standard-Model-Like Fermion Generation,” Eur. Phys. J, vol. C72, p. 1992, (2012). [arXiv:hep-ph/1111.6395]. [35] A. Dighe et al., “Large mass splittings for fourth generation fermions allowed by LHC Higgs exclusion,” Phys. Rev, vol. D85, p. 114035, (2012). [arXiv:hep-ph/1204.3550]. [36] G. Aad et al., “Search for charged Higgs bosons through the violation of lepton universality in tt¯ events using pp collision data at √ s = 7 TeV with the ATLAS experiment,” JHEP, vol. 03, p. 076, (2013). [arXiv:hep-ex/1212.3572]. [37] G. Aad et al., “Search for a CP-odd Higgs boson decaying to Zh in pp collisions at √ s = 8 TeV with the ATLAS detector,” Phys. Lett, vol. B744, pp. 163–183, (2015). [arXiv:hepex/1502.04478]. [38] G. Aad et al., “Search for an additional, heavy Higgs boson in the H → ZZ decay channel at √ s = 8 TeV in pp collision data with the ATLAS detector,” Eur. Phys. J, vol. C76, no. 1, p. 45, (2016). [arXiv:hep-ex/1507.05930]. [39] V. Khachatryan et al., “Searches for heavy Higgs bosons in two-Higgs-doublet models and for t → ch decay using multilepton and diphoton final states in pp collisions at 8 TeV,” Phys. Rev, vol. D90, p. 112013, (2014). [arXiv:hep-ex/1410.2751]. [40] V. Khachatryan et al., “Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ` +` −bb final states,” Phys. Lett, vol. B748, pp. 221–243, (2015). [arXiv:hep-ex/1504.04710]. [41] V. Khachatryan et al., “Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at √ s = 8 TeV,” Phys. Lett, vol. B750, pp. 494–519, (2015). [arXiv:hep-ex/1506.02301]. [42] V. Khachatryan et al., “Search for a charged Higgs boson in pp collisions at √ s = 8 TeV,” JHEP, vol. 11, p. 018, (2015). [arXiv:hep-ex/1508.07774]. [43] V. Khachatryan et al., “Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h → τ τ ,” Phys. Lett, vol. B755, pp. 217–244, (2016). [arXiv:hep-ex/1510.01181]. [44] A. G. Akeroyd et al., “Prospects for charged higgs searches at the lhc,” Eur. Phys. J. C, vol. 77, no. 5, p. 276, (2017). [45] M. Geller et al., “The 125 GeV Higgs in the context of four generations with 2 Higgs doublets,” Phys. Rev, vol. D86, p. 115008, (2012). [arXiv:hep-ph/1209.4081]. [46] S. Bar-Shalom, S. Nandi, and A. Soni, “Muon g − 2 and lepton flavor violation in a two Higgs doublets model for the fourth generation,” Phys. Lett, vol. B709, pp. 207–217, (2012). [arXiv:hep-ph/1112.3661]. [47] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” (2016). [arXiv/hepph:1610.06587]. [48] J. Heeck, M. Holthausen, W. Rodejohann, and Y. Shimizu, “h → µτ in Abelian and non-Abelian flavor symmetry models,” Nuclear Physics B, vol. 896, pp. 281–310, (2015). [arXiv:hep-ph/1412.3671]. [49] M. Campos, A. C´arcamo Hern´andez, H. P¨as, and E. Schumacher, “Higgs → µτ as an indication for S4 flavor symmetry,” Phys. Rev. D, vol. 91, p. 116011, Jun (2015). [arXiv:hepph/1408.1652]. [50] M. Aoki, S. Kanemura, K. Sakurai, and H. Sugiyama, “Testing neutrino mass generation mechanisms from the lepton flavor violating decay of the Higgs boson,” Physics Letters B, vol. 763, pp. 352 – 357, (2016). [arXiv:hep-ph/1607.08548]. [51] S. Baek, T. Nomura, and H. Okada, “An explanation of one-loop induced h → µτ decay,” Physics Letters B, vol. 759, pp. 91 – 98, (2016). [arXiv:hep-ph/1604.03738]. [52] L. Wang, S. Yang, and X. Han, “h → µτ and muon g − 2 in the alignment limit of two-Higgs-doublet model,” Nuclear Physics B, vol. 919, pp. 123 – 141, (2017). [arXiv:hepph/1606.04408].
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics G: Nuclear And Particle Physics
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/faaa87a5-2f49-4b9d-ad11-f56dccc6b140/download
https://repositorio.cuc.edu.co/bitstreams/04670cba-64f8-4c4e-ad2f-fff8833fa08a/download
https://repositorio.cuc.edu.co/bitstreams/87a30fae-40b5-4c30-b417-90ec3965f81d/download
https://repositorio.cuc.edu.co/bitstreams/0f1a83c5-531e-4573-9dde-fcedf42be43f/download
bitstream.checksum.fl_str_mv 2b3e02a82d2903a7fe2ed37aa288007e
8a4605be74aa9ea9d79846c1fba20a33
aeaee638b1075f7e7fd07d14f735a22b
4feb93f313c7fd643b68e533c8debb25
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166910672371712
spelling Chamorro Solano, Sindy MirellaMoyotl, APerez Angon, Miguel Angel2018-11-16T23:40:50Z2018-11-16T23:40:50Z2018-0609543899https://hdl.handle.net/11323/1204DOI: 10.1088/1361-6471/aac458Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We analyze the flavor changing decay h → μt in the framework of a two Higgs doublet model with a fourth generation of fermions (4G2HDM) which couples only to the heavy scalar doublet. We find that the respective branching ratio at one-loop level can reach values as high as 10-4-10-6 for masses of 300 GeV-1 TeV for the heavy leptons in the fourth family and the new heavy Higgs bosons. These radiative corrections are of the same order of magnitude as the tree level prediction of the 4G2HDM.Chamorro Solano, Sindy Mirella-0000-0001-5259-3205-600Moyotl, A-5093e10d-1b80-459f-86dd-07045483aede-0Perez Angon, Miguel Angel-e67ee593-fab3-40ea-b573-7b81e8ac8a5a-0engJournal of Physics G: Nuclear And Particle PhysicsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Flavor changing neutral currentsFourth familyHiggs bosonRadiative correctionsLepton flavor changing higgs boson decays in a two higgs doublet model with a fourth generation of fermionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Phys. Rev. D, vol. 2, pp. 1285–1292, (1970). [2] M. A. Perez, G. Tavares-Velasco, and J. J. Toscano, “New physics effects in rare Z decays,” Int. J. Mod. Phys, vol. A19, pp. 159–178, (2004). [arXiv:hep-ph/0305227]. [3] F. Larios, R. Martinez, and M. A. Perez, “New physics effects in the flavor-changing neutral couplings of the top quark,” Int. J. Mod. Phys, vol. A21, pp. 3473–3494, (2006). [arXiv:hepph/0605003]. [4] V. Khachatryan et al., “Search for Lepton-Flavour-Violating Decays of the Higgs Boson,” Phys. Lett, vol. B749, pp. 337–362, (2015). [arXiv:hep-ex/1502.07400]. [5] G. Aad et al., “Search for lepton-flavour-violating H → µτ decays of the Higgs boson with the ATLAS detector,” JHEP, vol. 11, p. 211, (2015). [arXiv:hep-ex/1508.03372]. [6] A. Pilaftsis, “Lepton flavour nonconservation in h 0 decays,” Physics Letters B, vol. 285, no. 1, pp. 68–74, (1992). [7] L. Diaz-Cruz and J. J. Toscano, “Lepton flavor violating decays of Higgs bosons beyond the standard model,” Phys. Rev, vol. D62, p. 116005, (2000). [arXiv:hep-ph/9910233]. [8] C. Alvarado et al., “Minimal models of loop-induced lepton flavor violation in Higgs boson decays,” Phys. Rev, vol. D94, no. 7, p. 075010, (2016). [arXiv:hep-ph/1602.08506]. [9] J. Lee and K. Lee, “Bs → µτ and h → µτ decays in the general two Higgs doublet model,” 2016. [arXiv:hep-ph/1612.04057]. [10] A. Lami and P. Roig, “H → ``0 in the simplest little Higgs model,” Phys. Rev, vol. D94, no. 5, p. 056001, (2016). [arXiv:hep-ph/1603.09663]. [11] J. Herrero-Garcia et al., “Full parameter scan of the Zee model: exploring Higgs lepton flavor violation,” Journal of High Energy Physics, vol. 2017, p. 130, Apr 2017. [arXiv:hepph/1701.05345v2]. [12] D. Aristizabal Sierra and A. Vicente, “”Explaining the CMS Higgs flavor-violating decay excess”,” Phys. Rev. D, vol. 90, p. 115004, Dec 2014. [arXiv:hep-ph/1409.7690v2]. [13] D. Das and A. Kundu, “Two hidden scalars around 125 GeV and h → µτ ,” Phys. Rev. D, vol. 92, p. 015009, Jul 2015. [arXiv:hep-ph/1504.01125v2]. [14] “Observation of the SM scalar boson decaying to a pair of τ leptons with the CMS experiment at the LHC,” Tech. Rep. CMS-PAS-HIG-16-043, CERN, Geneva, (2017). [15] F. del Aguila et al., “Lepton Flavor Changing Higgs decays in the Littlest Higgs Model with T-parity,” (2017). [arXiv:hep-ph/1705.08827]. [16] S. Chamorro-Solano, A. Moyotl, and M. A. Perez, “The decay h → µτ in the Littlest Higgs Model with T-parity,” J. Phys. Conf. Ser, vol. 761, no. 1, p. 012051, (2016). [17] A. Moyotl, S. Chamorro-Solano, and M. Perez, “The h → µτ decay in a two higgs doublet model with a fourth generation of fermions,” Nucl. Particle Phys. Proce, vol. 287-288, pp. 205–207, (2017). The 14th International Workshop on Tau Lepton Physics. [18] F. J. Botella, G. C. Branco, M. Nebot, and M. N. Rebelo, “Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models,” Eur. Phys. J, vol. C76, no. 3, p. 161, (2016). [arXiv:hep-ph/1508.05101]. [19] M. Sher and K. Thrasher, “Flavor Changing Leptonic Decays of Heavy Higgs Bosons,” Phys. Rev, vol. D93, no. 5, p. 055021, (2016). [arXiv:hep-ph/1601.03973]. [20] O. Eberhardt, A. Lenz, and J. Rohrwild, “Less space for a new family of fermions,” Phys. Rev. D, vol. 82, no. 20, p. 095006, 2010. [arXiv:hep-ph]/1005.3505v31]. [21] C. Patrignani et al., “Review of Particle Physics,” Chin. Phys, vol. C40, no. 10, p. 100001, (2016). [22] O. Eberhardt et al., “Status of the fourth fermion generation before ICHEP2012: Higgs data and electroweak precision observables,” Phys. Rev, vol. D86, p. 074014, (2012). [arXiv:hepph/1207.0438]. [23] O. Eberhardt et al., “Impact of a Higgs Boson at a Mass of 126 GeV on the Standard Model with Three and Four Fermion Generations,” Phys. Rev. Lett., vol. 109, p. 241802, Dec 2012. [24] Q. Li et al., “Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations,” Phys. Rev. D, vol. 83, p. 094018, May 2011. [arXiv:hep-ph/1011.4484]. [25] S. Bar-Shalom, S. Nandi, and A. Soni, “Two Higgs doublets with 4th generation fermions - models for TeV-scale compositeness,” Phys. Rev, vol. D84, p. 053009, (2011). [arXiv:hepph/1105.6095]. [26] M. Hashimoto, “Constraints on the mass spectrum of fourth generation fermions and higgs bosons,” Phys. Rev. D, vol. 81, p. 075023, Apr (2010). [27] M. Baak et al., “Updated status of the global electroweak fit and constraints on new physics,” Eur. Phys. J. C, vol. 72, no. 5, p. 2003, (2012). [28] S. Banerjee, M. Frank, and S. K. Rai, “Higgs data confronts Sequential Fourth Generation Fermions in the Higgs Triplet Model,” Phys. Rev., vol. D89, no. 7, p. 075005, (2014). [arXiv/hep-ph:1312.4249]. [29] N. Chen and H.-J. He, “LHC Signatures of Two-Higgs-Doublets with Fourth Family,” JHEP, vol. 04, p. 062, (2012). [arXiv/hep-ph:1202.3072]. [30] D. Das, A. Kundu, and I. Saha, “Higgs data does not rule out a sequential fourth generation,” (2017). [arXiv/hep-ph:1707.03000]. [31] S. Bar-Shalom and A. Soni, “Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not,” Physics Letters B, vol. 766, pp. 1 – 10, (2017). [arXiv:1607.04643]. [32] S. Kanemura, M. Kikuchi, and K. Yagyu, “Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements,” Nucl. Phys, vol. B896, pp. 80–137, (2015). [arXiv:hep-ph/1502.07716]. [33] L. Bellantoni et al., “Masses of a Fourth Generation with Two Higgs Doublets,” Phys. Rev, vol. D86, p. 034022, (2012). [arXiv:hep-ph/1205.5580]. [34] A. Denner et al., “Higgs Production and Decay with a Fourth Standard-Model-Like Fermion Generation,” Eur. Phys. J, vol. C72, p. 1992, (2012). [arXiv:hep-ph/1111.6395]. [35] A. Dighe et al., “Large mass splittings for fourth generation fermions allowed by LHC Higgs exclusion,” Phys. Rev, vol. D85, p. 114035, (2012). [arXiv:hep-ph/1204.3550]. [36] G. Aad et al., “Search for charged Higgs bosons through the violation of lepton universality in tt¯ events using pp collision data at √ s = 7 TeV with the ATLAS experiment,” JHEP, vol. 03, p. 076, (2013). [arXiv:hep-ex/1212.3572]. [37] G. Aad et al., “Search for a CP-odd Higgs boson decaying to Zh in pp collisions at √ s = 8 TeV with the ATLAS detector,” Phys. Lett, vol. B744, pp. 163–183, (2015). [arXiv:hepex/1502.04478]. [38] G. Aad et al., “Search for an additional, heavy Higgs boson in the H → ZZ decay channel at √ s = 8 TeV in pp collision data with the ATLAS detector,” Eur. Phys. J, vol. C76, no. 1, p. 45, (2016). [arXiv:hep-ex/1507.05930]. [39] V. Khachatryan et al., “Searches for heavy Higgs bosons in two-Higgs-doublet models and for t → ch decay using multilepton and diphoton final states in pp collisions at 8 TeV,” Phys. Rev, vol. D90, p. 112013, (2014). [arXiv:hep-ex/1410.2751]. [40] V. Khachatryan et al., “Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ` +` −bb final states,” Phys. Lett, vol. B748, pp. 221–243, (2015). [arXiv:hep-ex/1504.04710]. [41] V. Khachatryan et al., “Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at √ s = 8 TeV,” Phys. Lett, vol. B750, pp. 494–519, (2015). [arXiv:hep-ex/1506.02301]. [42] V. Khachatryan et al., “Search for a charged Higgs boson in pp collisions at √ s = 8 TeV,” JHEP, vol. 11, p. 018, (2015). [arXiv:hep-ex/1508.07774]. [43] V. Khachatryan et al., “Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h → τ τ ,” Phys. Lett, vol. B755, pp. 217–244, (2016). [arXiv:hep-ex/1510.01181]. [44] A. G. Akeroyd et al., “Prospects for charged higgs searches at the lhc,” Eur. Phys. J. C, vol. 77, no. 5, p. 276, (2017). [45] M. Geller et al., “The 125 GeV Higgs in the context of four generations with 2 Higgs doublets,” Phys. Rev, vol. D86, p. 115008, (2012). [arXiv:hep-ph/1209.4081]. [46] S. Bar-Shalom, S. Nandi, and A. Soni, “Muon g − 2 and lepton flavor violation in a two Higgs doublets model for the fourth generation,” Phys. Lett, vol. B709, pp. 207–217, (2012). [arXiv:hep-ph/1112.3661]. [47] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” (2016). [arXiv/hepph:1610.06587]. [48] J. Heeck, M. Holthausen, W. Rodejohann, and Y. Shimizu, “h → µτ in Abelian and non-Abelian flavor symmetry models,” Nuclear Physics B, vol. 896, pp. 281–310, (2015). [arXiv:hep-ph/1412.3671]. [49] M. Campos, A. C´arcamo Hern´andez, H. P¨as, and E. Schumacher, “Higgs → µτ as an indication for S4 flavor symmetry,” Phys. Rev. D, vol. 91, p. 116011, Jun (2015). [arXiv:hepph/1408.1652]. [50] M. Aoki, S. Kanemura, K. Sakurai, and H. Sugiyama, “Testing neutrino mass generation mechanisms from the lepton flavor violating decay of the Higgs boson,” Physics Letters B, vol. 763, pp. 352 – 357, (2016). [arXiv:hep-ph/1607.08548]. [51] S. Baek, T. Nomura, and H. Okada, “An explanation of one-loop induced h → µτ decay,” Physics Letters B, vol. 759, pp. 91 – 98, (2016). [arXiv:hep-ph/1604.03738]. [52] L. Wang, S. Yang, and X. Han, “h → µτ and muon g − 2 in the alignment limit of two-Higgs-doublet model,” Nuclear Physics B, vol. 919, pp. 123 – 141, (2017). [arXiv:hepph/1606.04408].PublicationORIGINALLepton flavor changing Higgs boson.pdfLepton flavor changing Higgs boson.pdfapplication/pdf319720https://repositorio.cuc.edu.co/bitstreams/faaa87a5-2f49-4b9d-ad11-f56dccc6b140/download2b3e02a82d2903a7fe2ed37aa288007eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/04670cba-64f8-4c4e-ad2f-fff8833fa08a/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILLepton flavor changing Higgs boson.pdf.jpgLepton flavor changing Higgs boson.pdf.jpgimage/jpeg47170https://repositorio.cuc.edu.co/bitstreams/87a30fae-40b5-4c30-b417-90ec3965f81d/downloadaeaee638b1075f7e7fd07d14f735a22bMD54TEXTLepton flavor changing Higgs boson.pdf.txtLepton flavor changing Higgs boson.pdf.txttext/plain34629https://repositorio.cuc.edu.co/bitstreams/0f1a83c5-531e-4573-9dde-fcedf42be43f/download4feb93f313c7fd643b68e533c8debb25MD5511323/1204oai:repositorio.cuc.edu.co:11323/12042024-09-17 14:25:13.758open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=