Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)

Per- and polyfluoroalkyl substances are widely used in various consumer products. However, these compounds can cause various harm to the environment and health. Considering the high chemical stability, these compounds are not completely removed from the aqueous environment, and consequently, recent...

Full description

Autores:
da Silva Bruckmann, Franciele
Jemli, Sonia
Ben Amara, Fakhreddine
Adelodun, Bashir
Silva Oliveira, Luis Felipe
Bejar, Samir
Rizwan Khan, Mohammad
Ahmad, Naushad
Simões dos Reis, Glaydson
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13304
Acceso en línea:
https://hdl.handle.net/11323/13304
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Emerging contaminants
β-cyclodextrin
Recalcitrant compounds
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_40858dd2131389eaffee4c699c6d632c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13304
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
title Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
spellingShingle Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
Adsorption
Emerging contaminants
β-cyclodextrin
Recalcitrant compounds
title_short Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
title_full Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
title_fullStr Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
title_full_unstemmed Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
title_sort Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)
dc.creator.fl_str_mv da Silva Bruckmann, Franciele
Jemli, Sonia
Ben Amara, Fakhreddine
Adelodun, Bashir
Silva Oliveira, Luis Felipe
Bejar, Samir
Rizwan Khan, Mohammad
Ahmad, Naushad
Simões dos Reis, Glaydson
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv da Silva Bruckmann, Franciele
Jemli, Sonia
Ben Amara, Fakhreddine
Adelodun, Bashir
Silva Oliveira, Luis Felipe
Bejar, Samir
Rizwan Khan, Mohammad
Ahmad, Naushad
Simões dos Reis, Glaydson
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Adsorption
Emerging contaminants
β-cyclodextrin
Recalcitrant compounds
topic Adsorption
Emerging contaminants
β-cyclodextrin
Recalcitrant compounds
description Per- and polyfluoroalkyl substances are widely used in various consumer products. However, these compounds can cause various harm to the environment and health. Considering the high chemical stability, these compounds are not completely removed from the aqueous environment, and consequently, recent studies have detected their presence in water bodies. In this scenario, biomass-based adsorbents are promising. β-cyclodextrin (β-CD) was grafted in an ultrafine potato peel waste (UFPPW) to produce a novel, efficient, and sustainable adsorbent (UFPPW-β-CD) that was used to remove three different perfluorosulfonic acids (PFSAs) from water. The efficient grafting was proved by several characterization techniques, which also demonstrated the main UFPPW-β-CD features. The UFPPW-β-CD was efficient for all PFSAs (perfluorohexanesulfonic acid (PFHxS), perfluoropentanesulfonic acid (PFPeS), and perfluorobutanesulfonic acid (PFBS)), with removal percentage higher than 74 %. The increase in the Csingle bondF chain of PFSAs favored the adsorption due to the host–guest hydrophobic interactions between the Csingle bondF chains of the adsorbates and the hydrophobic cavity of the β-CD. Removal percentages and adsorption capacities at pH 3.0 were 74.6 % (49.92 µg g−1) to the PFBS, 82.6 % (65.66 µg g−1) to the PFPeS, and 90 % (100.89 µg g−1) to the PFHxS. The kinetic followed the General order model, while the equilibrium agreed with the Sips isotherm. The adsorption capacity increased with the increase in the Csingle bondF chain of the adsorbate, but the adsorption rate followed the opposite trend. PFSAs adsorption on the UFPPW-β-CD adsorbent was favorable and exothermic. UFPPW-β-CD could be used seven times, keeping its maximum adsorption capacity constant using ultrasound-assisted desorption. It can be concluded that UFPPW-β-CD is a sustainable adsorbent to uptake PFSAs from water, and this process is dependent on the size of the Csingle bondF chains.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-09T15:35:01Z
dc.date.available.none.fl_str_mv 2024-09-09T15:35:01Z
2026-12-18
dc.date.issued.none.fl_str_mv 2024-12-18
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Franciele da Silva Bruckmann, Sonia Jemli, Fakhreddine Ben Amara, Bashir Adelodun, Luis Felipe Oliveira Silva, Samir Bejar, Mohammad Rizwan Khan, Naushad Ahmad, Glaydson Simões dos Reis, Guilherme Luiz Dotto, Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD), Separation and Purification Technology, Volume 350, 2024, 127972, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2024.127972.
dc.identifier.issn.spa.fl_str_mv 1383-5866
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13304
dc.identifier.doi.none.fl_str_mv 10.1016/j.seppur.2024.127972
dc.identifier.eissn.spa.fl_str_mv 1873-3794
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Franciele da Silva Bruckmann, Sonia Jemli, Fakhreddine Ben Amara, Bashir Adelodun, Luis Felipe Oliveira Silva, Samir Bejar, Mohammad Rizwan Khan, Naushad Ahmad, Glaydson Simões dos Reis, Guilherme Luiz Dotto, Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD), Separation and Purification Technology, Volume 350, 2024, 127972, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2024.127972.
1383-5866
10.1016/j.seppur.2024.127972
1873-3794
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13304
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Separation and Purification Technology
dc.relation.references.spa.fl_str_mv [1] J. Borrull, A. Colom, J. Fabregas, F. Borrull, E. Pocurull, Presence, behaviour and removal of selected organic micropollutants through drinking water treatment, Chemosphere 276 (2021) 130023, https://doi.org/10.1016/j. chemosphere.2021.130023.
[2] H. Ren, R. Troger, ¨ L. Ahrens, K. Wiberg, D. Yin, Screening of organic micropollutants in raw and drinking water in the Yangtze River Delta, China, Environ. Sci. Eur. 32 (2020) 67, https://doi.org/10.1186/s12302-020-00342-5.
[3] X. Lei, Q. Lian, X. Zhang, T.K. Karsili, W. Holmes, Y. Chen, M.E. Zappi, D.D. Gang, A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities, Environ. Pollut. (2023).
[4] W. Liu, J. Wu, W. He, F. Xu, A review on perfluoroalkyl acids studies: Environmental behaviors, toxic effects, and ecological and health risks, Ecosyst. Health Sustain. 5 (2019) 1–19, https://doi.org/10.1080/20964129.2018.1558031.
[5] R.A. Brase, E.J. Mullin, D.C. Spink, Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects, Int. J. Mol. Sci. 22 (2021) 995, https://doi.org/10.3390/ijms22030995.
[6] Y. Xu, T. Fletcher, D. Pineda, C.H. Lindh, C. Nilsson, A. Glynn, C. Vogs, K. Norstrom, ¨ K. Lilja, K. Jakobsson, Y. Li, Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam, Environ. Health Perspect. 128 (2020) 77004, https://doi.org/ 10.1289/EHP6785.
[7] W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, C. Wang, Treatment of CrVI-containing Mg(OH)2 nanowaste, Angew. Chem. Int. Ed. 47 (2008) 5619–5622, https://doi.org/10.1002/anie.200800172.
[8] Z. Suiyi, R. Yanong, Z. Yuxin, Z. Minglin, Y. Weilu, X. Xinfeng, Y. Yang, L. Jiancong, Q. Zhan, L. Jialin, C. Yu, A novel clinoatacamite route to effectively separate Cu for recycling Ca/Zn/Mn from hazardous smelting waterwork sludge, J. Environ. Chem. Eng. 12 (2024), https://doi.org/10.1016/j.jece.2024.112024.
[9] M. Aizudin, N.H. Alias, Y.X.A. Ng, M.H.M. Fadzuli, S.C. Ang, Y.X. Ng, R. P. Pottammel, F. Yang, E.H. Ang, Membranes prepared from graphene-based nanomaterials for water purification: a mini-review, Nanoscale 14 (2022) 17871–17886, https://doi.org/10.1039/D2NR05328D.
[10] N.H. Alias, M.H.A. Aziz, M.R. Adam, M. Aizudin, E.H. Ang, 4 - Polymeric/ceramic membranes for water reuse, in: M. Sillanpa¨a, ¨ A. Khadir, K. Gurung (Eds.), Resource Recovery in Drinking Water Treatment, Elsevier, 2023, pp. 65–92, https://doi.org/ 10.1016/B978-0-323-99344-9.00005-0.
[11] E.H. Ang, S. Velioglu, ˘ J.W. Chew, Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes, J. Membr. Sci. 591 (2019) 117318, https://doi.org/10.1016/j.memsci.2019.117318.
[12] R. Ma, G. Zhou, M. Gu, X. Tang, W. Ding, Y. Guan, Y. Jiang, J. Yin, L. Zhang, E. Huixiang Ang, Cobalt leaching inhibition: Transforming coordination polymers into spherical Co3O4@NC catalysts for accelerated tetracycline degradation via enhanced PMS activation, Appl. Surface Sci. 648 (2024) 158980, https://doi.org/ 10.1016/j.apsusc.2023.158980.
[13] M. Liu, H. Zhu, R. Du, W. Zhang, W. Shi, Z. Guo, S. Tang, E.H. Ang, J. Yang, J. Pan, F. Yang, Constructing functional thermal-insulation-layer on Co3O4 nanosphere for reinforced local-microenvironment photothermal PMS activation in pollutant degradation, J. Environ. Chem. Eng. 11 (2023) 109939, https://doi.org/10.1016/j. jece.2023.109939.
[14] M. Pan, C. Li, X. Wei, G. Liu, E.H. Ang, B. Pan, Pioneering piezoelectric-driven atomic hydrogen for efficient dehalogenation of halogenated organic pollutants, Environ. Sci. Tech. 58 (2024) 4008–4018, https://doi.org/10.1021/acs. est.3c09579.
[15] L. Shen, Q. Wu, Q. Ye, H. Lin, J. Zhang, C. Chen, R. Yue, J. Teng, H. Hong, B.- Q. Liao, Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics, Water Res. 243 (2023) 120353, https://doi.org/10.1016/j.watres.2023.120353.
[16] L. Han, J. Ma, H. Lin, C. Chen, J. Teng, B. Li, D. Zhao, Y. Xu, W. Yu, L. Shen, A Novel Flower-Like Nickel-Metal-Organic Framework (Ni-Mof) Membrane for Efficient Multi-Component Pollutants Removal by Gravity, (2023). doi: 10.2139/ ssrn.4434961.
[17] N. Kong, L. Shen, Q. Zeng, C. Chen, J. Teng, Y. Xu, L. Zhao, H. Lin, Transversal nanochannel-enabled MXene laminated membranes for superior oil-water separation: A fluid mosaic cytomembrane inspired approach, J. Membr. Sci. 680 (2023) 121735, https://doi.org/10.1016/j.memsci.2023.121735.
[18] A. Rehman, G. Nazir, K. Heo, S. Hussain, M. Ikram, Z. Akhter, M.M. Algaradah, Q. Mahmood, A.M. Fouda, A focused review on lignocellulosic biomass-derived porous carbons for effective pharmaceuticals removal: Current trends, challenges and future prospects, Sep. Purif. Technol. 330 (2024) 125356, https://doi.org/ 10.1016/j.seppur.2023.125356.
[19] J. Bao, W.-J. Yu, Y. Liu, X. Wang, Z.-Q. Liu, Y.-F. Duan, Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation, Chemosphere 248 (2020) 125951, https://doi.org/10.1016/j. chemosphere.2020.125951.
[20] C.T. Vu, T. Wu, Recent progress in adsorptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater, Crit. Rev. Environ. Sci. Technol. 52 (2022) 90–129, https://doi.org/10.1080/10643389.2020.1816125.
[21] H. Yu, H. Chen, B. Fang, H. Sun, Sorptive removal of per- and polyfluoroalkyl substances from aqueous solution: Enhanced sorption, challenges and perspectives, Sci. Total Environ. 861 (2023) 160647, https://doi.org/10.1016/j. scitotenv.2022.160647.
[22] S. Jemli, S.F. Lütke, F. Chamtouri, F. Ben Amara, S. Bejar, M.L.S. Oliveira, S. Knani, L.F.O. Silva, G.L. Dotto, A novel cartoon crosslinked β-cyclodextrin (C-β-CD) polymer for effective uptake of Hg from aqueous solutions: Kinetics, equilibrium, thermodynamics, and statistical physics approach, Separation and Purification Technology 330 (2024) 125578. doi: 10.1016/j.seppur.2023.125578.
[23] K. Kose, ¨ M. Tüysüz, D. Aksüt, L. Uzun, Modification of cyclodextrin and use in environmental applications, Environ. Sci. Pollut. Res. (2021) 1–28.
[24] Y. Li, F. Liu, T. Abdiryim, X. Liu, Cyclodextrin-derived materials: From design to promising applications in water treatment, Coord. Chem. Rev. 502 (2024) 215613, https://doi.org/10.1016/j.ccr.2023.215613.
[25] F. Ben Amara, M. Bouzid, M. Sahnoun, Y. Ben Nasr, B. Jaouadi, S. Bejar, S. Jemli, Valorization of potato peels starch for efficient β-cyclodextrin production and purification through an eco-friendly process, Starch-St¨ arke 74 (2022).
[26] S. Jemli, E. Ben Messaoud, S. Ben Mabrouk, S. Bejar, The cyclodextrin glycosyltransferase of Paenibacillus pabuli US132 strain: molecular characterization and overproduction of the recombinant enzyme, J. Biomed. Biotechnol. 2008 (2008).
[27] D. Chodankar, A. Vora, A. Kanhed, β-cyclodextrin and its derivatives: application in wastewater treatment, Environ. Sci. Pollut. Res. (2021) 1–20.
[28] G. Crini, S. Fourmentin, E. ´ Fenyvesi, G. Torri, M. Fourmentin, N. Morin-Crini, Cyclodextrins, from molecules to applications, Environ. Chem. Lett. 16 (2018) 1361–1375, https://doi.org/10.1007/s10311-018-0763-2.
[29] L. Xiao, C. Ching, Y. Ling, M. Nasiri, M.J. Klemes, T.M. Reineke, D.E. Helbling, W. R. Dichtel, Crosslinker chemistry determines the uptake potential of perfluorinated alkyl substances by β-Cyclodextrin polymers, Macromolecules 52 (2019) 3747–3752, https://doi.org/10.1021/acs.macromol.9b00417.
[30] A. Yang, C. Ching, M. Easler, D.E. Helbling, W.R. Dichtel, Cyclodextrin polymers with nitrogen-containing tripodal crosslinkers for efficient PFAS adsorption, ACS Mater. Lett. 2 (2020) 1240–1245, https://doi.org/10.1021/ acsmaterialslett.0c00240.
[31] F. Ebrahimian, J.F.M. Denayer, K. Karimi, Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents, Bioresour. Technol. 360 (2022) 127609, https://doi.org/10.1016/j.biortech.2022.127609.
[32] S. Khanal, K. Karimi, S. Majumdar, V. Kumar, R. Verma, S.K. Bhatia, K. Kuca, J. Esteban, D. Kumar, Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectives, Biomass Conv. Bioref. (2023), https://doi. org/10.1007/s13399-023-04521-1.
[33] S. Jemli, D. Pinto, W.G. Kanhounnon, F.B. Amara, L. Sellaoui, A. BonillaPetriciolet, F. Dhaouadi, R. Ameri, L.F. Silva, S. Bejar, Green β-cyclodextrin nanosponges for the efficient adsorption of light rare earth elements: Cerium and lanthanum, Chem. Eng. J. 466 (2023) 143108.
[34] X. Wang, Z. Luo, Z. Xiao, Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex, Carbohydr. Polym. 101 (2014) 1027–1032, https://doi.org/10.1016/j.carbpol.2013.10.042.
[35] A. Stavrinou, C.A. Aggelopoulos, C.D. Tsakiroglou, Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool, J. Environ. Chem. Eng. 6 (2018) 6958–6970.
[36] R.L. Abarca, F.J. Rodriguez, A. Guarda, M.J. Galotto, J.E. Bruna, Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component, Food Chem. 196 (2016) 968–975.
[37] A. Herrera, F.J. Rodríguez, J.E. Bruna, R.L. Abarca, M.J. Galotto, A. Guarda, C. Mascayano, C. Sandoval-Ya´nez, ˜ M. Padula, F.R.S. Felipe, Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives, Food Res. Int. 121 (2019) 127–135.
[38] D. Chen, D. Lawton, M.R. Thompson, Q. Liu, Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste, Carbohydr. Polym. 90 (2012) 709–716, https://doi.org/10.1016/j.carbpol.2012.06.002.
[39] J. Yuan, F. Qiu, P. Li, Synthesis and characterization of β-cyclodextrin–carboxymethyl cellulose–graphene oxide composite materials and its application for removal of basic fuchsin, J. Iran. Chem. Soc. 14 (2017) 1827–1837, https://doi.org/10.1007/s13738-017-1122-0.
[40] K.A. Uyanga, O.P. Okpozo, O.S. Onyekwere, W.A. Daoud, Citric acid crosslinked natural bi-polymer-based composite hydrogels: Effect of polymer ratio and betacyclodextrin on hydrogel microstructure, React. Funct. Polym. 154 (2020) 104682, https://doi.org/10.1016/j.reactfunctpolym.2020.104682.
[41] J. Deng, J. Han, C. Hou, Y. Zhang, Y. Fang, W. Du, M. Li, Y. Yuan, C. Tang, X. Hu, Efficient removal of per- and polyfluoroalkyl substances from biochar composites: Cyclic adsorption and spent regenerant degradation, Chemosphere 341 (2023) 140051, https://doi.org/10.1016/j.chemosphere.2023.140051.
[42] Z.-W. Ke, S.-J. Wei, P. Shen, Y.-M. Chen, Y.-C. Li, Mechanism for the adsorption of Per- and polyfluoroalkyl substances on kaolinite: Molecular dynamics modeling, Appl. Clay Sci. 232 (2023) 106804, https://doi.org/10.1016/j.clay.2022.106804.
[43] X. Lei, Q. Lian, X. Zhang, T.K. Karsili, W. Holmes, Y. Chen, M.E. Zappi, D.D. Gang, A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities, Environ. Pollut. 321 (2023) 121138, https://doi.org/10.1016/j.envpol.2023.121138.
[44] R. Wang, Z.-W. Lin, M.J. Klemes, M. Ateia, B. Trang, J. Wang, C. Ching, D. E. Helbling, W.R. Dichtel, A tunable porous β-cyclodextrin polymer platform to understand and improve anionic PFAS removal, ACS Cent. Sci. 8 (2022) 663–669, https://doi.org/10.1021/acscentsci.2c00478.
[45] G.L. Dotto, J.A.V. Costa, L.A.A. Pinto, Kinetic studies on the biosorption of phenol by nanoparticles from Spirulina sp. LEB 18, J. Environ. Chem. Eng. 1 (2013) 1137–1143, https://doi.org/10.1016/j.jece.2013.08.029.
[46] J.-K. Kang, H. Lee, S.-B. Kim, H. Bae, Alkyl chain length of quaternized SBA-15 and solution conditions determine hydrophobic and electrostatic interactions for carbamazepine adsorption, Sci. Rep. 13 (2023) 5170, https://doi.org/10.1038/ s41598-023-32108-3.
[47] M. Verma, I. Lee, V. Kumar, S.-Y. Pan, C. Fan, H. Kim, Chitosan crosslinked β–cyclodextrin polymeric adsorbent for the removal of perfluorobutanesulfonate from aqueous solution: adsorption kinetics, isotherm, and mechanism, Environ. Sci. Pollut. Res. 30 (2023) 19259–19268, https://doi.org/10.1007/s11356-022- 23546-z.
[48] M. Kumar, H.S. Dosanjh, H. Singh, Biopolymer modified transition metal spinel ferrites for removal of fluoride ions from water, Environ. Nanotechnol. Monit. Manage. 12 (2019) 100237, https://doi.org/10.1016/j.enmm.2019.100237.
[49] L. Sellaoui, F. Dhaouadi, M. Deghrigue, M. Bouzidi, H. Khmissi, G.L. Dotto, M.L. S. Oliveira, L.F.O. Silva, A. Erto, B. Ernst, M. Badawi, A multilayer adsorption of perfluorohexanesulfonic and perfluorobutanesulfonic acids on bio-based polyurethane/chitosan foam: Advanced interpretation of the adsorption mechanism, Chem. Eng. J. 489 (2024) 151173, https://doi.org/10.1016/j. cej.2024.151173.
[50] M.R. Shirzad Kebria, L. Bono, S. Khoshhal Salestan, A. Armirotti, R. Carzino, A. Athanassiou, D. Fragouli, Efficient removal of perfluorobutanesulfonic acid from water through a chitosan/polyethyleneimine xerogel, Chem. Eng. J. 466 (2023) 143236, https://doi.org/10.1016/j.cej.2023.143236.
[51] Q. Zhou, S. Deng, Q. Yu, Q. Zhang, G. Yu, J. Huang, H. He, Sorption of perfluorooctane sulfonate on organo-montmorillonites, Chemosphere 78 (2010) 688–694, https://doi.org/10.1016/j.chemosphere.2009.12.005.
[52] M. Diehl, L.F.O. Silva, C. Schnorr, M.S. Netto, F.S. Bruckmann, G.L. Dotto, Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water, Environ. Sci. Pollut. Res. 30 (2023) 51920–51931, https:// doi.org/10.1007/s11356-023-26006-4.
[53] B. Shrestha, M. Ezazi, S. Ajayan, G. Kwon, Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents via alternating electric field, RSC Adv. 11 (2021) 34652–34659, https://doi.org/10.1039/D1RA04821J.
dc.relation.citationendpage.spa.fl_str_mv 9
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 350
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier B.V.
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1383586624017118?pes=vor
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e2e4f399-9aeb-4a19-bbd5-1d43d015c9a7/download
https://repositorio.cuc.edu.co/bitstreams/e7ed7c72-2104-4787-b06a-3663206bc265/download
https://repositorio.cuc.edu.co/bitstreams/c476effa-23a1-490f-9332-8c9f1bb19faa/download
https://repositorio.cuc.edu.co/bitstreams/ab36b681-c2bf-44a3-9cfb-68a8976e69e4/download
bitstream.checksum.fl_str_mv e7daf2c2669dd109e11de0dfa352af39
2f9959eaf5b71fae44bbf9ec84150c7a
84d25660f61679fd8f8949625d5df9a1
afe5998428d5b66c5e00b7142cd19ad3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760805401591808
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfda Silva Bruckmann, FrancieleJemli, SoniaBen Amara, FakhreddineAdelodun, BashirSilva Oliveira, Luis FelipeBejar, SamirRizwan Khan, MohammadAhmad, NaushadSimões dos Reis, GlaydsonDotto, Guilherme Luiz2024-09-09T15:35:01Z2026-12-182024-09-09T15:35:01Z2024-12-18Franciele da Silva Bruckmann, Sonia Jemli, Fakhreddine Ben Amara, Bashir Adelodun, Luis Felipe Oliveira Silva, Samir Bejar, Mohammad Rizwan Khan, Naushad Ahmad, Glaydson Simões dos Reis, Guilherme Luiz Dotto, Adsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD), Separation and Purification Technology, Volume 350, 2024, 127972, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2024.127972.1383-5866https://hdl.handle.net/11323/1330410.1016/j.seppur.2024.1279721873-3794Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Per- and polyfluoroalkyl substances are widely used in various consumer products. However, these compounds can cause various harm to the environment and health. Considering the high chemical stability, these compounds are not completely removed from the aqueous environment, and consequently, recent studies have detected their presence in water bodies. In this scenario, biomass-based adsorbents are promising. β-cyclodextrin (β-CD) was grafted in an ultrafine potato peel waste (UFPPW) to produce a novel, efficient, and sustainable adsorbent (UFPPW-β-CD) that was used to remove three different perfluorosulfonic acids (PFSAs) from water. The efficient grafting was proved by several characterization techniques, which also demonstrated the main UFPPW-β-CD features. The UFPPW-β-CD was efficient for all PFSAs (perfluorohexanesulfonic acid (PFHxS), perfluoropentanesulfonic acid (PFPeS), and perfluorobutanesulfonic acid (PFBS)), with removal percentage higher than 74 %. The increase in the Csingle bondF chain of PFSAs favored the adsorption due to the host–guest hydrophobic interactions between the Csingle bondF chains of the adsorbates and the hydrophobic cavity of the β-CD. Removal percentages and adsorption capacities at pH 3.0 were 74.6 % (49.92 µg g−1) to the PFBS, 82.6 % (65.66 µg g−1) to the PFPeS, and 90 % (100.89 µg g−1) to the PFHxS. The kinetic followed the General order model, while the equilibrium agreed with the Sips isotherm. The adsorption capacity increased with the increase in the Csingle bondF chain of the adsorbate, but the adsorption rate followed the opposite trend. PFSAs adsorption on the UFPPW-β-CD adsorbent was favorable and exothermic. UFPPW-β-CD could be used seven times, keeping its maximum adsorption capacity constant using ultrasound-assisted desorption. It can be concluded that UFPPW-β-CD is a sustainable adsorbent to uptake PFSAs from water, and this process is dependent on the size of the Csingle bondF chains.9 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S1383586624017118?pes=vorAdsorption of perfluorosulfonic acids (PFSAs) on an ultrafine potato peel waste grafted β-cyclodextrin (UFPPW-β-CD)Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Separation and Purification Technology[1] J. Borrull, A. Colom, J. Fabregas, F. Borrull, E. Pocurull, Presence, behaviour and removal of selected organic micropollutants through drinking water treatment, Chemosphere 276 (2021) 130023, https://doi.org/10.1016/j. chemosphere.2021.130023.[2] H. Ren, R. Troger, ¨ L. Ahrens, K. Wiberg, D. Yin, Screening of organic micropollutants in raw and drinking water in the Yangtze River Delta, China, Environ. Sci. Eur. 32 (2020) 67, https://doi.org/10.1186/s12302-020-00342-5.[3] X. Lei, Q. Lian, X. Zhang, T.K. Karsili, W. Holmes, Y. Chen, M.E. Zappi, D.D. Gang, A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities, Environ. Pollut. (2023).[4] W. Liu, J. Wu, W. He, F. Xu, A review on perfluoroalkyl acids studies: Environmental behaviors, toxic effects, and ecological and health risks, Ecosyst. Health Sustain. 5 (2019) 1–19, https://doi.org/10.1080/20964129.2018.1558031.[5] R.A. Brase, E.J. Mullin, D.C. Spink, Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects, Int. J. Mol. Sci. 22 (2021) 995, https://doi.org/10.3390/ijms22030995.[6] Y. Xu, T. Fletcher, D. Pineda, C.H. Lindh, C. Nilsson, A. Glynn, C. Vogs, K. Norstrom, ¨ K. Lilja, K. Jakobsson, Y. Li, Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam, Environ. Health Perspect. 128 (2020) 77004, https://doi.org/ 10.1289/EHP6785.[7] W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, C. Wang, Treatment of CrVI-containing Mg(OH)2 nanowaste, Angew. Chem. Int. Ed. 47 (2008) 5619–5622, https://doi.org/10.1002/anie.200800172.[8] Z. Suiyi, R. Yanong, Z. Yuxin, Z. Minglin, Y. Weilu, X. Xinfeng, Y. Yang, L. Jiancong, Q. Zhan, L. Jialin, C. Yu, A novel clinoatacamite route to effectively separate Cu for recycling Ca/Zn/Mn from hazardous smelting waterwork sludge, J. Environ. Chem. Eng. 12 (2024), https://doi.org/10.1016/j.jece.2024.112024.[9] M. Aizudin, N.H. Alias, Y.X.A. Ng, M.H.M. Fadzuli, S.C. Ang, Y.X. Ng, R. P. Pottammel, F. Yang, E.H. Ang, Membranes prepared from graphene-based nanomaterials for water purification: a mini-review, Nanoscale 14 (2022) 17871–17886, https://doi.org/10.1039/D2NR05328D.[10] N.H. Alias, M.H.A. Aziz, M.R. Adam, M. Aizudin, E.H. Ang, 4 - Polymeric/ceramic membranes for water reuse, in: M. Sillanpa¨a, ¨ A. Khadir, K. Gurung (Eds.), Resource Recovery in Drinking Water Treatment, Elsevier, 2023, pp. 65–92, https://doi.org/ 10.1016/B978-0-323-99344-9.00005-0.[11] E.H. Ang, S. Velioglu, ˘ J.W. Chew, Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes, J. Membr. Sci. 591 (2019) 117318, https://doi.org/10.1016/j.memsci.2019.117318.[12] R. Ma, G. Zhou, M. Gu, X. Tang, W. Ding, Y. Guan, Y. Jiang, J. Yin, L. Zhang, E. Huixiang Ang, Cobalt leaching inhibition: Transforming coordination polymers into spherical Co3O4@NC catalysts for accelerated tetracycline degradation via enhanced PMS activation, Appl. Surface Sci. 648 (2024) 158980, https://doi.org/ 10.1016/j.apsusc.2023.158980.[13] M. Liu, H. Zhu, R. Du, W. Zhang, W. Shi, Z. Guo, S. Tang, E.H. Ang, J. Yang, J. Pan, F. Yang, Constructing functional thermal-insulation-layer on Co3O4 nanosphere for reinforced local-microenvironment photothermal PMS activation in pollutant degradation, J. Environ. Chem. Eng. 11 (2023) 109939, https://doi.org/10.1016/j. jece.2023.109939.[14] M. Pan, C. Li, X. Wei, G. Liu, E.H. Ang, B. Pan, Pioneering piezoelectric-driven atomic hydrogen for efficient dehalogenation of halogenated organic pollutants, Environ. Sci. Tech. 58 (2024) 4008–4018, https://doi.org/10.1021/acs. est.3c09579.[15] L. Shen, Q. Wu, Q. Ye, H. Lin, J. Zhang, C. Chen, R. Yue, J. Teng, H. Hong, B.- Q. Liao, Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics, Water Res. 243 (2023) 120353, https://doi.org/10.1016/j.watres.2023.120353.[16] L. Han, J. Ma, H. Lin, C. Chen, J. Teng, B. Li, D. Zhao, Y. Xu, W. Yu, L. Shen, A Novel Flower-Like Nickel-Metal-Organic Framework (Ni-Mof) Membrane for Efficient Multi-Component Pollutants Removal by Gravity, (2023). doi: 10.2139/ ssrn.4434961.[17] N. Kong, L. Shen, Q. Zeng, C. Chen, J. Teng, Y. Xu, L. Zhao, H. Lin, Transversal nanochannel-enabled MXene laminated membranes for superior oil-water separation: A fluid mosaic cytomembrane inspired approach, J. Membr. Sci. 680 (2023) 121735, https://doi.org/10.1016/j.memsci.2023.121735.[18] A. Rehman, G. Nazir, K. Heo, S. Hussain, M. Ikram, Z. Akhter, M.M. Algaradah, Q. Mahmood, A.M. Fouda, A focused review on lignocellulosic biomass-derived porous carbons for effective pharmaceuticals removal: Current trends, challenges and future prospects, Sep. Purif. Technol. 330 (2024) 125356, https://doi.org/ 10.1016/j.seppur.2023.125356.[19] J. Bao, W.-J. Yu, Y. Liu, X. Wang, Z.-Q. Liu, Y.-F. Duan, Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation, Chemosphere 248 (2020) 125951, https://doi.org/10.1016/j. chemosphere.2020.125951.[20] C.T. Vu, T. Wu, Recent progress in adsorptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater, Crit. Rev. Environ. Sci. Technol. 52 (2022) 90–129, https://doi.org/10.1080/10643389.2020.1816125.[21] H. Yu, H. Chen, B. Fang, H. Sun, Sorptive removal of per- and polyfluoroalkyl substances from aqueous solution: Enhanced sorption, challenges and perspectives, Sci. Total Environ. 861 (2023) 160647, https://doi.org/10.1016/j. scitotenv.2022.160647.[22] S. Jemli, S.F. Lütke, F. Chamtouri, F. Ben Amara, S. Bejar, M.L.S. Oliveira, S. Knani, L.F.O. Silva, G.L. Dotto, A novel cartoon crosslinked β-cyclodextrin (C-β-CD) polymer for effective uptake of Hg from aqueous solutions: Kinetics, equilibrium, thermodynamics, and statistical physics approach, Separation and Purification Technology 330 (2024) 125578. doi: 10.1016/j.seppur.2023.125578.[23] K. Kose, ¨ M. Tüysüz, D. Aksüt, L. Uzun, Modification of cyclodextrin and use in environmental applications, Environ. Sci. Pollut. Res. (2021) 1–28.[24] Y. Li, F. Liu, T. Abdiryim, X. Liu, Cyclodextrin-derived materials: From design to promising applications in water treatment, Coord. Chem. Rev. 502 (2024) 215613, https://doi.org/10.1016/j.ccr.2023.215613.[25] F. Ben Amara, M. Bouzid, M. Sahnoun, Y. Ben Nasr, B. Jaouadi, S. Bejar, S. Jemli, Valorization of potato peels starch for efficient β-cyclodextrin production and purification through an eco-friendly process, Starch-St¨ arke 74 (2022).[26] S. Jemli, E. Ben Messaoud, S. Ben Mabrouk, S. Bejar, The cyclodextrin glycosyltransferase of Paenibacillus pabuli US132 strain: molecular characterization and overproduction of the recombinant enzyme, J. Biomed. Biotechnol. 2008 (2008).[27] D. Chodankar, A. Vora, A. Kanhed, β-cyclodextrin and its derivatives: application in wastewater treatment, Environ. Sci. Pollut. Res. (2021) 1–20.[28] G. Crini, S. Fourmentin, E. ´ Fenyvesi, G. Torri, M. Fourmentin, N. Morin-Crini, Cyclodextrins, from molecules to applications, Environ. Chem. Lett. 16 (2018) 1361–1375, https://doi.org/10.1007/s10311-018-0763-2.[29] L. Xiao, C. Ching, Y. Ling, M. Nasiri, M.J. Klemes, T.M. Reineke, D.E. Helbling, W. R. Dichtel, Crosslinker chemistry determines the uptake potential of perfluorinated alkyl substances by β-Cyclodextrin polymers, Macromolecules 52 (2019) 3747–3752, https://doi.org/10.1021/acs.macromol.9b00417.[30] A. Yang, C. Ching, M. Easler, D.E. Helbling, W.R. Dichtel, Cyclodextrin polymers with nitrogen-containing tripodal crosslinkers for efficient PFAS adsorption, ACS Mater. Lett. 2 (2020) 1240–1245, https://doi.org/10.1021/ acsmaterialslett.0c00240.[31] F. Ebrahimian, J.F.M. Denayer, K. Karimi, Potato peel waste biorefinery for the sustainable production of biofuels, bioplastics, and biosorbents, Bioresour. Technol. 360 (2022) 127609, https://doi.org/10.1016/j.biortech.2022.127609.[32] S. Khanal, K. Karimi, S. Majumdar, V. Kumar, R. Verma, S.K. Bhatia, K. Kuca, J. Esteban, D. Kumar, Sustainable utilization and valorization of potato waste: state of the art, challenges, and perspectives, Biomass Conv. Bioref. (2023), https://doi. org/10.1007/s13399-023-04521-1.[33] S. Jemli, D. Pinto, W.G. Kanhounnon, F.B. Amara, L. Sellaoui, A. BonillaPetriciolet, F. Dhaouadi, R. Ameri, L.F. Silva, S. Bejar, Green β-cyclodextrin nanosponges for the efficient adsorption of light rare earth elements: Cerium and lanthanum, Chem. Eng. J. 466 (2023) 143108.[34] X. Wang, Z. Luo, Z. Xiao, Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex, Carbohydr. Polym. 101 (2014) 1027–1032, https://doi.org/10.1016/j.carbpol.2013.10.042.[35] A. Stavrinou, C.A. Aggelopoulos, C.D. Tsakiroglou, Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool, J. Environ. Chem. Eng. 6 (2018) 6958–6970.[36] R.L. Abarca, F.J. Rodriguez, A. Guarda, M.J. Galotto, J.E. Bruna, Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component, Food Chem. 196 (2016) 968–975.[37] A. Herrera, F.J. Rodríguez, J.E. Bruna, R.L. Abarca, M.J. Galotto, A. Guarda, C. Mascayano, C. Sandoval-Ya´nez, ˜ M. Padula, F.R.S. Felipe, Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives, Food Res. Int. 121 (2019) 127–135.[38] D. Chen, D. Lawton, M.R. Thompson, Q. Liu, Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste, Carbohydr. Polym. 90 (2012) 709–716, https://doi.org/10.1016/j.carbpol.2012.06.002.[39] J. Yuan, F. Qiu, P. Li, Synthesis and characterization of β-cyclodextrin–carboxymethyl cellulose–graphene oxide composite materials and its application for removal of basic fuchsin, J. Iran. Chem. Soc. 14 (2017) 1827–1837, https://doi.org/10.1007/s13738-017-1122-0.[40] K.A. Uyanga, O.P. Okpozo, O.S. Onyekwere, W.A. Daoud, Citric acid crosslinked natural bi-polymer-based composite hydrogels: Effect of polymer ratio and betacyclodextrin on hydrogel microstructure, React. Funct. Polym. 154 (2020) 104682, https://doi.org/10.1016/j.reactfunctpolym.2020.104682.[41] J. Deng, J. Han, C. Hou, Y. Zhang, Y. Fang, W. Du, M. Li, Y. Yuan, C. Tang, X. Hu, Efficient removal of per- and polyfluoroalkyl substances from biochar composites: Cyclic adsorption and spent regenerant degradation, Chemosphere 341 (2023) 140051, https://doi.org/10.1016/j.chemosphere.2023.140051.[42] Z.-W. Ke, S.-J. Wei, P. Shen, Y.-M. Chen, Y.-C. Li, Mechanism for the adsorption of Per- and polyfluoroalkyl substances on kaolinite: Molecular dynamics modeling, Appl. Clay Sci. 232 (2023) 106804, https://doi.org/10.1016/j.clay.2022.106804.[43] X. Lei, Q. Lian, X. Zhang, T.K. Karsili, W. Holmes, Y. Chen, M.E. Zappi, D.D. Gang, A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities, Environ. Pollut. 321 (2023) 121138, https://doi.org/10.1016/j.envpol.2023.121138.[44] R. Wang, Z.-W. Lin, M.J. Klemes, M. Ateia, B. Trang, J. Wang, C. Ching, D. E. Helbling, W.R. Dichtel, A tunable porous β-cyclodextrin polymer platform to understand and improve anionic PFAS removal, ACS Cent. Sci. 8 (2022) 663–669, https://doi.org/10.1021/acscentsci.2c00478.[45] G.L. Dotto, J.A.V. Costa, L.A.A. Pinto, Kinetic studies on the biosorption of phenol by nanoparticles from Spirulina sp. LEB 18, J. Environ. Chem. Eng. 1 (2013) 1137–1143, https://doi.org/10.1016/j.jece.2013.08.029.[46] J.-K. Kang, H. Lee, S.-B. Kim, H. Bae, Alkyl chain length of quaternized SBA-15 and solution conditions determine hydrophobic and electrostatic interactions for carbamazepine adsorption, Sci. Rep. 13 (2023) 5170, https://doi.org/10.1038/ s41598-023-32108-3.[47] M. Verma, I. Lee, V. Kumar, S.-Y. Pan, C. Fan, H. Kim, Chitosan crosslinked β–cyclodextrin polymeric adsorbent for the removal of perfluorobutanesulfonate from aqueous solution: adsorption kinetics, isotherm, and mechanism, Environ. Sci. Pollut. Res. 30 (2023) 19259–19268, https://doi.org/10.1007/s11356-022- 23546-z.[48] M. Kumar, H.S. Dosanjh, H. Singh, Biopolymer modified transition metal spinel ferrites for removal of fluoride ions from water, Environ. Nanotechnol. Monit. Manage. 12 (2019) 100237, https://doi.org/10.1016/j.enmm.2019.100237.[49] L. Sellaoui, F. Dhaouadi, M. Deghrigue, M. Bouzidi, H. Khmissi, G.L. Dotto, M.L. S. Oliveira, L.F.O. Silva, A. Erto, B. Ernst, M. Badawi, A multilayer adsorption of perfluorohexanesulfonic and perfluorobutanesulfonic acids on bio-based polyurethane/chitosan foam: Advanced interpretation of the adsorption mechanism, Chem. Eng. J. 489 (2024) 151173, https://doi.org/10.1016/j. cej.2024.151173.[50] M.R. Shirzad Kebria, L. Bono, S. Khoshhal Salestan, A. Armirotti, R. Carzino, A. Athanassiou, D. Fragouli, Efficient removal of perfluorobutanesulfonic acid from water through a chitosan/polyethyleneimine xerogel, Chem. Eng. J. 466 (2023) 143236, https://doi.org/10.1016/j.cej.2023.143236.[51] Q. Zhou, S. Deng, Q. Yu, Q. Zhang, G. Yu, J. Huang, H. He, Sorption of perfluorooctane sulfonate on organo-montmorillonites, Chemosphere 78 (2010) 688–694, https://doi.org/10.1016/j.chemosphere.2009.12.005.[52] M. Diehl, L.F.O. Silva, C. Schnorr, M.S. Netto, F.S. Bruckmann, G.L. Dotto, Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water, Environ. Sci. Pollut. Res. 30 (2023) 51920–51931, https:// doi.org/10.1007/s11356-023-26006-4.[53] B. Shrestha, M. Ezazi, S. Ajayan, G. Kwon, Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents via alternating electric field, RSC Adv. 11 (2021) 34652–34659, https://doi.org/10.1039/D1RA04821J.91350AdsorptionEmerging contaminantsβ-cyclodextrinRecalcitrant compoundsPublicationORIGINALAdsorption of perfluorosulfonic acids.pdfAdsorption of perfluorosulfonic acids.pdfArtículoapplication/pdf5194342https://repositorio.cuc.edu.co/bitstreams/e2e4f399-9aeb-4a19-bbd5-1d43d015c9a7/downloade7daf2c2669dd109e11de0dfa352af39MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/e7ed7c72-2104-4787-b06a-3663206bc265/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdsorption of perfluorosulfonic acids.pdf.txtAdsorption of perfluorosulfonic acids.pdf.txtExtracted texttext/plain49570https://repositorio.cuc.edu.co/bitstreams/c476effa-23a1-490f-9332-8c9f1bb19faa/download84d25660f61679fd8f8949625d5df9a1MD53THUMBNAILAdsorption of perfluorosulfonic acids.pdf.jpgAdsorption of perfluorosulfonic acids.pdf.jpgGenerated Thumbnailimage/jpeg14500https://repositorio.cuc.edu.co/bitstreams/ab36b681-c2bf-44a3-9cfb-68a8976e69e4/downloadafe5998428d5b66c5e00b7142cd19ad3MD5411323/13304oai:repositorio.cuc.edu.co:11323/133042024-09-17 12:46:54.257https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.embargo2026-05-01https://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=