Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite

The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial p...

Full description

Autores:
Nascimento, Bruna Figueiredo
Bezerra de Araújo, Caroline Maria
Pinto Osorio, Diana del Carmen
Oliveira Silva, Luis Felipe
Dotto, Guilherme Luiz
Fernandes Lima Cavalcanti, Jorge Vinícius
Alves da Motta Sobrinho, Maurício
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13298
Acceso en línea:
https://hdl.handle.net/11323/13298
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Chloroquine
Graphene oxide
Magnetic
Metformin
Propranolol
Rights
embargoedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_402ac51389cee74481d0d274fc00e864
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13298
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
title Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
spellingShingle Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
Adsorption
Chloroquine
Graphene oxide
Magnetic
Metformin
Propranolol
title_short Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
title_full Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
title_fullStr Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
title_full_unstemmed Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
title_sort Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite
dc.creator.fl_str_mv Nascimento, Bruna Figueiredo
Bezerra de Araújo, Caroline Maria
Pinto Osorio, Diana del Carmen
Oliveira Silva, Luis Felipe
Dotto, Guilherme Luiz
Fernandes Lima Cavalcanti, Jorge Vinícius
Alves da Motta Sobrinho, Maurício
dc.contributor.author.none.fl_str_mv Nascimento, Bruna Figueiredo
Bezerra de Araújo, Caroline Maria
Pinto Osorio, Diana del Carmen
Oliveira Silva, Luis Felipe
Dotto, Guilherme Luiz
Fernandes Lima Cavalcanti, Jorge Vinícius
Alves da Motta Sobrinho, Maurício
dc.subject.proposal.eng.fl_str_mv Adsorption
Chloroquine
Graphene oxide
Magnetic
Metformin
Propranolol
topic Adsorption
Chloroquine
Graphene oxide
Magnetic
Metformin
Propranolol
description The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-08
dc.date.accessioned.none.fl_str_mv 2024-09-05T23:51:27Z
dc.date.available.none.fl_str_mv 2024-09
2024-09-05T23:51:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv do Nascimento, B.F., de Araújo, C.M.B., del Carmen Pinto Osorio, D. et al. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. Environ Sci Pollut Res 30, 85344–85358 (2023). https://doi.org/10.1007/s11356-023-28242-0
dc.identifier.issn.spa.fl_str_mv 0944-1344
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13298
dc.identifier.doi.none.fl_str_mv 10.1007/s11356-023-28242-0
dc.identifier.eissn.spa.fl_str_mv 1614-7499
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv do Nascimento, B.F., de Araújo, C.M.B., del Carmen Pinto Osorio, D. et al. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. Environ Sci Pollut Res 30, 85344–85358 (2023). https://doi.org/10.1007/s11356-023-28242-0
0944-1344
10.1007/s11356-023-28242-0
1614-7499
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13298
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Environmental Science and Pollution Research
dc.relation.references.spa.fl_str_mv Abdi G, Alizedeh A, Amirian J, Rezei S, Sharma G (2019) Polyamine-modified magnetic graphene oxide surface: feasible adsorbent for removal of dyes. J Mole Liq 289:111118
Aboudalle A, Djelal H, Domergue L, Fourcade F, Amrane A (2021) A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole. J Hazard Mater 415:125705. https://doi.org/10.1016/j.jhazmat.2021.125705
Adeola AO, Lange J, Forbes PBC (2021) Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: kinetic, equilibrium, thermodynamic and computational studies. Appl Surf Sci Adv 6:100157. https://doi.org/10.1016/j.apsadv.2021.100157
Adewuyi A (2020) Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 12:1551–1582. https://doi.org/10.3390/w12061551
Ahmadi A, Zarei M, Hassani A, Ebratkhahan M, Olad A (2021) Facile synthesis of iron (II) doped carbonaceous aerogel as a three-dimensional cathode and its excellent performance in electro-Fenton degradation of ceftazidime from water solution. Separat Purif Technol 278:119559. https://doi.org/10.1016/j.seppur.2021.119559
Ain QU, Farooq MU, Jalees MI (2020) Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection. Journal of Water. Proc Eng 33:101044. https://doi.org/10.1016/j.jwpe.2019.101044
Akhil D, Lakshmi D, Kumar PS, Vo D, Kartik A (2021) Occurrence and removal of antibiotics from industrial. wastewater. Environ Chem Lett 19:1477–1507. https://doi.org/10.1007/s10311-020-01152-0
Alnajjar M, Hethnawi A, Nafie G, Hassan A, Vitale G, Nassar NN (2019) Silica-alumina composite as an effective adsorbent for the removal of metformin from water. J Environ Chem Eng 7:102994. https://doi.org/10.1016/j.jece.2019.102994
Araújo CMB, Nascimento GFO, Da Costa GRB, Silva KS, Baptisttella AMS, Ghislandi MG, Motta Sobrinho MA (2019) Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of hummers method. Chem Eng Commun 206:1375–1387. https://doi.org/10.1080/00986445.2018.1534232
Araújo CMB, Wernke G, Ghislandi MG, Diório A, Vieira MF, Bergamasco R, Motta Sobrinho MA, Rodrigues AE (2022b) Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: selective adsorption in batch and fixed-bed experiments. Environ Res 216:114424. https://doi.org/10.1016/j.envres.2022.114425
Araújo CMB, Ghislandi MG, Rios AG, Costa GRB, Nascimento BF, Ferreira AFP, Motta Sobrinho MA, Rodrigues AE (2022a) Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Coll Surf A: Physicochem Eng Aspects:639, 128357. https://doi.org/10.1016/j.colsurfa.2022.128357
Atunwa BT, Dada AO, Inyinbor AA, Pal U (2022) Synthesis, physiochemical and spectroscopic characterization of palm kernel shell activated carbon doped AgNPs (PKSAC@AgNPs) for adsorption of chloroquine pharmaceutical waste. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.06.099
Balarak D, Zafariyan M, Chandrika K (2020) Adsorption of ciprofloxacin from aqueous solution onto Fe3O4/graphene oxide nanocomposite. Int J Pharm Sci Res 11:268–274 http://eprints.zaums.ac.ir/id/eprint/3870
Baptisttella AMS, Araujo CMBD, da Silva MP, Nascimento GFOD, Costa GRBD, do Nascimento BF, Ghislandi MG, Motta Sobrinho MAD (2020) Magnetic Fe3O4-graphene oxide nanocomposite – synthesis and practical application for the heterogeneous photo-Fenton degradation of different dyes in water. Separat Sci Technol 56:425–438. https://doi.org/10.1080/01496395.2020.1716011
Bo C, Jia Z, Liu B, Dai X, Ma G, Li Y (2022) Copolymer-type magnetic graphene oxide with dual-function for adsorption of variety of dyes. J Taiwan Inst Chem Eng 138:104499. https://doi.org/10.1016/j.jtice.2022.104499
Cavusoglu FC, Bayazit SS, Secula MS, Cagnon B (2021) Magnetic carbon composites as regenerable and fully recoverable adsorbents: performance on the removal of antidiabetic agent metformin hydrochloride. Chem Eng Res Des 168:443–452. https://doi.org/10.1016/j.cherd.2021.01.034
Chaabane L, Beyou E, Luneau D, Baouab MHV (2020) Functionalization of graphene oxide sheets with magnetite nanops for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions. J Catal 388:91–103. https://doi.org/10.1016/j.jcat.2020.04.019
Chai PV, Mahmoudi E, Teow YH, Mahammad AW (2018) Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. J Water Proc Eng 15:83–88. https://doi.org/10.1016/j.jwpe.2016.06.001
Chen L, Li Y, Du Q, Wang Z, Xia Y, Yedinak E, Lou J, Ci L (2017) High performanceagar/graphene oxide composite aerogel for methylene blue removal. Carbohydr Polym 155:345–353. https://doi.org/10.1016/j.carbpol.2016.08.047
Chen Y, Tong Y, Xue Y, Liu Z, Tang M, Huang L, Shao S, Fang Z (2020) Degradation of the β-blocker propranolol by sulfite activation using FeS. Chem Eng J 385:123884. https://doi.org/10.1016/j.cej.2019.123884
Cheng Y, Yang S, E, T. (2021) Magnetic graphene oxide prepared via ammonia coprecipitation method: the effects of preserved functional groups on adsorption property. Inorg Chem Commun 128:108603. https://doi.org/10.1016/j.inoche.2021.108603
Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Raman PKY, Karamani C (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biolGOical body fluids. Chemosphe 287:132187. https://doi.org/10.1016/j.chemosphere.2021.132187
Coelho CM, Andrade JR, Silva MGC, Vieira MGA (2020) Removal of propranolol hydrochloride by batch biosorption using remaining biomass of alginate extraction from Sargassum filipendula algae. Environ Sci Pollut Res 27:16599–16611. https://doi.org/10.1007/s11356-020-08109-4
Covarrubias-Gárcia I, Quijano G, Aizpuru A, Sánchez-Gárcia JL, Rodríguez-López JL, Arriaga S (2020) Reduced graphene oxide decorated with magnetite nanops enhance biomethane enrichment. J Hazard Mater 397:122760. https://doi.org/10.1016/j.jhazmat.2020.122760
Cusioli LF, Quesada HB, Castro ALBP, Gomes RG, Bergamasco R (2020) Development of a new low-cost adsorbent functionalized with iron nanops for removal of metformin from contaminated water. Chemosphere 247:125852. https://doi.org/10.1016/j.chemosphere.2020.125852
Dada AO, Inyinbor AA, Bello OS, Tokula BE (2021) Novel plantain peel activated carbon–supported zinc oxide nanocomposites (PPAC-ZnO-NC) for adsorption of chloroquine synthetic pharmaceutical used for COVID-19 treatment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01828-9
Daneshmoghanlou E, Miralinaghi M, Moniri E, Sadjady SK (2022) Fabrication of a pH-responsive magnetic nanocarrier based on carboxymethyl cellulose-aminated graphene oxide for loading and in-vitro release of curcumin. J Polym Environ. https://doi.org/10.1007/s10924-022-02467-5
Deng Y, Li Y, Nie W, Gao X, Zhang L, Yang P, Tan X (2019) Fast removal of propranolol from water by attapulgite/graphene oxide magnetic ternary composites. Materials 12. https://doi.org/10.3390/ma12060924
da Silva MP, de Souza ACA, de Lima Ferreira LE, Neto LMP, Nascimento BF, de Araújo CMB, Fraga TJM, da Motta Sobrinho MA, Ghislandi MG (2021) Photodegradation of Reactive Black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized graphene oxide as nanocatalyst. Environ Adv 4:100064. https://doi.org/10.1016/j.envadv.2021.100064
Deng Y, Li Y (2020) Surface-bound humic acid increased propranolol sorption on Fe3O4/attapulgite magnetic nanops. Nanomaterials 10:1–15. https://doi.org/10.3390/nano10020205
Dolatabadi M, Naidu H, Ahmadzadeh S (2022) Adsorption characteristics in the removal of chlorpyrifos from groundwater using magnetic graphene oxide and carboxy methyl cellulose composite. Separat Pollut Technol 300:121919. https://doi.org/10.1016/j.seppur.2022.121919
Ferreira FN, Benevides AP, Cesar DV, Luna AS, Gois JS (2020) Magnetic solid-phase extraction and pre-concentration of 17β-estradiol and 17α-ethinyl estradiol in tap water using maghemite-graphene oxide nanops and determination via HPLC with a fluorescence detector. Microchem J 157:104947–104954
Ghanbari F, Hassani A, Waclwek S, Wang Z, Matyszczak G, Lin KA, Dolatabadi M (2021) Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: Key operating parameters, mineralization and toxicity assessment. Separat Purif Technol 266:118533. https://doi.org/10.1016/j.seppur.2021.118533
Gomes BFML, Araújo CMB, Nascimento BF, Freire EMPL, Motta MAS, Carvalho MN (2022) Synthesis and application of graphene oxide as a nanoadsorbent to remove Cd (II) and Pb (II) from water: adsorption equilibrium, kinetics, and regeneration. Environ Sci Pollut Res 29:17358–17372. https://doi.org/10.1007/s11356-021-16943-3
Guo W, Li Y, Zhao K, Xu Q, Jiang H, Zhou H (2020) Performance and microbial community analysis of anaerobic digestion of vinegar residue with adding of acetylene black or hydrochar. Waste Biomass Valoriz 11:3315–3325. https://doi.org/10.1007/s12649-019-00664-3
Hassani A, Eghbali P, Mahdipour F, Waclawek S, Lin KA, Ghanbari F (2023) Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: performance, mineralization, and activation mechanism. Chem Eng J 453:139556. https://doi.org/10.1016/j.cej.2022.139556
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Karimi-Maleh H (2022a) A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci Total Environ 824:153844. https://doi.org/10.1016/j.scitotenv.2022.153844
Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Wen Y, Bahrami A, Karaman C, Zare N, Karimi-Maleh HA, Vasseghian Y (2022b) Magnetic-MXene-based nanocomposites for water and wastewater treatment: a review. J Water Proc Eng 47:102696. https://doi.org/10.1016/j.jwpe.2022.102696
Hu Z, Zhang X, Li J, Zhu Y (2020) Comparative study on the regeneration of Fe3O4@graphene oxide composites. Orig Res 8:1–7. https://doi.org/10.3389/fchem.2020.00150
Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017
Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297
Ivankovic K, Kern M, Rozman M (2021) Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J Hazard Mater 414:125554. https://doi.org/10.1016/j.jhazmat.2021.125554
Januário EFD, Fachina YJ, Wernke G, Demiti GMM, Beltran LB, Bergamasco R, Vieira AMS (2022) Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water. Chemosphere 289:133213. https://doi.org/10.1016/j.chemosphere.2021.133213
Jesus JHF, Lima KVL, Nogueira RFP (2022) Copper-containing magnetite supported on natural clay as a catalyst for heterogeneous photo-fenton degradation of antibiotics in WWTP effluent. Journal of Environmental. Chem Eng 10:107765. https://doi.org/10.1016/j.jece.2022.107765
Karaman C, Karaman O, Show P, Karimi-Maleh H, Zare N (2022a) Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 290:133346. https://doi.org/10.1016/j.chemosphere.2021.133346
Karaman C, Karaman O, Show P, Orooji Y, Karimi-Maleh H (2022b) Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ Res 207:112156. https://doi.org/10.1016/j.envres.2021.112156
Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nanocomposite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mole Liq 298:112040. https://doi.org/10.1016/j.molliq.2019.112040
Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Orooji Y, Fu L, Sillanpaa M (2021a) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. J Clean Prod 291:125880. https://doi.org/10.1016/j.jclepro.2021.125880
Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpaa M, Sen F (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study. Environ Res 195:110809. https://doi.org/10.1016/j.envres.2021.110809
Kashani MRK, Kiani R, Hassani A, Kadier A, Madihi-Bidgoli S, Lin KA, Ghanbari F (2022) Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: a new hybrid process. Separat Purif Technol 292:121026. https://doi.org/10.1016/j.seppur.2022.121026
Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4679. https://doi.org/10.1016/j.jece.2018.06.060
Khader EH, Mohammed TJ, Mirghaffari N, Salman AD, Juzsakova T, Abdullah TA (2022) Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technol Environ Policy 24:713–720. https://doi.org/10.1007/s10098-021-02159-z
Khan AH, Khan NA, Zubair M, Shaida MA, Manzar MS, Abutaleb A, Naushad M, Iqbal J (2022) Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: a critical review. Environ Res 204:112243. https://doi.org/10.1016/j.envres.2021.112243
Kuroda K, Li C, Dhangar K, Kumar M (2021) Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci Total Environ 776:145740. https://doi.org/10.1016/j.scitotenv.2021.145740
Li Y, Xu X, Guo H, Bian Y, Li J, Zhang F (2022) Magnetic graphene oxide−based covalent organic frameworks as novel adsorbent for extraction and separation of triazine herbicides from fruit and vegetable samples. Anal Chim Acta, DOI 1219:339984 https://doi.org/10.1016/j.aca.2022.339984
Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J Environ Manag 231:622–634. https://doi.org/10.1016/j.jenvman.2018.10.063
López-Vinent N, Cruz-Alcalde A, Giménez J, Esplugas S (2021) Mixtures of chelating agents to enhance photo-Fenton process at natural pH: influence of wastewater matrix on micropollutant removal and bacterial inactivation. Sci Total Environ 786:147416. https://doi.org/10.1016/j.scitotenv.2021.147416
Miao J, Wang F, Chen Y, Zhu Y, Zhou Y, Zhang S (2019) The adsorption performance of tetracyclines on magnetic graphene oxide: a novel antibiotics absorbent. Appl Surf Sci 475:549–558. https://doi.org/10.1016/j.apsusc.2019.01.036
Molaei MJ (2021) Magnetic graphene, synthesis, and applications: a review. Mater Sci Eng B 272:115325. https://doi.org/10.1016/j.mseb.2021.115325
Morales-Paredes CA, Rodrídrez-Díaz JM, Boluda-Botella N (2022) Pharmaceutical compounds used in the COVID-19 pandemic: a review of their presence in water and treatment techniques for their elimination. Sci Total Environ 814:152691. https://doi.org/10.1016/j.scitotenv.2021.152691
Mukhortova YR, Pryadko AS, Chernozem RV, Pariy IO, Akoulina EA, Demianova IV, Zharkavo II, Ivanov YF, Wagner DV, Bonartsev AP, Surmenev RA, Surmeneva MA (2022) Fabrication and characterization of a magnetic biocomposite of magnetite nanops and reduced graphene oxide for biomedical applications. Nano-Struct Nano-Objects 29:100843. https://doi.org/10.1016/j.nanoso.2022.100843
Naddeo V, Secondes MFN, Borea L, Hasan SW, Ballesteros F Jr, Belgiorno V (2020) Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process-UltraSound, adsorption, and Membrane ultrafiltration (USAMe®). Ultrason Sonochem 68:105237. https://doi.org/10.1016/j.ultsonch.2020.105237
Nascimento BF, Araújo CMB, Nascimento AC, Silva FLH, Melo DJN, Jaguaribe EF, Cavalcanti JVFL, Motta MAS (2021a) Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaí waste. J Hazard Mater 409:124494. https://doi.org/10.1016/j.jhazmat.2020.124494
Nascimento DC, Silva MGC, Vieira MGA (2021b) Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: a complete batch system evaluation. J Mole Liq 337:116442. https://doi.org/10.1016/j.molliq.2021.116442
Nascimento BF, Silva LFO, Araújo CMB, Silva Santos RK, Gomes BFM, Silva Santos PR, Cavalcanti JVFL, Dotto GL, Schnorr CE, Motta Sobrinho MA (2022) Synthesis and application of ferromagnetic graphene oxide nanocomposite as an effective adsorbent for Clonazepam: batch experiments, modeling, regeneration, and phytotoxicity. J Environ Chem Eng 10:108331. https://doi.org/10.1016/j.jece.2022.108331
Nascimento WJ Jr, Aguiar GH, Landers R, Vieira MGA, Sobrinho MAM (2023) Potential of the main magnetic iron oxides synthesized over graphene oxide in integrated adsorption and photocatalysis of inorganic and organic emergent contaminants. Coll Surf A: Physicochem Eng Asp 671:131647. https://doi.org/10.1016/j.colsurfa.2023.131647
Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS (2020) The Adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): study of kinetics, isotherms and thermodynamics. J Mater Res Technol 9:6544–6556. https://doi.org/10.1016/j.jmrt.2020.04.040
Niaei HA, Rostamizadeh M (2020) Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm, kinetic and thermodynamic studies. J Chem Thermodyn 142:106003. https://doi.org/10.1016/j.jct.2019.106003
Nkwoada AU, Alisa CD, Oguwike MM, Amaechi IA (2022) Removal of aspirin and chloroquine from aqueous solution using organo-clay derived from kaolinite. J Phys Chem Mater 9:1–11
Orta MM, Martín J, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2019) Adsorption of propranolol onto montmorillonite: kinetic, isotherm and pH studies. Appl Clay Sci 173:107–114. https://doi.org/10.1016/j.clay.2019.03.015
Paixão GR, Camparotto NG, Brião GV, Oliveira RL, Colmenares JC, Prediger P, Vieira MGA (2022) Synthesis of mesoporous P-doped carbon and its application in propranolol drug removal: characterization, kinetics and isothermal studies. Chem Eng Res Des 187:225–239. https://doi.org/10.1016/j.cherd.2022.09.009
Quesada HB, Baptista ATA, Cusioli LF, Seibert D, Bezerra CO, Bergamasco R (2019) Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222:766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009
Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176. https://doi.org/10.1016/j.chemosphere.2021.130176
Rathi BS, Kumar PS, Show P (2021) A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. J Hazard Mater 409:124413. https://doi.org/10.1016/j.jhazmat.2020.124413
Rhoden CRB, Bruckmann FS, Salles TR, Kaufmann Junior CG, Mortari SR (2021) Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. J Water Proc Eng 43:102262. https://doi.org/10.1016/j.jwpe.2021.102262
Sanchez-Silva JM, Collins-Martínez VH, Padilha-Ortega E, Aguilar-Aguilar A, Labrada-Delgado GJ, Gonzalez-Ortega O, Palestino-Escobedo G, Ocampo-Pérez R (2022) Characterization and transformation of nanche stone (Byrsonima crassifolia) in an activated hydrochar with high adsorption capacity towards metformin in aqueous solution. Chem Eng Res Des 183:580–594. https://doi.org/10.1016/j.cherd.2022.05.054
Santos RKS, Nascimento BF, Araújo CMB, Cavalcanti JFL, Bruckmann FS, Rhoden CRB, Dotto GL, Silva LFO, Sobrinho MAM (2023a) Removal of chloroquine from the aqueous solution by adsorption onto açaí-based biochars: kinetics, thermodynamics, and phytotoxicity. J Mole Liq 383:122162. https://doi.org/10.1016/j.molliq.2023.122162
Santos RKS, Schnorr C, Silva LFO, Nascimento BF, Cavalcanti JFL, Vieira Y, Dotto GL, Sobrinho MAM (2023b) Euterpe oleracea-based biochar for clonazepam adsorption: synthesis, characterization, adsorption properties, and toxicity assays. Environ Sci Pollut Res 30:52485–52497. https://doi.org/10.1007/s11356-023-26044-y
Sgroi M, Anumol T, Vagliasindi FGA, Snyder SA, Roccaro P (2021) Comparison of the new Cl2/O3/UV process with different ozone- and UV-based AOPs for wastewater treatment at pilot scale: removal of pharmaceuticals and changes in fluorescing organic matter. Sci Total Environ 765:142720. https://doi.org/10.1016/j.scitotenv.2020.142720
Spessato L, Duarte VA, Viero P, Zanella H, Fonseca JM, Arroyo PA, Almeida VC (2021) Optimization of Sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous Adsorption of rhodamine B and metformin. J Hazard Mater 411:125166. https://doi.org/10.1016/j.jhazmat.2021.125166
Tang T, Cao S, Xi C, Chen Z (2021) Multifunctional magnetic chitosan-graphene oxide-ionic liquid ternary nanohybrid: an efficient adsorbent of alkaloids. Carbohydr Polym 255:117338. https://doi.org/10.1016/j.carbpol.2020.117338
Taoufik N, Boumya W, Janani FZ, Elhalil A, Mahjoubi FZ, Barka N (2020) Removal of emerging pharmaceutical pollutants: a systematic mapping study review. J Environ Chem Eng 8:104251. https://doi.org/10.1016/j.jece.2020.104251
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisortion of gases, with special reference to the evaluation of surface area and poro size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117
Wang Y, Wei X, Qi Y, Huang H (2021) Efficient removal of bisphenol-A from water and wastewater by Fe2O3-modified graphene oxide. Chemosphere 263:127563. https://doi.org/10.1016/j.chemosphere.2020.127563
Wang X, Lian J, Wang Y, Zhang X, Liu W, Wang Y (2022) Adsorption dependent fenton-like catalysis on graphene oxide-Fe3O4 composite: electron transfer mediated by target-catalyst interactions. Surf Inter 29:101749. https://doi.org/10.1016/j.surfin.2022.101749
Wernke G, Silva MF, Silva EA, Fagundes-Klen MRF, Suzaki PYR, Triques CC, Bergamasco R (2021) Ag and CuO nanops decorated on graphene oxide/activated carbon as a novel adsorbent for the removal of cephalexin from water. Coll Surf A Physicochem Eng Aspects 627:127203. https://doi.org/10.1016/j.colsurfa.2021.127203
Wu K, Jing C, Zhang J, Liu T, Yang S, Wang W (2019) Magnetic Fe3O4@CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic (III/V) from water. Appl Surf Sci 466:746–756. https://doi.org/10.1016/j.apsusc.2018.10.091
Yu B, Wang J, Yang X, Wang W, Cai X (2019) Preparation of polyglycerol mediated superparamagnetic graphene oxide nanocomposite and evaluation of its adsorption properties on tetracycline. Environ Sci Pollut Res 26:32345–32359. https://doi.org/10.1007/s11356-019-06516-w
Zaied BK, Rashid M, Nasrullah M, Zularisan AW, Pant D, Singh L (2020) A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci Total Environ 726:138095. https://doi.org/10.1016/j.scitotenv.2020.138095
Zaka A, Ibrahim TH, Khamis M (2021) Removal of selected non-steroidal anti-inflammatory drugs from wastewater using reduced graphene oxide magnetite. Desalit Water Treat 212:401–414. https://doi.org/10.5004/dwt.2021.26686
Zarenezhad M, Zarei M, Ebratkhahan M, Hosseinzadeh M (2021) Synthesis and study of functionalized magnetic graphene oxide for Pb2+ removal from wastewater. Environ Technol Innov 22:101384. https://doi.org/10.1016/j.eti.2021.101384
Zhu S, Liu Y, Liu S, Zeng G, Jiang L, Tan X, Zhou L, Zeng W, Li T, Yang C (2017) Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179:20–28. https://doi.org/10.1016/j.chemosphere.2017.03.071
Zhu Z, Zhang Q, Yap PL, Ni Y, Losic D (2021) Magnetic reduced graphene oxide as a nano-vehicle for loading and delivery of curcumin. Spectr Acta Part A: Mole Biomol Spectr 252:119471. https://doi.org/10.1016/j.saa.2021.119471
dc.relation.citationendpage.spa.fl_str_mv 85358
dc.relation.citationstartpage.spa.fl_str_mv 85344
dc.relation.citationissue.spa.fl_str_mv 36
dc.relation.citationvolume.spa.fl_str_mv 30
dc.rights.eng.fl_str_mv © 2024 Springer Nature
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2024 Springer Nature
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Germany
dc.source.spa.fl_str_mv https://link.springer.com/article/10.1007/s11356-023-28242-0
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/35cf7a26-37b6-423f-a43b-676521b55cca/download
https://repositorio.cuc.edu.co/bitstreams/afa86d4d-87e9-4fd2-a52c-d92671721490/download
https://repositorio.cuc.edu.co/bitstreams/eb030c38-e307-4d3b-abdf-a129e13b162a/download
https://repositorio.cuc.edu.co/bitstreams/ca9720c5-a377-47a8-824b-bd2719bd611e/download
bitstream.checksum.fl_str_mv b41c6c06f72267b08775e67cbb9afa39
2f9959eaf5b71fae44bbf9ec84150c7a
3f74058becfab91c5233daafe1a8e75a
1c9bd02e65b6341a29116d38f7392c25
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760708903239680
spelling Atribución 4.0 Internacional (CC BY 4.0)© 2024 Springer Naturehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfNascimento, Bruna FigueiredoBezerra de Araújo, Caroline MariaPinto Osorio, Diana del CarmenOliveira Silva, Luis FelipeDotto, Guilherme LuizFernandes Lima Cavalcanti, Jorge ViníciusAlves da Motta Sobrinho, Maurício2024-09-05T23:51:27Z2024-092024-09-05T23:51:27Z2023-08do Nascimento, B.F., de Araújo, C.M.B., del Carmen Pinto Osorio, D. et al. Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite. Environ Sci Pollut Res 30, 85344–85358 (2023). https://doi.org/10.1007/s11356-023-28242-00944-1344https://hdl.handle.net/11323/1329810.1007/s11356-023-28242-01614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The work proposes the application of a nanocomposite formed by graphene oxide and magnetite to remove chloroquine, propranolol, and metformin from water. Tests related to adsorption kinetics, equilibrium isotherms and adsorbent reuse were studied, and optimization parameters related to the initial pH of the solution and the adsorbent dosage were defined. For all pharmaceuticals, adsorption tests indicated that removal efficiency was independent of initial pH at adsorbent dosages of 0.4 g L-1 for chloroquine, 1.2 g L-1 for propranolol, and 1.6 g L-1 for metformin. Adsorption equilibrium was reached within the first few minutes, and the pseudo-second-order model represented the experimental data well. While the equilibrium data fit the Sips isotherm model at 298 K, the predicted maximum adsorption capacities for chloroquine, propranolol, and metformin were 44.01, 16.82, and 12.23 mg g-1, respectively. The magnetic nanocomposite can be reused for three consecutive cycles of adsorption-desorption for all pharmaceuticals, being a promising alternative for the removal of different classes of pharmaceuticals in water.11 páginasapplication/pdfengSpringerGermanyhttps://link.springer.com/article/10.1007/s11356-023-28242-0Adsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocompositeArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceEnvironmental Science and Pollution ResearchAbdi G, Alizedeh A, Amirian J, Rezei S, Sharma G (2019) Polyamine-modified magnetic graphene oxide surface: feasible adsorbent for removal of dyes. J Mole Liq 289:111118Aboudalle A, Djelal H, Domergue L, Fourcade F, Amrane A (2021) A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole. J Hazard Mater 415:125705. https://doi.org/10.1016/j.jhazmat.2021.125705Adeola AO, Lange J, Forbes PBC (2021) Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: kinetic, equilibrium, thermodynamic and computational studies. Appl Surf Sci Adv 6:100157. https://doi.org/10.1016/j.apsadv.2021.100157Adewuyi A (2020) Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water 12:1551–1582. https://doi.org/10.3390/w12061551Ahmadi A, Zarei M, Hassani A, Ebratkhahan M, Olad A (2021) Facile synthesis of iron (II) doped carbonaceous aerogel as a three-dimensional cathode and its excellent performance in electro-Fenton degradation of ceftazidime from water solution. Separat Purif Technol 278:119559. https://doi.org/10.1016/j.seppur.2021.119559Ain QU, Farooq MU, Jalees MI (2020) Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection. Journal of Water. Proc Eng 33:101044. https://doi.org/10.1016/j.jwpe.2019.101044Akhil D, Lakshmi D, Kumar PS, Vo D, Kartik A (2021) Occurrence and removal of antibiotics from industrial. wastewater. Environ Chem Lett 19:1477–1507. https://doi.org/10.1007/s10311-020-01152-0Alnajjar M, Hethnawi A, Nafie G, Hassan A, Vitale G, Nassar NN (2019) Silica-alumina composite as an effective adsorbent for the removal of metformin from water. J Environ Chem Eng 7:102994. https://doi.org/10.1016/j.jece.2019.102994Araújo CMB, Nascimento GFO, Da Costa GRB, Silva KS, Baptisttella AMS, Ghislandi MG, Motta Sobrinho MA (2019) Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of hummers method. Chem Eng Commun 206:1375–1387. https://doi.org/10.1080/00986445.2018.1534232Araújo CMB, Wernke G, Ghislandi MG, Diório A, Vieira MF, Bergamasco R, Motta Sobrinho MA, Rodrigues AE (2022b) Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: selective adsorption in batch and fixed-bed experiments. Environ Res 216:114424. https://doi.org/10.1016/j.envres.2022.114425Araújo CMB, Ghislandi MG, Rios AG, Costa GRB, Nascimento BF, Ferreira AFP, Motta Sobrinho MA, Rodrigues AE (2022a) Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Coll Surf A: Physicochem Eng Aspects:639, 128357. https://doi.org/10.1016/j.colsurfa.2022.128357Atunwa BT, Dada AO, Inyinbor AA, Pal U (2022) Synthesis, physiochemical and spectroscopic characterization of palm kernel shell activated carbon doped AgNPs (PKSAC@AgNPs) for adsorption of chloroquine pharmaceutical waste. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2022.06.099Balarak D, Zafariyan M, Chandrika K (2020) Adsorption of ciprofloxacin from aqueous solution onto Fe3O4/graphene oxide nanocomposite. Int J Pharm Sci Res 11:268–274 http://eprints.zaums.ac.ir/id/eprint/3870Baptisttella AMS, Araujo CMBD, da Silva MP, Nascimento GFOD, Costa GRBD, do Nascimento BF, Ghislandi MG, Motta Sobrinho MAD (2020) Magnetic Fe3O4-graphene oxide nanocomposite – synthesis and practical application for the heterogeneous photo-Fenton degradation of different dyes in water. Separat Sci Technol 56:425–438. https://doi.org/10.1080/01496395.2020.1716011Bo C, Jia Z, Liu B, Dai X, Ma G, Li Y (2022) Copolymer-type magnetic graphene oxide with dual-function for adsorption of variety of dyes. J Taiwan Inst Chem Eng 138:104499. https://doi.org/10.1016/j.jtice.2022.104499Cavusoglu FC, Bayazit SS, Secula MS, Cagnon B (2021) Magnetic carbon composites as regenerable and fully recoverable adsorbents: performance on the removal of antidiabetic agent metformin hydrochloride. Chem Eng Res Des 168:443–452. https://doi.org/10.1016/j.cherd.2021.01.034Chaabane L, Beyou E, Luneau D, Baouab MHV (2020) Functionalization of graphene oxide sheets with magnetite nanops for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions. J Catal 388:91–103. https://doi.org/10.1016/j.jcat.2020.04.019Chai PV, Mahmoudi E, Teow YH, Mahammad AW (2018) Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. J Water Proc Eng 15:83–88. https://doi.org/10.1016/j.jwpe.2016.06.001Chen L, Li Y, Du Q, Wang Z, Xia Y, Yedinak E, Lou J, Ci L (2017) High performanceagar/graphene oxide composite aerogel for methylene blue removal. Carbohydr Polym 155:345–353. https://doi.org/10.1016/j.carbpol.2016.08.047Chen Y, Tong Y, Xue Y, Liu Z, Tang M, Huang L, Shao S, Fang Z (2020) Degradation of the β-blocker propranolol by sulfite activation using FeS. Chem Eng J 385:123884. https://doi.org/10.1016/j.cej.2019.123884Cheng Y, Yang S, E, T. (2021) Magnetic graphene oxide prepared via ammonia coprecipitation method: the effects of preserved functional groups on adsorption property. Inorg Chem Commun 128:108603. https://doi.org/10.1016/j.inoche.2021.108603Cheraghi S, Taher MA, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Raman PKY, Karamani C (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biolGOical body fluids. Chemosphe 287:132187. https://doi.org/10.1016/j.chemosphere.2021.132187Coelho CM, Andrade JR, Silva MGC, Vieira MGA (2020) Removal of propranolol hydrochloride by batch biosorption using remaining biomass of alginate extraction from Sargassum filipendula algae. Environ Sci Pollut Res 27:16599–16611. https://doi.org/10.1007/s11356-020-08109-4Covarrubias-Gárcia I, Quijano G, Aizpuru A, Sánchez-Gárcia JL, Rodríguez-López JL, Arriaga S (2020) Reduced graphene oxide decorated with magnetite nanops enhance biomethane enrichment. J Hazard Mater 397:122760. https://doi.org/10.1016/j.jhazmat.2020.122760Cusioli LF, Quesada HB, Castro ALBP, Gomes RG, Bergamasco R (2020) Development of a new low-cost adsorbent functionalized with iron nanops for removal of metformin from contaminated water. Chemosphere 247:125852. https://doi.org/10.1016/j.chemosphere.2020.125852Dada AO, Inyinbor AA, Bello OS, Tokula BE (2021) Novel plantain peel activated carbon–supported zinc oxide nanocomposites (PPAC-ZnO-NC) for adsorption of chloroquine synthetic pharmaceutical used for COVID-19 treatment. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01828-9Daneshmoghanlou E, Miralinaghi M, Moniri E, Sadjady SK (2022) Fabrication of a pH-responsive magnetic nanocarrier based on carboxymethyl cellulose-aminated graphene oxide for loading and in-vitro release of curcumin. J Polym Environ. https://doi.org/10.1007/s10924-022-02467-5Deng Y, Li Y, Nie W, Gao X, Zhang L, Yang P, Tan X (2019) Fast removal of propranolol from water by attapulgite/graphene oxide magnetic ternary composites. Materials 12. https://doi.org/10.3390/ma12060924da Silva MP, de Souza ACA, de Lima Ferreira LE, Neto LMP, Nascimento BF, de Araújo CMB, Fraga TJM, da Motta Sobrinho MA, Ghislandi MG (2021) Photodegradation of Reactive Black 5 and raw textile wastewater by heterogeneous photo-Fenton reaction using amino-Fe3O4-functionalized graphene oxide as nanocatalyst. Environ Adv 4:100064. https://doi.org/10.1016/j.envadv.2021.100064Deng Y, Li Y (2020) Surface-bound humic acid increased propranolol sorption on Fe3O4/attapulgite magnetic nanops. Nanomaterials 10:1–15. https://doi.org/10.3390/nano10020205Dolatabadi M, Naidu H, Ahmadzadeh S (2022) Adsorption characteristics in the removal of chlorpyrifos from groundwater using magnetic graphene oxide and carboxy methyl cellulose composite. Separat Pollut Technol 300:121919. https://doi.org/10.1016/j.seppur.2022.121919Ferreira FN, Benevides AP, Cesar DV, Luna AS, Gois JS (2020) Magnetic solid-phase extraction and pre-concentration of 17β-estradiol and 17α-ethinyl estradiol in tap water using maghemite-graphene oxide nanops and determination via HPLC with a fluorescence detector. Microchem J 157:104947–104954Ghanbari F, Hassani A, Waclwek S, Wang Z, Matyszczak G, Lin KA, Dolatabadi M (2021) Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: Key operating parameters, mineralization and toxicity assessment. Separat Purif Technol 266:118533. https://doi.org/10.1016/j.seppur.2021.118533Gomes BFML, Araújo CMB, Nascimento BF, Freire EMPL, Motta MAS, Carvalho MN (2022) Synthesis and application of graphene oxide as a nanoadsorbent to remove Cd (II) and Pb (II) from water: adsorption equilibrium, kinetics, and regeneration. Environ Sci Pollut Res 29:17358–17372. https://doi.org/10.1007/s11356-021-16943-3Guo W, Li Y, Zhao K, Xu Q, Jiang H, Zhou H (2020) Performance and microbial community analysis of anaerobic digestion of vinegar residue with adding of acetylene black or hydrochar. Waste Biomass Valoriz 11:3315–3325. https://doi.org/10.1007/s12649-019-00664-3Hassani A, Eghbali P, Mahdipour F, Waclawek S, Lin KA, Ghanbari F (2023) Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective Bisphenol A degradation: performance, mineralization, and activation mechanism. Chem Eng J 453:139556. https://doi.org/10.1016/j.cej.2022.139556Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Karimi-Maleh H (2022a) A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci Total Environ 824:153844. https://doi.org/10.1016/j.scitotenv.2022.153844Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Wen Y, Bahrami A, Karaman C, Zare N, Karimi-Maleh HA, Vasseghian Y (2022b) Magnetic-MXene-based nanocomposites for water and wastewater treatment: a review. J Water Proc Eng 47:102696. https://doi.org/10.1016/j.jwpe.2022.102696Hu Z, Zhang X, Li J, Zhu Y (2020) Comparative study on the regeneration of Fe3O4@graphene oxide composites. Orig Res 8:1–7. https://doi.org/10.3389/fchem.2020.00150Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. https://doi.org/10.1021/ja01539a017Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297Ivankovic K, Kern M, Rozman M (2021) Modelling of the adsorption of pharmaceutically active compounds on carbon-based nanomaterials. J Hazard Mater 414:125554. https://doi.org/10.1016/j.jhazmat.2021.125554Januário EFD, Fachina YJ, Wernke G, Demiti GMM, Beltran LB, Bergamasco R, Vieira AMS (2022) Application of activated carbon functionalized with graphene oxide for efficient removal of COVID-19 treatment-related pharmaceuticals from water. Chemosphere 289:133213. https://doi.org/10.1016/j.chemosphere.2021.133213Jesus JHF, Lima KVL, Nogueira RFP (2022) Copper-containing magnetite supported on natural clay as a catalyst for heterogeneous photo-fenton degradation of antibiotics in WWTP effluent. Journal of Environmental. Chem Eng 10:107765. https://doi.org/10.1016/j.jece.2022.107765Karaman C, Karaman O, Show P, Karimi-Maleh H, Zare N (2022a) Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 290:133346. https://doi.org/10.1016/j.chemosphere.2021.133346Karaman C, Karaman O, Show P, Orooji Y, Karimi-Maleh H (2022b) Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. Environ Res 207:112156. https://doi.org/10.1016/j.envres.2021.112156Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Kiarii EM, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nanocomposite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mole Liq 298:112040. https://doi.org/10.1016/j.molliq.2019.112040Karimi-Maleh H, Ayati A, Davoodi R, Tanhaei B, Karimi F, Malekmohammadi S, Orooji Y, Fu L, Sillanpaa M (2021a) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: a review. J Clean Prod 291:125880. https://doi.org/10.1016/j.jclepro.2021.125880Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpaa M, Sen F (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: kinetic study. Environ Res 195:110809. https://doi.org/10.1016/j.envres.2021.110809Kashani MRK, Kiani R, Hassani A, Kadier A, Madihi-Bidgoli S, Lin KA, Ghanbari F (2022) Electro-peroxone application for ciprofloxacin degradation in aqueous solution using sacrificial iron anode: a new hybrid process. Separat Purif Technol 292:121026. https://doi.org/10.1016/j.seppur.2022.121026Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4679. https://doi.org/10.1016/j.jece.2018.06.060Khader EH, Mohammed TJ, Mirghaffari N, Salman AD, Juzsakova T, Abdullah TA (2022) Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technol Environ Policy 24:713–720. https://doi.org/10.1007/s10098-021-02159-zKhan AH, Khan NA, Zubair M, Shaida MA, Manzar MS, Abutaleb A, Naushad M, Iqbal J (2022) Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: a critical review. Environ Res 204:112243. https://doi.org/10.1016/j.envres.2021.112243Kuroda K, Li C, Dhangar K, Kumar M (2021) Predicted occurrence, ecotoxicological risk and environmentally acquired resistance of antiviral drugs associated with COVID-19 in environmental waters. Sci Total Environ 776:145740. https://doi.org/10.1016/j.scitotenv.2021.145740Li Y, Xu X, Guo H, Bian Y, Li J, Zhang F (2022) Magnetic graphene oxide−based covalent organic frameworks as novel adsorbent for extraction and separation of triazine herbicides from fruit and vegetable samples. Anal Chim Acta, DOI 1219:339984 https://doi.org/10.1016/j.aca.2022.339984Lingamdinne LP, Koduru JR, Karri RR (2019) A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J Environ Manag 231:622–634. https://doi.org/10.1016/j.jenvman.2018.10.063López-Vinent N, Cruz-Alcalde A, Giménez J, Esplugas S (2021) Mixtures of chelating agents to enhance photo-Fenton process at natural pH: influence of wastewater matrix on micropollutant removal and bacterial inactivation. Sci Total Environ 786:147416. https://doi.org/10.1016/j.scitotenv.2021.147416Miao J, Wang F, Chen Y, Zhu Y, Zhou Y, Zhang S (2019) The adsorption performance of tetracyclines on magnetic graphene oxide: a novel antibiotics absorbent. Appl Surf Sci 475:549–558. https://doi.org/10.1016/j.apsusc.2019.01.036Molaei MJ (2021) Magnetic graphene, synthesis, and applications: a review. Mater Sci Eng B 272:115325. https://doi.org/10.1016/j.mseb.2021.115325Morales-Paredes CA, Rodrídrez-Díaz JM, Boluda-Botella N (2022) Pharmaceutical compounds used in the COVID-19 pandemic: a review of their presence in water and treatment techniques for their elimination. Sci Total Environ 814:152691. https://doi.org/10.1016/j.scitotenv.2021.152691Mukhortova YR, Pryadko AS, Chernozem RV, Pariy IO, Akoulina EA, Demianova IV, Zharkavo II, Ivanov YF, Wagner DV, Bonartsev AP, Surmenev RA, Surmeneva MA (2022) Fabrication and characterization of a magnetic biocomposite of magnetite nanops and reduced graphene oxide for biomedical applications. Nano-Struct Nano-Objects 29:100843. https://doi.org/10.1016/j.nanoso.2022.100843Naddeo V, Secondes MFN, Borea L, Hasan SW, Ballesteros F Jr, Belgiorno V (2020) Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process-UltraSound, adsorption, and Membrane ultrafiltration (USAMe®). Ultrason Sonochem 68:105237. https://doi.org/10.1016/j.ultsonch.2020.105237Nascimento BF, Araújo CMB, Nascimento AC, Silva FLH, Melo DJN, Jaguaribe EF, Cavalcanti JVFL, Motta MAS (2021a) Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaí waste. J Hazard Mater 409:124494. https://doi.org/10.1016/j.jhazmat.2020.124494Nascimento DC, Silva MGC, Vieira MGA (2021b) Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: a complete batch system evaluation. J Mole Liq 337:116442. https://doi.org/10.1016/j.molliq.2021.116442Nascimento BF, Silva LFO, Araújo CMB, Silva Santos RK, Gomes BFM, Silva Santos PR, Cavalcanti JVFL, Dotto GL, Schnorr CE, Motta Sobrinho MA (2022) Synthesis and application of ferromagnetic graphene oxide nanocomposite as an effective adsorbent for Clonazepam: batch experiments, modeling, regeneration, and phytotoxicity. J Environ Chem Eng 10:108331. https://doi.org/10.1016/j.jece.2022.108331Nascimento WJ Jr, Aguiar GH, Landers R, Vieira MGA, Sobrinho MAM (2023) Potential of the main magnetic iron oxides synthesized over graphene oxide in integrated adsorption and photocatalysis of inorganic and organic emergent contaminants. Coll Surf A: Physicochem Eng Asp 671:131647. https://doi.org/10.1016/j.colsurfa.2023.131647Neolaka YAB, Lawa Y, Naat JN, Riwu AAP, Iqbal M, Darmokoesoemo H, Kusuma HS (2020) The Adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): study of kinetics, isotherms and thermodynamics. J Mater Res Technol 9:6544–6556. https://doi.org/10.1016/j.jmrt.2020.04.040Niaei HA, Rostamizadeh M (2020) Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm, kinetic and thermodynamic studies. J Chem Thermodyn 142:106003. https://doi.org/10.1016/j.jct.2019.106003Nkwoada AU, Alisa CD, Oguwike MM, Amaechi IA (2022) Removal of aspirin and chloroquine from aqueous solution using organo-clay derived from kaolinite. J Phys Chem Mater 9:1–11Orta MM, Martín J, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2019) Adsorption of propranolol onto montmorillonite: kinetic, isotherm and pH studies. Appl Clay Sci 173:107–114. https://doi.org/10.1016/j.clay.2019.03.015Paixão GR, Camparotto NG, Brião GV, Oliveira RL, Colmenares JC, Prediger P, Vieira MGA (2022) Synthesis of mesoporous P-doped carbon and its application in propranolol drug removal: characterization, kinetics and isothermal studies. Chem Eng Res Des 187:225–239. https://doi.org/10.1016/j.cherd.2022.09.009Quesada HB, Baptista ATA, Cusioli LF, Seibert D, Bezerra CO, Bergamasco R (2019) Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222:766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo DN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176. https://doi.org/10.1016/j.chemosphere.2021.130176Rathi BS, Kumar PS, Show P (2021) A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research. J Hazard Mater 409:124413. https://doi.org/10.1016/j.jhazmat.2020.124413Rhoden CRB, Bruckmann FS, Salles TR, Kaufmann Junior CG, Mortari SR (2021) Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. J Water Proc Eng 43:102262. https://doi.org/10.1016/j.jwpe.2021.102262Sanchez-Silva JM, Collins-Martínez VH, Padilha-Ortega E, Aguilar-Aguilar A, Labrada-Delgado GJ, Gonzalez-Ortega O, Palestino-Escobedo G, Ocampo-Pérez R (2022) Characterization and transformation of nanche stone (Byrsonima crassifolia) in an activated hydrochar with high adsorption capacity towards metformin in aqueous solution. Chem Eng Res Des 183:580–594. https://doi.org/10.1016/j.cherd.2022.05.054Santos RKS, Nascimento BF, Araújo CMB, Cavalcanti JFL, Bruckmann FS, Rhoden CRB, Dotto GL, Silva LFO, Sobrinho MAM (2023a) Removal of chloroquine from the aqueous solution by adsorption onto açaí-based biochars: kinetics, thermodynamics, and phytotoxicity. J Mole Liq 383:122162. https://doi.org/10.1016/j.molliq.2023.122162Santos RKS, Schnorr C, Silva LFO, Nascimento BF, Cavalcanti JFL, Vieira Y, Dotto GL, Sobrinho MAM (2023b) Euterpe oleracea-based biochar for clonazepam adsorption: synthesis, characterization, adsorption properties, and toxicity assays. Environ Sci Pollut Res 30:52485–52497. https://doi.org/10.1007/s11356-023-26044-ySgroi M, Anumol T, Vagliasindi FGA, Snyder SA, Roccaro P (2021) Comparison of the new Cl2/O3/UV process with different ozone- and UV-based AOPs for wastewater treatment at pilot scale: removal of pharmaceuticals and changes in fluorescing organic matter. Sci Total Environ 765:142720. https://doi.org/10.1016/j.scitotenv.2020.142720Spessato L, Duarte VA, Viero P, Zanella H, Fonseca JM, Arroyo PA, Almeida VC (2021) Optimization of Sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous Adsorption of rhodamine B and metformin. J Hazard Mater 411:125166. https://doi.org/10.1016/j.jhazmat.2021.125166Tang T, Cao S, Xi C, Chen Z (2021) Multifunctional magnetic chitosan-graphene oxide-ionic liquid ternary nanohybrid: an efficient adsorbent of alkaloids. Carbohydr Polym 255:117338. https://doi.org/10.1016/j.carbpol.2020.117338Taoufik N, Boumya W, Janani FZ, Elhalil A, Mahjoubi FZ, Barka N (2020) Removal of emerging pharmaceutical pollutants: a systematic mapping study review. J Environ Chem Eng 8:104251. https://doi.org/10.1016/j.jece.2020.104251Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisortion of gases, with special reference to the evaluation of surface area and poro size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117Wang Y, Wei X, Qi Y, Huang H (2021) Efficient removal of bisphenol-A from water and wastewater by Fe2O3-modified graphene oxide. Chemosphere 263:127563. https://doi.org/10.1016/j.chemosphere.2020.127563Wang X, Lian J, Wang Y, Zhang X, Liu W, Wang Y (2022) Adsorption dependent fenton-like catalysis on graphene oxide-Fe3O4 composite: electron transfer mediated by target-catalyst interactions. Surf Inter 29:101749. https://doi.org/10.1016/j.surfin.2022.101749Wernke G, Silva MF, Silva EA, Fagundes-Klen MRF, Suzaki PYR, Triques CC, Bergamasco R (2021) Ag and CuO nanops decorated on graphene oxide/activated carbon as a novel adsorbent for the removal of cephalexin from water. Coll Surf A Physicochem Eng Aspects 627:127203. https://doi.org/10.1016/j.colsurfa.2021.127203Wu K, Jing C, Zhang J, Liu T, Yang S, Wang W (2019) Magnetic Fe3O4@CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic (III/V) from water. Appl Surf Sci 466:746–756. https://doi.org/10.1016/j.apsusc.2018.10.091Yu B, Wang J, Yang X, Wang W, Cai X (2019) Preparation of polyglycerol mediated superparamagnetic graphene oxide nanocomposite and evaluation of its adsorption properties on tetracycline. Environ Sci Pollut Res 26:32345–32359. https://doi.org/10.1007/s11356-019-06516-wZaied BK, Rashid M, Nasrullah M, Zularisan AW, Pant D, Singh L (2020) A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci Total Environ 726:138095. https://doi.org/10.1016/j.scitotenv.2020.138095Zaka A, Ibrahim TH, Khamis M (2021) Removal of selected non-steroidal anti-inflammatory drugs from wastewater using reduced graphene oxide magnetite. Desalit Water Treat 212:401–414. https://doi.org/10.5004/dwt.2021.26686Zarenezhad M, Zarei M, Ebratkhahan M, Hosseinzadeh M (2021) Synthesis and study of functionalized magnetic graphene oxide for Pb2+ removal from wastewater. Environ Technol Innov 22:101384. https://doi.org/10.1016/j.eti.2021.101384Zhu S, Liu Y, Liu S, Zeng G, Jiang L, Tan X, Zhou L, Zeng W, Li T, Yang C (2017) Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179:20–28. https://doi.org/10.1016/j.chemosphere.2017.03.071Zhu Z, Zhang Q, Yap PL, Ni Y, Losic D (2021) Magnetic reduced graphene oxide as a nano-vehicle for loading and delivery of curcumin. Spectr Acta Part A: Mole Biomol Spectr 252:119471. https://doi.org/10.1016/j.saa.2021.11947185358853443630AdsorptionChloroquineGraphene oxideMagneticMetforminPropranololPublicationORIGINALAdsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.pdfAdsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.pdfArtículoapplication/pdf293330https://repositorio.cuc.edu.co/bitstreams/35cf7a26-37b6-423f-a43b-676521b55cca/downloadb41c6c06f72267b08775e67cbb9afa39MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/afa86d4d-87e9-4fd2-a52c-d92671721490/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTAdsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.pdf.txtAdsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.pdf.txtExtracted texttext/plain27297https://repositorio.cuc.edu.co/bitstreams/eb030c38-e307-4d3b-abdf-a129e13b162a/download3f74058becfab91c5233daafe1a8e75aMD53THUMBNAILAdsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.pdf.jpgAdsorption of chloroquine, propranolol, and metformin in aqueous solutions using magnetic graphene oxide nanocomposite.pdf.jpgGenerated Thumbnailimage/jpeg15175https://repositorio.cuc.edu.co/bitstreams/ca9720c5-a377-47a8-824b-bd2719bd611e/download1c9bd02e65b6341a29116d38f7392c25MD5411323/13298oai:repositorio.cuc.edu.co:11323/132982024-09-17 10:44:25.575https://creativecommons.org/licenses/by/4.0/© 2024 Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=