Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion

This study aimed to investigate the mechanical and durability properties of recycled aggregate concrete with a ternary binder system and optimized mix proportion. Two concrete batches were developed using a densified mix design approach (DMDA) to evaluate the required mix proportions. Batch I have G...

Full description

Autores:
Babalola, O.E.
Awoyera, P.O.
Tran, M.T.
Le, D.-H
Olalusi, O.B
Viloria, A.
Ovallos, David
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7841
Acceso en línea:
https://hdl.handle.net/11323/7841
https://doi.org/10.1016/j.jmrt.2020.04.038
https://repositorio.cuc.edu.co/
Palabra clave:
Recycled aggregate concrete
Densified mix design
Ternary binder
Durability
Mechanical properties
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_40276608b40704df8e0cc033c3066cc1
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7841
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
title Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
spellingShingle Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
Recycled aggregate concrete
Densified mix design
Ternary binder
Durability
Mechanical properties
title_short Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
title_full Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
title_fullStr Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
title_full_unstemmed Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
title_sort Mechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion
dc.creator.fl_str_mv Babalola, O.E.
Awoyera, P.O.
Tran, M.T.
Le, D.-H
Olalusi, O.B
Viloria, A.
Ovallos, David
dc.contributor.author.spa.fl_str_mv Babalola, O.E.
Awoyera, P.O.
Tran, M.T.
Le, D.-H
Olalusi, O.B
Viloria, A.
Ovallos, David
dc.subject.spa.fl_str_mv Recycled aggregate concrete
Densified mix design
Ternary binder
Durability
Mechanical properties
topic Recycled aggregate concrete
Densified mix design
Ternary binder
Durability
Mechanical properties
description This study aimed to investigate the mechanical and durability properties of recycled aggregate concrete with a ternary binder system and optimized mix proportion. Two concrete batches were developed using a densified mix design approach (DMDA) to evaluate the required mix proportions. Batch I have GGBS content varied at 0%, 10%, 20%, 30%, 40% and 50% at constant w/b ratio of 0.45, while batch II concrete mix have varied water/binder ratios: 0.3, 0.35, 0.4, 0.45 and 0.5 at constant GGBS replacement level of 30%. The fine aggregate (river sand) of the two batches was blended with fly ash at optimum loose packing density (FA + Sand) and superplasticizer (SP) was incorporated in the mix at a constant level of 1.4%. A control mix comprising of natural aggregate was also developed. The results obtained showcased the feasibility of producing structural concrete with recycled aggregates using GGBS and fly ash. The mechanical and durability properties were best at 30% GGBS content and 0.35 water/binder ratio. The DMDA for mix proportion adopted for RAC contributed significantly to improving its properties when compared to NAC, especially at the optimum observed RAC mix with compressive strength of 52 MPa. Also, the mix demonstrated good permeability resistance in terms of chloride-ion ingress and capillary water absorption.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-05T23:18:01Z
dc.date.available.none.fl_str_mv 2021-02-05T23:18:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7841
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jmrt.2020.04.038
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7841
https://doi.org/10.1016/j.jmrt.2020.04.038
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] M.S. Imbabi, C. Carrigan, S. McKenna Trends and developments in green cement and concrete technology Int J Sustain Built Environ, 1 (2012), pp. 194-216, 10.1016/j.ijsbe.2013.05.001
[2] M. Behera, S.K. Bhattacharyya, A.K. Minocha, R. Deoliya, S. Maiti Recycled aggregate from C&D waste & its use in concrete – a breakthrough towards sustainability in construction sector: a review Constr Build Mater, 68 (2014), pp. 501-516
[3] O.E. Babalola, P.O. Awoyera Suitability of Cordia millenii ash blended cement in concrete production Int J Eng Res Africa, 22 (2016), pp. 59-67 doi:10.4028/www.scientific.net/JERA.22.59
[4] M. Moini The optimization of concrete mixtures for use in highway applications (2015)
[5] C.-C. Fan, R. Huang, H. Hwang, S.-J. Chao Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes Constr Build Mater, 112 (2016), pp. 708-715, 10.1016/j.conbuildmat.2016.02.154
[6] S. Karthik, P.R.M. Rao, P.O. Awoyera Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures J King Saud Univ Eng Sci (2017), 10.1016/j.jksues.2016.12.003
[7] P. Awoyera, R. Gobinath, S. Haripriya, P. Kulandaisami New light weight mortar for structural application: assessment of porosity, strength and morphology properties S.C. Satapathy, K.S. Raju, K. Molugaram, A. Krishnaiah, G.A. Tsihrintzis (Eds.), Int. Conf. Emerg. Trends Eng, Springer International Publishing, Cham (2020), pp. 59-65
[8] P.O. Awoyera, J.M. Ndambuki, J.O. Akinmusuru, D.O. Omole Characterization of ceramic waste aggregate concrete HBRC J (2016), 10.1016/j.hbrcj.2016.11.003
[9] P. Murthi, P. Awoyera, P. Selvaraj, D. Dharsana, R. Gobinath Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment Aust J Civ Eng (2018), 10.1080/14488353.2018.1472539
[10] C. Shi, Y. Li, J. Zhang, W. Li, L. Chong, Z. Xie Performance enhancement of recycled concrete aggregate – a review J Clean Prod, 112 (2016), pp. 466-472, 10.1016/j.jclepro.2015.08.057
[11] G. Dimitriou, P. Savva, M.F. Petrou Enhancing mechanical and durability properties of recycled aggregate concrete Constr Build Mater, 158 (2018), pp. 228-235, 10.1016/j.conbuildmat.2017.09.137
[12] B.S. British Standard, 8500 Concrete – Part 1: Complementary British Standard to BS EN 206-Part 1: Method of Specifying and Guidance for the Specifier Br. Stand. Institution, London (2006)
[13] R. Corral-Higuera, S.P. Arredondo-Rea, M.A. Neri-Flores, J.M. Gomez-Soberon, J.L. Almaral-Sanchez, A. Castorena-Gonzalez, et al. Chloride ion penetrability and corrosion behavior of steel in concrete with sustainability characteristics Int J Electrochem Sci, 6 (2011), pp. 958-970
[14] R.V. Silva, J. de Brito, R. Neves, R. Dhir Prediction of chloride ion penetration of recycled aggregate concrete Mater Res, 18 (2015), pp. 427-440 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000200427&nrm=iso
[15] N. Singh, S.P. Singh Carbonation resistance and microstructural analysis of low and high volume fly ash self compacting concrete containing recycled concrete aggregates Constr Build Mater, 127 (2016), pp. 828-842, 10.1016/j.conbuildmat.2016.10.067
[16] K. Obla, C. Lobo, R. Hong, H. Kim Optimizing concrete mixtures for performance and sustainability Int. Concr. Sustain. Conf., Seattle (2012)
[17] K. Shicong, C.S. Poon Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash J Wuhan Univ Technol Sci Ed, 21 (2006), pp. 130-136, 10.1007/BF02841223
[18] B. Mas, A. Cladera, T. del Olmo, F. Pitarch Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use Constr Build Mater, 27 (2012), pp. 612-622, 10.1016/j.conbuildmat.2011.06.073
[19] W. Dodds, C. Goodier, C. Christodoulou, S. Austin, D. Dunne Durability performance of sustainable structural concrete: effect of coarse crushed concrete aggregate on microstructure and water ingress Constr Build Mater, 145 (2017), pp. 183-195
[20] C. Medina, W. Zhu, T. Howind, M.I.S. de Rojas, M. Frías Influence of mixed recycled aggregate on the physical–mechanical properties of recycled concrete J Clean Prod, 68 (2014), pp. 216-225, 10.1016/j.jclepro.2014.01.002
[21] P.-K. Chang, W.-M. Hou A study on the hydration properties of high performance slag concrete analyzed by SRA Cem Concr Res, 33 (2003), pp. 183-189
[22] P.K. Chang An approach to optimizing mix design for properties of high-performance concrete Cem Concr Res, 34 (2004), pp. 623-629, 10.1016/j.cemconres.2003.10.010
[23] B. Kerkhoff, E. Siebel Properties of concrete with recycled aggregates Beton, 2 (2001), pp. 105-108
[24] G.-F. Peng, Y.-Z. Huang, H.-S. Wang, J.-F. Zhang, Q.-B. Liu Mechanical properties of recycled aggregate concrete at low and high water/binder ratios Adv Mater Sci Eng, 2013 (2013)
[25] C. Hwang Durability design and performance of self-consolidating lightweight concrete Constr Build Mater, 19 (2005), pp. 619-626, 10.1016/j.conbuildmat.2005.01.003
[26] BS 12:1989, Specification for ordinary and rapid-hardening Portland cement, Br. Stand. London, UK. (n.d.).
[27] ASTM C618 Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete Am Soc Test Mater (2008)
[28] ASTM C1202 Standard test method for electrical indication of concrete's ability to resist chloride ion penetration (2017)
[29] ASTM C1585 Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes (2013)
[30] ASTM C143/C143M-15a Standard test method for slump of hydraulic-cement concrete (2015)
[31] ASTM C138/C138M-17a Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete (2017)
[32] ASTM C191-19 Standard test methods for time of setting of hydraulic cement by Vicat needle (2019)
[33] ASTM C39/C39M-20 Standard test method for compressive strength of cylindrical concrete specimens (2020)
[34] ASTM C496/C496M-17 Standard test method for splitting tensile strength of cylindrical concrete specimens (2017)
[35] J. Wang, M. Mu, Y. Liu Recycled cement Constr Build Mater, 190 (2018), pp. 1124-1132
[36] J. Xie, J. Wang, R. Rao, C. Wang, C. Fang Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate Compos Part B Eng, 164 (2019), pp. 179-190
[37] S.C. Kou, C.S. Poon, F. Agrela Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures Cem Concr Compos, 33 (2011), pp. 788-795, 10.1016/j.cemconcomp.2011.05.009
[38] S. Elshafie, M. Boulbibane, G. Whittleston Influence of mineral admixtures on the mechanical properties of fresh and hardened concrete Constr Sci, 19 (2016), pp. 4-12
[39] S.C. Kou, C.S. Poon Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates Cem Concr Compos, 31 (2009), pp. 622-627, 10.1016/j.cemconcomp.2009.06.005
[40] S.J. Barnett, M.N. Soutsos, S.G. Millard, J.H. Bungey Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies Cem Concr Res, 36 (2006), pp. 434-440
[41] E. Güneyisi, M. Gesoğlu A study on durability properties of high-performance concretes incorporating high replacement levels of slag Mater Struct, 41 (2008), pp. 479-493
[42] V.B.R. Suda, P.S. Rao Experimental investigation on optimum usage of Micro silica and GGBS for the strength characteristics of concrete Mater. Today Proc. (2020)
[43] R.K.D. Obe, J. de Brito, R.V. Silva, C.Q. Lye Sustainable construction materials: recycled aggregates Woodhead Publishing (2019)
[44] D.S. Seo, H.B. Choi Effects of the old cement mortar attached to the recycled aggregate surface on the bond characteristics between aggregate and cement mortar Constr Build Mater, 59 (2014), pp. 72-77
[45] C. Li, M. Zhao, F. Ren, N. Liang, J. Li, M. Zhao Bond behaviors between full-recycled-aggregate concrete and deformed steel-bar Open Civ Eng J, 11 (2017)
[46] M. Etxeberria, E. Vázquez, A. Marí, M. Barra Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete Cem Concr Res, 37 (2007), pp. 735-742, 10.1016/j.cemconres.2007.02.002
[47] P.O. Awoyera, A. Adesina, R. Gobinath Role of recycling fine materials as filler for improving performance of concrete – a review Aust J Civ Eng (2019), 10.1080/14488353.2019.1626692
[48] S. Pradhan, S. Kumar, S.V. Barai Recycled aggregate concrete: Particle Packing Method (PPM) of mix design approach Constr Build Mater, 152 (2017), pp. 269-284
[49] M.L. Berndt Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate Constr Build Mater, 23 (2009), pp. 2606-2613, 10.1016/j.conbuildmat.2009.02.011
[50] J. Kropp, H.K. Hilsdorf, H. Grube, C. Andrade, L. Nilsson Chapter 2: Transport mechanisms and definitions RILEM Rep (1995)
[51] H. Guo, C. Shi, X. Guan, J. Zhu, Y. Ding, T.-C. Ling, et al. Durability of recycled aggregate concrete – a review Cem Concr Compos, 89 (2018), pp. 251-259, 10.1016/j.cemconcomp.2018.03.008
[52] H. Sun, P.M. Wang, J.Y. Sun Study on the gas anti permeability and carbonation resistance of recycled concrete J Build Mater, 9 (2006), pp. 91-96
[53] X. Zhang, K. Wu Mechanism and key technique of mineral admixture J Tongji Univ, 32 (2004), pp. 494-498
[54] P. Awoyera, A. Adesina A critical review on application of alkali activated slag as a sustainable composite binder Case Stud Constr Mater (2019), p. e00268, 10.1016/j.cscm.2019.e00268
[55] E. Anastasiou, K.G. Filikas, M. Stefanidou Utilization of fine recycled aggregates in concrete with fly ash and steel slag Constr Build Mater, 50 (2014), pp. 154-161
[56] P. Dinakar, K.G. Babu, M. Santhanam Durability properties of high volume fly ash self compacting concretes Cem Concr Compos, 30 (2008), pp. 880-886
[57] H. Yiğiter, H. Yazıcı, S. Aydın Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete Build Environ, 42 (2007), pp. 1770-1776
[58] W. Dodds, C. Goodier, C. Christodoulou, S.A. Austin, D. Dunne, M. Fitt, et al. Durability performance of structural concrete made with coarse recycled concrete aggregates Proc. Fib Symp. 2016, Performance-Based Approaches Concr. Struct., Cape Town, South Africa (2016)
[59] W. Hu, S. Li, C. Song, Z. Chen, L. Chen, Y. Yang, et al. A laboratory analysis of chloride ions penetration in recycled aggregates concrete admixed with ground granulated blast furnace slag IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing (2019), p. 12051
[60] C. Faella, C. Lima, E. Martinelli, M. Pepe, R. Realfonzo Mechanical and durability performance of sustainable structural concretes: an experimental study Cem Concr Compos, 71 (2016), pp. 85-96, 10.1016/j.cemconcomp.2016.05.009
[61] S.-C. Kou, C. Poon Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash Cem Concr Compos, 37 (2013), pp. 12-19
[62] K. Kapoor, S.P. Singh, B. Singh Durability of self-compacting concrete made with recycled concrete aggregates and mineral admixtures Constr Build Mater, 128 (2016), pp. 67-76, 10.1016/j.conbuildmat.2016.10.026
[63] W. Chalee, C. Jaturapitakkul Effects of W/B ratios and fly ash finenesses on chloride diffusion coefficient of concrete in marine environment Mater Struct, 42 (2009), pp. 505-514
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Materials Research and Technology
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2238785420312035#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/61069a25-48b5-4f47-948a-d15ee12684ec/download
https://repositorio.cuc.edu.co/bitstreams/31c2b2aa-ac1e-4983-990d-09c038ebaea0/download
https://repositorio.cuc.edu.co/bitstreams/8bf08c21-253f-4275-bd79-541e7771c2f5/download
https://repositorio.cuc.edu.co/bitstreams/346f8267-bc3e-4e64-a870-a8c578f79843/download
https://repositorio.cuc.edu.co/bitstreams/f918859b-7f7a-4291-9d35-ff4f3ca84fed/download
bitstream.checksum.fl_str_mv 7c75bec65c884f438ce84832420651c3
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
6c4602aaea150a6cfb672dcaa6117239
4282f6635104bc6ab6418e8627795102
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760839503380480
spelling Babalola, O.E.Awoyera, P.O.Tran, M.T.Le, D.-HOlalusi, O.BViloria, A.Ovallos, David2021-02-05T23:18:01Z2021-02-05T23:18:01Z2020https://hdl.handle.net/11323/7841https://doi.org/10.1016/j.jmrt.2020.04.038Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study aimed to investigate the mechanical and durability properties of recycled aggregate concrete with a ternary binder system and optimized mix proportion. Two concrete batches were developed using a densified mix design approach (DMDA) to evaluate the required mix proportions. Batch I have GGBS content varied at 0%, 10%, 20%, 30%, 40% and 50% at constant w/b ratio of 0.45, while batch II concrete mix have varied water/binder ratios: 0.3, 0.35, 0.4, 0.45 and 0.5 at constant GGBS replacement level of 30%. The fine aggregate (river sand) of the two batches was blended with fly ash at optimum loose packing density (FA + Sand) and superplasticizer (SP) was incorporated in the mix at a constant level of 1.4%. A control mix comprising of natural aggregate was also developed. The results obtained showcased the feasibility of producing structural concrete with recycled aggregates using GGBS and fly ash. The mechanical and durability properties were best at 30% GGBS content and 0.35 water/binder ratio. The DMDA for mix proportion adopted for RAC contributed significantly to improving its properties when compared to NAC, especially at the optimum observed RAC mix with compressive strength of 52 MPa. Also, the mix demonstrated good permeability resistance in terms of chloride-ion ingress and capillary water absorption.Babalola, O.E.Awoyera, P.O.Tran, M.T.Le, D.-HOlalusi, O.BViloria, A.Ovallos, David-will be generated-orcid-0000-0003-0836-2287-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Materials Research and Technologyhttps://www.sciencedirect.com/science/article/pii/S2238785420312035#!Recycled aggregate concreteDensified mix designTernary binderDurabilityMechanical propertiesMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M.S. Imbabi, C. Carrigan, S. McKenna Trends and developments in green cement and concrete technology Int J Sustain Built Environ, 1 (2012), pp. 194-216, 10.1016/j.ijsbe.2013.05.001[2] M. Behera, S.K. Bhattacharyya, A.K. Minocha, R. Deoliya, S. Maiti Recycled aggregate from C&D waste & its use in concrete – a breakthrough towards sustainability in construction sector: a review Constr Build Mater, 68 (2014), pp. 501-516[3] O.E. Babalola, P.O. Awoyera Suitability of Cordia millenii ash blended cement in concrete production Int J Eng Res Africa, 22 (2016), pp. 59-67 doi:10.4028/www.scientific.net/JERA.22.59[4] M. Moini The optimization of concrete mixtures for use in highway applications (2015)[5] C.-C. Fan, R. Huang, H. Hwang, S.-J. Chao Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes Constr Build Mater, 112 (2016), pp. 708-715, 10.1016/j.conbuildmat.2016.02.154[6] S. Karthik, P.R.M. Rao, P.O. Awoyera Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures J King Saud Univ Eng Sci (2017), 10.1016/j.jksues.2016.12.003[7] P. Awoyera, R. Gobinath, S. Haripriya, P. Kulandaisami New light weight mortar for structural application: assessment of porosity, strength and morphology properties S.C. Satapathy, K.S. Raju, K. Molugaram, A. Krishnaiah, G.A. Tsihrintzis (Eds.), Int. Conf. Emerg. Trends Eng, Springer International Publishing, Cham (2020), pp. 59-65[8] P.O. Awoyera, J.M. Ndambuki, J.O. Akinmusuru, D.O. Omole Characterization of ceramic waste aggregate concrete HBRC J (2016), 10.1016/j.hbrcj.2016.11.003[9] P. Murthi, P. Awoyera, P. Selvaraj, D. Dharsana, R. Gobinath Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment Aust J Civ Eng (2018), 10.1080/14488353.2018.1472539[10] C. Shi, Y. Li, J. Zhang, W. Li, L. Chong, Z. Xie Performance enhancement of recycled concrete aggregate – a review J Clean Prod, 112 (2016), pp. 466-472, 10.1016/j.jclepro.2015.08.057[11] G. Dimitriou, P. Savva, M.F. Petrou Enhancing mechanical and durability properties of recycled aggregate concrete Constr Build Mater, 158 (2018), pp. 228-235, 10.1016/j.conbuildmat.2017.09.137[12] B.S. British Standard, 8500 Concrete – Part 1: Complementary British Standard to BS EN 206-Part 1: Method of Specifying and Guidance for the Specifier Br. Stand. Institution, London (2006)[13] R. Corral-Higuera, S.P. Arredondo-Rea, M.A. Neri-Flores, J.M. Gomez-Soberon, J.L. Almaral-Sanchez, A. Castorena-Gonzalez, et al. Chloride ion penetrability and corrosion behavior of steel in concrete with sustainability characteristics Int J Electrochem Sci, 6 (2011), pp. 958-970[14] R.V. Silva, J. de Brito, R. Neves, R. Dhir Prediction of chloride ion penetration of recycled aggregate concrete Mater Res, 18 (2015), pp. 427-440 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000200427&nrm=iso[15] N. Singh, S.P. Singh Carbonation resistance and microstructural analysis of low and high volume fly ash self compacting concrete containing recycled concrete aggregates Constr Build Mater, 127 (2016), pp. 828-842, 10.1016/j.conbuildmat.2016.10.067[16] K. Obla, C. Lobo, R. Hong, H. Kim Optimizing concrete mixtures for performance and sustainability Int. Concr. Sustain. Conf., Seattle (2012)[17] K. Shicong, C.S. Poon Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash J Wuhan Univ Technol Sci Ed, 21 (2006), pp. 130-136, 10.1007/BF02841223[18] B. Mas, A. Cladera, T. del Olmo, F. Pitarch Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use Constr Build Mater, 27 (2012), pp. 612-622, 10.1016/j.conbuildmat.2011.06.073[19] W. Dodds, C. Goodier, C. Christodoulou, S. Austin, D. Dunne Durability performance of sustainable structural concrete: effect of coarse crushed concrete aggregate on microstructure and water ingress Constr Build Mater, 145 (2017), pp. 183-195[20] C. Medina, W. Zhu, T. Howind, M.I.S. de Rojas, M. Frías Influence of mixed recycled aggregate on the physical–mechanical properties of recycled concrete J Clean Prod, 68 (2014), pp. 216-225, 10.1016/j.jclepro.2014.01.002[21] P.-K. Chang, W.-M. Hou A study on the hydration properties of high performance slag concrete analyzed by SRA Cem Concr Res, 33 (2003), pp. 183-189[22] P.K. Chang An approach to optimizing mix design for properties of high-performance concrete Cem Concr Res, 34 (2004), pp. 623-629, 10.1016/j.cemconres.2003.10.010[23] B. Kerkhoff, E. Siebel Properties of concrete with recycled aggregates Beton, 2 (2001), pp. 105-108[24] G.-F. Peng, Y.-Z. Huang, H.-S. Wang, J.-F. Zhang, Q.-B. Liu Mechanical properties of recycled aggregate concrete at low and high water/binder ratios Adv Mater Sci Eng, 2013 (2013)[25] C. Hwang Durability design and performance of self-consolidating lightweight concrete Constr Build Mater, 19 (2005), pp. 619-626, 10.1016/j.conbuildmat.2005.01.003[26] BS 12:1989, Specification for ordinary and rapid-hardening Portland cement, Br. Stand. London, UK. (n.d.).[27] ASTM C618 Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete Am Soc Test Mater (2008)[28] ASTM C1202 Standard test method for electrical indication of concrete's ability to resist chloride ion penetration (2017)[29] ASTM C1585 Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes (2013)[30] ASTM C143/C143M-15a Standard test method for slump of hydraulic-cement concrete (2015)[31] ASTM C138/C138M-17a Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete (2017)[32] ASTM C191-19 Standard test methods for time of setting of hydraulic cement by Vicat needle (2019)[33] ASTM C39/C39M-20 Standard test method for compressive strength of cylindrical concrete specimens (2020)[34] ASTM C496/C496M-17 Standard test method for splitting tensile strength of cylindrical concrete specimens (2017)[35] J. Wang, M. Mu, Y. Liu Recycled cement Constr Build Mater, 190 (2018), pp. 1124-1132[36] J. Xie, J. Wang, R. Rao, C. Wang, C. Fang Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate Compos Part B Eng, 164 (2019), pp. 179-190[37] S.C. Kou, C.S. Poon, F. Agrela Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures Cem Concr Compos, 33 (2011), pp. 788-795, 10.1016/j.cemconcomp.2011.05.009[38] S. Elshafie, M. Boulbibane, G. Whittleston Influence of mineral admixtures on the mechanical properties of fresh and hardened concrete Constr Sci, 19 (2016), pp. 4-12[39] S.C. Kou, C.S. Poon Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates Cem Concr Compos, 31 (2009), pp. 622-627, 10.1016/j.cemconcomp.2009.06.005[40] S.J. Barnett, M.N. Soutsos, S.G. Millard, J.H. Bungey Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies Cem Concr Res, 36 (2006), pp. 434-440[41] E. Güneyisi, M. Gesoğlu A study on durability properties of high-performance concretes incorporating high replacement levels of slag Mater Struct, 41 (2008), pp. 479-493[42] V.B.R. Suda, P.S. Rao Experimental investigation on optimum usage of Micro silica and GGBS for the strength characteristics of concrete Mater. Today Proc. (2020)[43] R.K.D. Obe, J. de Brito, R.V. Silva, C.Q. Lye Sustainable construction materials: recycled aggregates Woodhead Publishing (2019)[44] D.S. Seo, H.B. Choi Effects of the old cement mortar attached to the recycled aggregate surface on the bond characteristics between aggregate and cement mortar Constr Build Mater, 59 (2014), pp. 72-77[45] C. Li, M. Zhao, F. Ren, N. Liang, J. Li, M. Zhao Bond behaviors between full-recycled-aggregate concrete and deformed steel-bar Open Civ Eng J, 11 (2017)[46] M. Etxeberria, E. Vázquez, A. Marí, M. Barra Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete Cem Concr Res, 37 (2007), pp. 735-742, 10.1016/j.cemconres.2007.02.002[47] P.O. Awoyera, A. Adesina, R. Gobinath Role of recycling fine materials as filler for improving performance of concrete – a review Aust J Civ Eng (2019), 10.1080/14488353.2019.1626692[48] S. Pradhan, S. Kumar, S.V. Barai Recycled aggregate concrete: Particle Packing Method (PPM) of mix design approach Constr Build Mater, 152 (2017), pp. 269-284[49] M.L. Berndt Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate Constr Build Mater, 23 (2009), pp. 2606-2613, 10.1016/j.conbuildmat.2009.02.011[50] J. Kropp, H.K. Hilsdorf, H. Grube, C. Andrade, L. Nilsson Chapter 2: Transport mechanisms and definitions RILEM Rep (1995)[51] H. Guo, C. Shi, X. Guan, J. Zhu, Y. Ding, T.-C. Ling, et al. Durability of recycled aggregate concrete – a review Cem Concr Compos, 89 (2018), pp. 251-259, 10.1016/j.cemconcomp.2018.03.008[52] H. Sun, P.M. Wang, J.Y. Sun Study on the gas anti permeability and carbonation resistance of recycled concrete J Build Mater, 9 (2006), pp. 91-96[53] X. Zhang, K. Wu Mechanism and key technique of mineral admixture J Tongji Univ, 32 (2004), pp. 494-498[54] P. Awoyera, A. Adesina A critical review on application of alkali activated slag as a sustainable composite binder Case Stud Constr Mater (2019), p. e00268, 10.1016/j.cscm.2019.e00268[55] E. Anastasiou, K.G. Filikas, M. Stefanidou Utilization of fine recycled aggregates in concrete with fly ash and steel slag Constr Build Mater, 50 (2014), pp. 154-161[56] P. Dinakar, K.G. Babu, M. Santhanam Durability properties of high volume fly ash self compacting concretes Cem Concr Compos, 30 (2008), pp. 880-886[57] H. Yiğiter, H. Yazıcı, S. Aydın Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete Build Environ, 42 (2007), pp. 1770-1776[58] W. Dodds, C. Goodier, C. Christodoulou, S.A. Austin, D. Dunne, M. Fitt, et al. Durability performance of structural concrete made with coarse recycled concrete aggregates Proc. Fib Symp. 2016, Performance-Based Approaches Concr. Struct., Cape Town, South Africa (2016)[59] W. Hu, S. Li, C. Song, Z. Chen, L. Chen, Y. Yang, et al. A laboratory analysis of chloride ions penetration in recycled aggregates concrete admixed with ground granulated blast furnace slag IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing (2019), p. 12051[60] C. Faella, C. Lima, E. Martinelli, M. Pepe, R. Realfonzo Mechanical and durability performance of sustainable structural concretes: an experimental study Cem Concr Compos, 71 (2016), pp. 85-96, 10.1016/j.cemconcomp.2016.05.009[61] S.-C. Kou, C. Poon Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash Cem Concr Compos, 37 (2013), pp. 12-19[62] K. Kapoor, S.P. Singh, B. Singh Durability of self-compacting concrete made with recycled concrete aggregates and mineral admixtures Constr Build Mater, 128 (2016), pp. 67-76, 10.1016/j.conbuildmat.2016.10.026[63] W. Chalee, C. Jaturapitakkul Effects of W/B ratios and fly ash finenesses on chloride diffusion coefficient of concrete in marine environment Mater Struct, 42 (2009), pp. 505-514PublicationORIGINALMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion.pdfMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion.pdfapplication/pdf101179https://repositorio.cuc.edu.co/bitstreams/61069a25-48b5-4f47-948a-d15ee12684ec/download7c75bec65c884f438ce84832420651c3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/31c2b2aa-ac1e-4983-990d-09c038ebaea0/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8bf08c21-253f-4275-bd79-541e7771c2f5/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion.pdf.jpgMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion.pdf.jpgimage/jpeg41346https://repositorio.cuc.edu.co/bitstreams/346f8267-bc3e-4e64-a870-a8c578f79843/download6c4602aaea150a6cfb672dcaa6117239MD54TEXTMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion.pdf.txtMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportion.pdf.txttext/plain1721https://repositorio.cuc.edu.co/bitstreams/f918859b-7f7a-4291-9d35-ff4f3ca84fed/download4282f6635104bc6ab6418e8627795102MD5511323/7841oai:repositorio.cuc.edu.co:11323/78412024-09-17 14:08:45.674http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==