Effect of temperature in bursting of thalamic reticular cells

Objective: To show the relation between the four parameters associated to bursting discharges of the thalamic reticular cells (TRNn): the maximum firing frequency (fmax) and the temperature at which it occurs (Tfmax), the range of temperatures defined as the full width at half maximum (∆Th ) and the...

Full description

Autores:
Hernandez Bustos, Oscar Emilio
E. Zurek, Eduardo
Vera Mellao, David
Cepeda Emiliani, Alfonso
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1610
Acceso en línea:
http://hdl.handle.net/11323/1610
https://repositorio.cuc.edu.co/
Palabra clave:
TRN neuron
Computational simulation
Firing frequency
Temperature
Burst firing
Rights
openAccess
License
Atribución – No comercial – Compartir igual
Description
Summary:Objective: To show the relation between the four parameters associated to bursting discharges of the thalamic reticular cells (TRNn): the maximum firing frequency (fmax) and the temperature at which it occurs (Tfmax), the range of temperatures defined as the full width at half maximum (∆Th ) and the maximum specific low threshold calcium conductance (GT). Materials and Methods: In order to simulate the TRNn bursting activity, a computational simulation model was implemented using the NEURON software, which incorporates morphological and electrophysiological data, and stimuli properties closely related to reality. Results: It was found that there are nonlinear relations between the parameters. The fmax frequency follows a quadratic growth with temperature and tends asymptotically towards a limit value with the maximum calcium conductance. In the same manner, ∆Th increases until reaching a limit value as function of fmax and GT . However, the increment per frequency unit is bigger than the increment per conductance unit. Conclusions: Four equations were obtained that model the relations between the parameters associated to bursting discharges of the TRNn in rats and other neurons with similar characteristics in different animal species.