Contra-continuous functions defined through ΛI-closed sets
We introduce some variants of contra-continuity in terms of ΛI-closed sets, namely contra-ΛI-continuous, contra quasi-ΛI-continuous and contra ΛI-irresolute functions. The relationships between these functions are investigated and their re-spective characterizations are established. Moreover, we stu...
- Autores:
-
SANABRIA, JOSÉ
GRANADOS, CARLOS
ROSAS, ENNIS
CARPINTERO, CARLOS
Rosas, Ennis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7792
- Acceso en línea:
- https://hdl.handle.net/11323/7792
http://doi.org/10.37394/23206.2020.19.70
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ideal
local function
ΛI-set
ΛI-closed set
contra ΛI-continuous function
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_3f91887264ce4537b8796a26dc643091 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7792 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Contra-continuous functions defined through ΛI-closed sets |
title |
Contra-continuous functions defined through ΛI-closed sets |
spellingShingle |
Contra-continuous functions defined through ΛI-closed sets Ideal local function ΛI-set ΛI-closed set contra ΛI-continuous function |
title_short |
Contra-continuous functions defined through ΛI-closed sets |
title_full |
Contra-continuous functions defined through ΛI-closed sets |
title_fullStr |
Contra-continuous functions defined through ΛI-closed sets |
title_full_unstemmed |
Contra-continuous functions defined through ΛI-closed sets |
title_sort |
Contra-continuous functions defined through ΛI-closed sets |
dc.creator.fl_str_mv |
SANABRIA, JOSÉ GRANADOS, CARLOS ROSAS, ENNIS CARPINTERO, CARLOS Rosas, Ennis |
dc.contributor.author.spa.fl_str_mv |
SANABRIA, JOSÉ GRANADOS, CARLOS ROSAS, ENNIS CARPINTERO, CARLOS |
dc.contributor.author.none.fl_str_mv |
Rosas, Ennis |
dc.subject.spa.fl_str_mv |
Ideal local function ΛI-set ΛI-closed set contra ΛI-continuous function |
topic |
Ideal local function ΛI-set ΛI-closed set contra ΛI-continuous function |
description |
We introduce some variants of contra-continuity in terms of ΛI-closed sets, namely contra-ΛI-continuous, contra quasi-ΛI-continuous and contra ΛI-irresolute functions. The relationships between these functions are investigated and their re-spective characterizations are established. Moreover, we study their behavior of several topological notions under the direct and inverse images of these functions. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-01-28T20:02:21Z |
dc.date.available.none.fl_str_mv |
2021-01-28T20:02:21Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7792 |
dc.identifier.doi.spa.fl_str_mv |
http://doi.org/10.37394/23206.2020.19.70 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7792 http://doi.org/10.37394/23206.2020.19.70 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] F. G. Arenas, J. Dontchev, M. Ganster, On -setsand the dual of generalized continuity,QuestionsAnswers Gen. Topology, Vol.15, No.1, 1997, pp.3-13. [2] J. Dontchev, Contra-continuous functions andstronglyS-closed spaces,Int. J. Math. & Math.Sci., Vol. 19, No. 2, 1996, pp. 303-310. [3] J. Dontchev, Survey on preopen sets,The Pro-ceedings of the Yatsushiro Topological Confer-ence, 22-23 August 1998, pp. 1-18. [4] J. Dontchev, H. Maki, Onsg-closed sets andsemi- -closed sets,Questions Answers Gen.Topology, Vol. 15, No. 2, 1997, pp. 259-266. [5] D. S. Jankovic, T. R. Hamlett, New topologiesfrom old via ideals,Amer. Math. Monthly, Vol.97, 1990, pp. 295-310. [6] D. S. Jankovic, T. R. Hamlett, Compatible exten-sions of ideals,Boll. Un. Mat. Ital., Vol 7, No.6-B, 1992, pp. 453-465. [7] K. Kuratowski,Topologie I, Monografie Matem-atycznetom3,PWN-PolishScientificPublishers,Warszawa, 1933. [8] H. Maki, Generalized -sets and the associatedclosure operator,The special Issue in commem-oration of Prof. Kazusada IKEDA’s Retirement,1986, pp. 139-146. [9] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuousmappings,Proc. Math. Phys. Soc. Egypt, Vol. 53,1982, pp. 47-53. [10] T. Noiri, A. Keskin, On I-sets and some weakseparation axioms,Int. J. Math. Anal., Vol 5, No.11, 2011, pp. 539-548. 11] J.Sanabria, E.Acosta, M.Salas-Brown, O.Gar-cía, Continuity via I-open sets,Fasc. Math.,Vol. 54, 2015, pp. 141-151. [12] R. Staum, The algebra of bounded continuousfunctions into a non archimedian field,Pacific J.Math., Vol. 50, 1974, pp. 169-185. [13] S. Willard,General Topology, Addison-WesleyPublishing Company, Reading, Massachusetts,1970. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
WSEAS Transactions on Mathematics |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.wseas.org/multimedia/journals/mathematics/2020/b425106-1319.pdf |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/2abdc092-3269-4f6d-b598-0de2f5f7c319/download https://repositorio.cuc.edu.co/bitstreams/76c016a5-01ee-4eaa-9d42-05e6e68a33a6/download https://repositorio.cuc.edu.co/bitstreams/ea58bd8f-4d59-4a05-96ef-238c6505d978/download https://repositorio.cuc.edu.co/bitstreams/0b880bb2-d30d-4f3b-953b-d97bd52dd018/download https://repositorio.cuc.edu.co/bitstreams/ce1263e2-352a-4ffd-a9f1-a062b50175e0/download |
bitstream.checksum.fl_str_mv |
013279b8a167a80e9705f87b450ce442 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad a8f3065ae6c63cca35cd5f844f9dbe44 4d5dee43404dba26659542f977a5a9bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166854830456832 |
spelling |
SANABRIA, JOSÉGRANADOS, CARLOSROSAS, ENNISCARPINTERO, CARLOSRosas, Ennisvirtual::973-12021-01-28T20:02:21Z2021-01-28T20:02:21Z2021https://hdl.handle.net/11323/7792http://doi.org/10.37394/23206.2020.19.70Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We introduce some variants of contra-continuity in terms of ΛI-closed sets, namely contra-ΛI-continuous, contra quasi-ΛI-continuous and contra ΛI-irresolute functions. The relationships between these functions are investigated and their re-spective characterizations are established. Moreover, we study their behavior of several topological notions under the direct and inverse images of these functions.SANABRIA, JOSÉGRANADOS, CARLOSROSAS, ENNISCARPINTERO, CARLOSapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2WSEAS Transactions on Mathematicshttps://www.wseas.org/multimedia/journals/mathematics/2020/b425106-1319.pdfIdeallocal functionΛI-setΛI-closed setcontra ΛI-continuous functionContra-continuous functions defined through ΛI-closed setsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] F. G. Arenas, J. Dontchev, M. Ganster, On -setsand the dual of generalized continuity,QuestionsAnswers Gen. Topology, Vol.15, No.1, 1997, pp.3-13.[2] J. Dontchev, Contra-continuous functions andstronglyS-closed spaces,Int. J. Math. & Math.Sci., Vol. 19, No. 2, 1996, pp. 303-310.[3] J. Dontchev, Survey on preopen sets,The Pro-ceedings of the Yatsushiro Topological Confer-ence, 22-23 August 1998, pp. 1-18.[4] J. Dontchev, H. Maki, Onsg-closed sets andsemi- -closed sets,Questions Answers Gen.Topology, Vol. 15, No. 2, 1997, pp. 259-266.[5] D. S. Jankovic, T. R. Hamlett, New topologiesfrom old via ideals,Amer. Math. Monthly, Vol.97, 1990, pp. 295-310.[6] D. S. Jankovic, T. R. Hamlett, Compatible exten-sions of ideals,Boll. Un. Mat. Ital., Vol 7, No.6-B, 1992, pp. 453-465.[7] K. Kuratowski,Topologie I, Monografie Matem-atycznetom3,PWN-PolishScientificPublishers,Warszawa, 1933.[8] H. Maki, Generalized -sets and the associatedclosure operator,The special Issue in commem-oration of Prof. Kazusada IKEDA’s Retirement,1986, pp. 139-146.[9] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuousmappings,Proc. Math. Phys. Soc. Egypt, Vol. 53,1982, pp. 47-53.[10] T. Noiri, A. Keskin, On I-sets and some weakseparation axioms,Int. J. Math. Anal., Vol 5, No.11, 2011, pp. 539-548.11] J.Sanabria, E.Acosta, M.Salas-Brown, O.Gar-cía, Continuity via I-open sets,Fasc. Math.,Vol. 54, 2015, pp. 141-151.[12] R. Staum, The algebra of bounded continuousfunctions into a non archimedian field,Pacific J.Math., Vol. 50, 1974, pp. 169-185.[13] S. Willard,General Topology, Addison-WesleyPublishing Company, Reading, Massachusetts,1970.Publicationcb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::973-1cb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::973-1https://scholar.google.com/citations?user=KZvdbkwAAAAJ&hl=esvirtual::973-10000-0001-8123-9344virtual::973-1ORIGINAL5106-1319-WSEAS.pdf5106-1319-WSEAS.pdfapplication/pdf276858https://repositorio.cuc.edu.co/bitstreams/2abdc092-3269-4f6d-b598-0de2f5f7c319/download013279b8a167a80e9705f87b450ce442MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/76c016a5-01ee-4eaa-9d42-05e6e68a33a6/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ea58bd8f-4d59-4a05-96ef-238c6505d978/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL5106-1319-WSEAS.pdf.jpg5106-1319-WSEAS.pdf.jpgimage/jpeg54333https://repositorio.cuc.edu.co/bitstreams/0b880bb2-d30d-4f3b-953b-d97bd52dd018/downloada8f3065ae6c63cca35cd5f844f9dbe44MD54TEXT5106-1319-WSEAS.pdf.txt5106-1319-WSEAS.pdf.txttext/plain28022https://repositorio.cuc.edu.co/bitstreams/ce1263e2-352a-4ffd-a9f1-a062b50175e0/download4d5dee43404dba26659542f977a5a9bbMD5511323/7792oai:repositorio.cuc.edu.co:11323/77922025-03-07 16:32:22.068http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |