Contra-continuous functions defined through ΛI-closed sets

We introduce some variants of contra-continuity in terms of ΛI-closed sets, namely contra-ΛI-continuous, contra quasi-ΛI-continuous and contra ΛI-irresolute functions. The relationships between these functions are investigated and their re-spective characterizations are established. Moreover, we stu...

Full description

Autores:
SANABRIA, JOSÉ
GRANADOS, CARLOS
ROSAS, ENNIS
CARPINTERO, CARLOS
Rosas, Ennis
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7792
Acceso en línea:
https://hdl.handle.net/11323/7792
http://doi.org/10.37394/23206.2020.19.70
https://repositorio.cuc.edu.co/
Palabra clave:
Ideal
local function
ΛI-set
ΛI-closed set
contra ΛI-continuous function
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_3f91887264ce4537b8796a26dc643091
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7792
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Contra-continuous functions defined through ΛI-closed sets
title Contra-continuous functions defined through ΛI-closed sets
spellingShingle Contra-continuous functions defined through ΛI-closed sets
Ideal
local function
ΛI-set
ΛI-closed set
contra ΛI-continuous function
title_short Contra-continuous functions defined through ΛI-closed sets
title_full Contra-continuous functions defined through ΛI-closed sets
title_fullStr Contra-continuous functions defined through ΛI-closed sets
title_full_unstemmed Contra-continuous functions defined through ΛI-closed sets
title_sort Contra-continuous functions defined through ΛI-closed sets
dc.creator.fl_str_mv SANABRIA, JOSÉ
GRANADOS, CARLOS
ROSAS, ENNIS
CARPINTERO, CARLOS
Rosas, Ennis
dc.contributor.author.spa.fl_str_mv SANABRIA, JOSÉ
GRANADOS, CARLOS
ROSAS, ENNIS
CARPINTERO, CARLOS
dc.contributor.author.none.fl_str_mv Rosas, Ennis
dc.subject.spa.fl_str_mv Ideal
local function
ΛI-set
ΛI-closed set
contra ΛI-continuous function
topic Ideal
local function
ΛI-set
ΛI-closed set
contra ΛI-continuous function
description We introduce some variants of contra-continuity in terms of ΛI-closed sets, namely contra-ΛI-continuous, contra quasi-ΛI-continuous and contra ΛI-irresolute functions. The relationships between these functions are investigated and their re-spective characterizations are established. Moreover, we study their behavior of several topological notions under the direct and inverse images of these functions.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-28T20:02:21Z
dc.date.available.none.fl_str_mv 2021-01-28T20:02:21Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7792
dc.identifier.doi.spa.fl_str_mv http://doi.org/10.37394/23206.2020.19.70
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7792
http://doi.org/10.37394/23206.2020.19.70
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] F. G. Arenas, J. Dontchev, M. Ganster, On -setsand the dual of generalized continuity,QuestionsAnswers Gen. Topology, Vol.15, No.1, 1997, pp.3-13.
[2] J. Dontchev, Contra-continuous functions andstronglyS-closed spaces,Int. J. Math. & Math.Sci., Vol. 19, No. 2, 1996, pp. 303-310.
[3] J. Dontchev, Survey on preopen sets,The Pro-ceedings of the Yatsushiro Topological Confer-ence, 22-23 August 1998, pp. 1-18.
[4] J. Dontchev, H. Maki, Onsg-closed sets andsemi- -closed sets,Questions Answers Gen.Topology, Vol. 15, No. 2, 1997, pp. 259-266.
[5] D. S. Jankovic, T. R. Hamlett, New topologiesfrom old via ideals,Amer. Math. Monthly, Vol.97, 1990, pp. 295-310.
[6] D. S. Jankovic, T. R. Hamlett, Compatible exten-sions of ideals,Boll. Un. Mat. Ital., Vol 7, No.6-B, 1992, pp. 453-465.
[7] K. Kuratowski,Topologie I, Monografie Matem-atycznetom3,PWN-PolishScientificPublishers,Warszawa, 1933.
[8] H. Maki, Generalized -sets and the associatedclosure operator,The special Issue in commem-oration of Prof. Kazusada IKEDA’s Retirement,1986, pp. 139-146.
[9] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuousmappings,Proc. Math. Phys. Soc. Egypt, Vol. 53,1982, pp. 47-53.
[10] T. Noiri, A. Keskin, On I-sets and some weakseparation axioms,Int. J. Math. Anal., Vol 5, No.11, 2011, pp. 539-548.
11] J.Sanabria, E.Acosta, M.Salas-Brown, O.Gar-cía, Continuity via I-open sets,Fasc. Math.,Vol. 54, 2015, pp. 141-151.
[12] R. Staum, The algebra of bounded continuousfunctions into a non archimedian field,Pacific J.Math., Vol. 50, 1974, pp. 169-185.
[13] S. Willard,General Topology, Addison-WesleyPublishing Company, Reading, Massachusetts,1970.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv WSEAS Transactions on Mathematics
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.wseas.org/multimedia/journals/mathematics/2020/b425106-1319.pdf
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2abdc092-3269-4f6d-b598-0de2f5f7c319/download
https://repositorio.cuc.edu.co/bitstreams/76c016a5-01ee-4eaa-9d42-05e6e68a33a6/download
https://repositorio.cuc.edu.co/bitstreams/ea58bd8f-4d59-4a05-96ef-238c6505d978/download
https://repositorio.cuc.edu.co/bitstreams/0b880bb2-d30d-4f3b-953b-d97bd52dd018/download
https://repositorio.cuc.edu.co/bitstreams/ce1263e2-352a-4ffd-a9f1-a062b50175e0/download
bitstream.checksum.fl_str_mv 013279b8a167a80e9705f87b450ce442
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
a8f3065ae6c63cca35cd5f844f9dbe44
4d5dee43404dba26659542f977a5a9bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166854830456832
spelling SANABRIA, JOSÉGRANADOS, CARLOSROSAS, ENNISCARPINTERO, CARLOSRosas, Ennisvirtual::973-12021-01-28T20:02:21Z2021-01-28T20:02:21Z2021https://hdl.handle.net/11323/7792http://doi.org/10.37394/23206.2020.19.70Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We introduce some variants of contra-continuity in terms of ΛI-closed sets, namely contra-ΛI-continuous, contra quasi-ΛI-continuous and contra ΛI-irresolute functions. The relationships between these functions are investigated and their re-spective characterizations are established. Moreover, we study their behavior of several topological notions under the direct and inverse images of these functions.SANABRIA, JOSÉGRANADOS, CARLOSROSAS, ENNISCARPINTERO, CARLOSapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2WSEAS Transactions on Mathematicshttps://www.wseas.org/multimedia/journals/mathematics/2020/b425106-1319.pdfIdeallocal functionΛI-setΛI-closed setcontra ΛI-continuous functionContra-continuous functions defined through ΛI-closed setsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] F. G. Arenas, J. Dontchev, M. Ganster, On -setsand the dual of generalized continuity,QuestionsAnswers Gen. Topology, Vol.15, No.1, 1997, pp.3-13.[2] J. Dontchev, Contra-continuous functions andstronglyS-closed spaces,Int. J. Math. & Math.Sci., Vol. 19, No. 2, 1996, pp. 303-310.[3] J. Dontchev, Survey on preopen sets,The Pro-ceedings of the Yatsushiro Topological Confer-ence, 22-23 August 1998, pp. 1-18.[4] J. Dontchev, H. Maki, Onsg-closed sets andsemi- -closed sets,Questions Answers Gen.Topology, Vol. 15, No. 2, 1997, pp. 259-266.[5] D. S. Jankovic, T. R. Hamlett, New topologiesfrom old via ideals,Amer. Math. Monthly, Vol.97, 1990, pp. 295-310.[6] D. S. Jankovic, T. R. Hamlett, Compatible exten-sions of ideals,Boll. Un. Mat. Ital., Vol 7, No.6-B, 1992, pp. 453-465.[7] K. Kuratowski,Topologie I, Monografie Matem-atycznetom3,PWN-PolishScientificPublishers,Warszawa, 1933.[8] H. Maki, Generalized -sets and the associatedclosure operator,The special Issue in commem-oration of Prof. Kazusada IKEDA’s Retirement,1986, pp. 139-146.[9] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuousmappings,Proc. Math. Phys. Soc. Egypt, Vol. 53,1982, pp. 47-53.[10] T. Noiri, A. Keskin, On I-sets and some weakseparation axioms,Int. J. Math. Anal., Vol 5, No.11, 2011, pp. 539-548.11] J.Sanabria, E.Acosta, M.Salas-Brown, O.Gar-cía, Continuity via I-open sets,Fasc. Math.,Vol. 54, 2015, pp. 141-151.[12] R. Staum, The algebra of bounded continuousfunctions into a non archimedian field,Pacific J.Math., Vol. 50, 1974, pp. 169-185.[13] S. Willard,General Topology, Addison-WesleyPublishing Company, Reading, Massachusetts,1970.Publicationcb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::973-1cb99d9b4-4dcd-4481-8c8a-83af4176c505virtual::973-1https://scholar.google.com/citations?user=KZvdbkwAAAAJ&hl=esvirtual::973-10000-0001-8123-9344virtual::973-1ORIGINAL5106-1319-WSEAS.pdf5106-1319-WSEAS.pdfapplication/pdf276858https://repositorio.cuc.edu.co/bitstreams/2abdc092-3269-4f6d-b598-0de2f5f7c319/download013279b8a167a80e9705f87b450ce442MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/76c016a5-01ee-4eaa-9d42-05e6e68a33a6/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ea58bd8f-4d59-4a05-96ef-238c6505d978/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL5106-1319-WSEAS.pdf.jpg5106-1319-WSEAS.pdf.jpgimage/jpeg54333https://repositorio.cuc.edu.co/bitstreams/0b880bb2-d30d-4f3b-953b-d97bd52dd018/downloada8f3065ae6c63cca35cd5f844f9dbe44MD54TEXT5106-1319-WSEAS.pdf.txt5106-1319-WSEAS.pdf.txttext/plain28022https://repositorio.cuc.edu.co/bitstreams/ce1263e2-352a-4ffd-a9f1-a062b50175e0/download4d5dee43404dba26659542f977a5a9bbMD5511323/7792oai:repositorio.cuc.edu.co:11323/77922025-03-07 16:32:22.068http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==