Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance

This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidat...

Full description

Autores:
Muñoz Mizuno, Andrea
Cely Baustista, Maria Mercedes
Jaramillo Colpas, Javier Enrique
Hincapie, Duberney
Calderón Hernández, José Wilmar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7677
Acceso en línea:
https://hdl.handle.net/11323/7677
http://dx.doi.org/10.4067/S0718-33052020000300362.
https://repositorio.cuc.edu.co/
Palabra clave:
Nanostructures
TiO2
Nanohardness
EIS
Thermal oxidation
Nanostructuras
Nanodureza
Oxidación térmica
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_3eb8a486a501007cfc1dfc7c492d0d9d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7677
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
dc.title.translated.spa.fl_str_mv Efecto de la oxidación térmica en nanoestructuras de TiO2 sobre la nanodureza y resistencia a la corrosión
title Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
spellingShingle Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
Nanostructures
TiO2
Nanohardness
EIS
Thermal oxidation
Nanostructuras
Nanodureza
Oxidación térmica
title_short Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
title_full Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
title_fullStr Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
title_full_unstemmed Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
title_sort Effect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance
dc.creator.fl_str_mv Muñoz Mizuno, Andrea
Cely Baustista, Maria Mercedes
Jaramillo Colpas, Javier Enrique
Hincapie, Duberney
Calderón Hernández, José Wilmar
dc.contributor.author.spa.fl_str_mv Muñoz Mizuno, Andrea
Cely Baustista, Maria Mercedes
Jaramillo Colpas, Javier Enrique
Hincapie, Duberney
Calderón Hernández, José Wilmar
dc.subject.spa.fl_str_mv Nanostructures
TiO2
Nanohardness
EIS
Thermal oxidation
Nanostructuras
Nanodureza
Oxidación térmica
topic Nanostructures
TiO2
Nanohardness
EIS
Thermal oxidation
Nanostructuras
Nanodureza
Oxidación térmica
description This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 ºC to 620 ºC for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600ºC was evidenced, generating significant changes in the mechanical properties of these structures.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-12T17:04:49Z
dc.date.available.none.fl_str_mv 2021-01-12T17:04:49Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0718-3291
0718-3305
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7677
dc.identifier.doi.spa.fl_str_mv http://dx.doi.org/10.4067/S0718-33052020000300362.
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0718-3291
0718-3305
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7677
http://dx.doi.org/10.4067/S0718-33052020000300362.
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia. “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review”. Prog. Mater. Sci. Vol. 54, Issue 3, pp. 397-425. May, 2009.
[2] M. Long and H.J. Rack. “Titanium alloys in total joint replacement--a materials science perspective”. Biomaterials. Vol. 19, Issue 18, pp. 1621-1639. Sep., 1998.
[3] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami and N.M. Davies. “Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants”. Acta Biomater. Vol. 6, Issue 4, pp. 1640-1648. Apr., 2010.
[4] S. Bose and A. Bandyopadhyay. “Introduction to Biomaterials”. Characterization of Biomaterials, pp. 1-9. 2013.
[5] S.R. Paital and N.B. Dahotre. “Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies”. Mater. Sci. Eng. R Reports. Vol. 66, Issue 1-3, pp. 1-70. Aug., 2009.
[6] S.D. Sartale, A.A. Ansari and S.-J. Rezvani. “Influence of Ti film thickness and oxidation temperature on TiO2 thin film formation via thermal oxidation of sputtered Ti film”. Mater. Sci. Semicond. Process. Vol. 16, Issue 6, pp. 2005-2012. Dec., 2013.
[7] M. Fazel, H.R. Salimijazi, M.A. Golozar and M.R. Garsivaz. “Applied Surface Science A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process”. Appl. Surf. Sci. Vol. 324, pp. 751-756. 2015.
[8] Q. Chen and G.A. Thouas. “Metallic implant biomaterials”. Mater. Sci. Eng. R Reports. Vol. 87, pp. 1-57. 2015.
[9] S. Kumar, T.S.N.S. Narayanan, S.G.S. Raman and S.K. Seshadri. “Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time”. Mater. Sci. Eng. C. Vol. 29, Issue 6, pp. 1942-1949. Aug., 2009.
[10] S. Kumar, T.S.N. Sankara Narayanan, S.G.S. Raman and S.K. Seshadri. “Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization”. Mater. Chem. Phys. Vol. 119, Issue 1-2, pp. 337- 346. Jan., 2010.
[11] S. Wang, Z. Liao, Y. Liu and W. Liu. “Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy”. Surf. Coatings Technol. Vol. 240, pp. 470-477. 2014.
[12] R. Narayanan and S.K. Seshadri. “Phosphoric acid anodization of Ti-6Al-4V - Structural and corrosion aspects”. Corros. Sci. Vol. 49, Issue 2, pp. 542-558. Feb., 2007.
[13] P. Roy, S. Berger and P. Schmuki. “TiO2 nanotubes: Synthesis and applications”.Angew. Chemie - Int. Ed. Vol. 50, Issue 13, pp. 2904-2939. 2011.
[14] E. Matykina, A. Conde, J. De Damborenea, D.M.Y. Marero and M.A. Arenas. “Growth of TiO2-based nanotubes on Ti-6Al-4V alloy”. Electrochim. Acta. Vol. 56, Issue 25, pp. 9209-9218. 2011.
[15] V. Vega. “Fabricación y Caracterización de Materiales Nanoestructurados Obtenidos Mediante Técnicas Electroquímicas”. Univ. Oviedo. 2012.
[16] J.M. Hernández-López, A. Conde, J.J. De Damborenea and M.A. Arenas. “TiO2 nanotubes with tunable morphologies”. RSC Adv. Vol. 4, Issue 107, pp. 62576-62585. 2014.
[17] M. Kulkarni, A. Mazare, E. Gongadze, S. Perutkova, V. Kralj-Iglic, I. Milosev, P. chmuki, A. Iglic and M. Mozetic. “Titanium nanostructures for biomedical applications”. Nanotechnology. Vol. 26, pp. 62002 (1-18). 2015.
[18] S. Minagar, C.C. Berndt, J. Wang, E. Ivanova and C. Wen. “A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces”. Acta Biomater. Vol. 8, Issue 8, pp. 2875-2888. 2012.
[19] J.A. Fernandes, E.C. Kohlrausch, S. Khan and R.C. Brito. “E ff ect of anodisation time and thermal treatment temperature on the structural and photoelectrochemical properties of TiO2 nanotubes”. J. Solid State Chem. Vol. 251, pp. 217-223. February, 2017.
[20] E. Matykina, J.M. Hernandez-lópez, A. Conde, C. Domingo, J.J. De Damborenea and M.A. Arenas. “Electrochimica Acta Morphologies of nanostructured TiO2 doped with F on Ti6Al-4V alloy”. Vol. 56, pp. 2221-2229. 2011.
[21] B. Munirathinam and L. Neelakantan. “Role of crystallinity on the nanomechanical and electrochemical properties of TiO2 nanotubes”. J. Electroanal. Chem. Vol. 770, pp. 73-83. 2016.
[22] T. Dikici and M. Toparli. “Microstructure and mechanical properties of nanostructured and microstructured TiO2 films”. Mater. Sci. Eng. A. Vol. 661, pp. 19-24. 2016.
[23] R. Narayanan, P. Mukherjee and S.K. Seshadri. “Synthesis, corrosion and wear of anodic oxide coatings on Ti-6Al-4V”. J. Mater. Sci. Mater. Med. Vol. 18, Issue 5, pp. 779-786. 2007.
[24] H. Song, M. Kim, G. Jung, M. Vang and Y. Park. “The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics”. Surf. Coatings Technol. Vol. 201, Issue 21, pp. 8738-8745. Aug., 2007.
[25] M. de las M. Cely Bautista. “Efecto de la modificacion supercicial de la aleación Ti6Al4V en condición de contacto lubricado con polietileno de ultra alto peso molecular (UHMWPE)”. Universidad Nacional de Colombia. 2013.
[26] S. Kumar, T.S.N.S. Narayanan, S.G.S. Raman and S.K. Seshadri. “Surface modification of CP-Ti to improve the fretting-corrosion resistance: Thermal oxidation vs. anodizing”. Mater. Sci. Eng. C. Vol. 30, Issue 6, pp. 921- 927. Jul., 2010.
[27] Y. Rambabu, M. Jaiswal and S.C. Roy. “Effect of annealing temperature on the phase transition, structural stability and photo-electrochemical performance of TiO2 multi-leg nanotubes”. Vol. 278, pp. 255-261. 2016.
[28] S. Wang, Z. Liao, Y. Liu and W. Liu. “Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy”. Surf. Coatings Technol. Vol. 240, pp. 470-477. Feb., 2014.
[29] B. Munirathinam and L. Neelakantan. “Titania nanotubes from weak organic acid electrolyte : Fabrication, characterization and oxide fi lm properties”. Mater. Sci. Eng. C. Vol. 49, pp. 567-578. 2015.
[30] W.-Q. Yu, J. Qiu, L. Xu and F.-Q. Zhang. “Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution”. Biomed. Mater. Vol. 4, Issue 6, p. 065012. 2009.
[31] M. Sarraf, E. Zalnezhad, A.R. Bushroa, A.M.S. Hamouda, A.R. Rafieerad and B. Nasiri-Tabrizi. “Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti-6Al-4V”. Ceram. Int. Vol. 41, Issue 6, pp. 7952-7962. 2015.
[32] K.M. Deen, A. Farooq, M.A. Raza and W. Haider. “Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation”. Electrochim. Acta. Vol. 117, pp. 329-335. 2014.
[33] J. Huang, X. Zhang, W. Yan, Z. Chen, X. Shuai, A. Wang and Y. Wang. “Nanotubular topography enhances the bioactivity of titanium implants”. Nanomedicine, pp. 1-11. 2017.
[34] K. Das, S. Bose and A. Bandyopadhyay. “TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction”. J. Biomed. Mater. Res. - Part A. Vol. 90, Issue 1, pp. 225-237. 2009.
[35] G.A. Crawford, N. Chawla, K. Das, S. Bose and A. Bandyopadhyay. “Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate”. Acta Biomater. Vol. 3, Issue 3, pp. 359-367. 2007.
[36] A. Munoz-Mizuno, A. Sandoval-Amador, M.M. Cely, D.Y. Pena-Ballesteros and R.J. Hernandez. “TiO2 Nanostructures: Voltage Influence in Corrosion Resistance and Human Osteosarcoma HOS Cell Responses”. Indian J. Sci. Technol. Vol. 11, Issue 22, pp. 1-9. 2018.
[37] M. Sarraf, E. Zalnezhad, A.R. Bushroa and A.M.S. Hamouda. “Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti - 6Al - 4V”. Vol. 41, pp. 7952-7962. 2015.
[38] L.H. Bessauer. “Desenvolvimento e Caracterização de Nanotubos de TiO2 em Implantes de Titânio”. Pontifícia Universida de Católica do Rio Grande do Sul. 2011.
[39] L. Mohan, C. Anandan and N. Rajendran. “Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications”. Electrochim. Acta. Vol. 155, pp. 411-420. 2015.
[40] S. Bauer, J. Park, K. von der Mark and P. Schmuki. “Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes”. Acta Biomater. Vol. 4, Issue 5, pp. 1576-1582. 2008.
[41] A. Biswas, I. Manna, U.K. Chatterjee, U. Bhattacharyya and D.J. Majumdar. “Evaluation of electrochemical properties of thermally oxidised Ti-6Al-4V for bioimplant application”. Surf. Eng. Vol. 25, Issue 2, pp. 141-145. Feb., 2009.
[42] L. Le Guéhennec, A. Soueidan, P. Layrolle and Y. Amouriq. “Surface treatments of titanium dental implants for rapid osseointegration”. Dent. Mater. Vol. 23, Issue 7, pp. 844-854. Jul., 2007.
[43] E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman. “Roughness parameters”. J. Mater. Process. Technol. Vol. 123, Issue 1, pp. 133-145. 2002.
[44] B. Munirathinam and L. Neelakantan. “Role of crystallinity on the nanomechanical and electrochemical properties of TiO2 nanotubes”. J. Electroanal. Chem. Vol. 770, pp. 73-83. 2016.
[45] Q. Chen, G.D. McEwen, N. Zaveri, R. Karpagavalli and A. Zhou. “Corrosion Resistance of Ti6Al4V with Nanostructured TiO2 Coatings”. First Edit. Elsevier Inc. 2012.
[46] J. Caballero Sarmiento, E. Correa Muñoz and H. Estupiñan Duran. “Analysis of the biocompatibility of Ti6Al4V and stainless steel 316 LVM based on pH effects, applying criteria of the ASTM F2129 standard”. Ingeniare. Revista Chilena de Ingeniería. Vol. 25 Nº 1, pp. 95-105. 2017.
[47] Y. Liu, S. Kim, J.A. McLeod, J. Li, X. Guo, T.-K. Sham and L. Liu. “The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition”. Appl. Surf. Sci. Vol. 396, pp. 1212-1219. 2017.
[48] J. Chen, Z. Zhang, J. Ouyang, X. Chen, Z. Xu and X. Sun. “Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition”. Appl. Surf. Sci. Vol. 305, pp. 24-32. 2014.
[49] O. Pinilla and A. Siado. “Caracterizacion Microestructural de la Aleacion de Titanio Ti6Al4V Oxidada Térmicamente”. Universidad Autónoma del Caribe. 2014.
[50] A. Sandoval-Amador, N.D. Montañez Supelano, A.M. Vera Arias, P. Escobar Rivero and D.Y. Peña-Ballesteros. “HOS cell adhesion on TiO2 nanotubes texturized by laser engraving”. J. Phys. Conf. Ser. Vol. 786, pp. 1-6. 2017.
[51] A. Sandoval-Amador, L.J. MirandaVesga, J. Pérez and D.Y. Peña-Ballesteros. “Biofuncionalización de Ti6Al4V mediante crecimiento de nanoestructuras de TiO2 con contenido de calcio y fósforo”. Materia. Vol. 21, Issue 3, pp. 606-614. 2016.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Ingeniare
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0718-33052020000300362&lng=es&nrm=iso&tlng=en
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7677/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7677/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7677/1/Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7677/4/Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7677/5/Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance.pdf.txt
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
1d520c487d08e96a7d139302e2d15f74
67e8e652f1f8dd7a8d8fc94044f93fda
8f5e05d789981eb3a9468973c90cf8c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400153973882880
spelling Muñoz Mizuno, Andrea35b74c3fa9993114c7d8113beb64846fCely Baustista, Maria Mercedese5f342ed887c4432076273c7cfd942c4Jaramillo Colpas, Javier Enrique1ecbf1427f52f02d48e359195b9b3da0Hincapie, Duberney373321403b633788950479c1a62faa6dCalderón Hernández, José Wilmar62446afc64c21b49c86b934a50b7f55e2021-01-12T17:04:49Z2021-01-12T17:04:49Z20200718-32910718-3305https://hdl.handle.net/11323/7677http://dx.doi.org/10.4067/S0718-33052020000300362.Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article aimed to analyze the effect of the thermal oxidation in the corrosion resistance and the hardness properties of TiO2 nanostructures obtained by the anodizing process in the HF/H3PO4 solution. TiO2 nanostructures on Ti6Al4V obtained by anodizing processes were subjected to thermal oxidation (TO) treatments over a temperature range from 500 ºC to 620 ºC for 2 hours. Surface morphology was evaluated by using scanning electron microscopy; the hardness properties of TiO2 nanostructures were obtained by Nanoindentation measurements using a Berkovich probe with a tip radius of 150 mm. The corrosion behavior of the samples was studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that TiO2 nanostructures, modified by thermal oxidation, increased the surface properties of hardness and corrosion resistance, compared to the substrate, maintaining its mixed or tubular structure. On the other hand, a transformation of nanotubes to nanopores after 600ºC was evidenced, generating significant changes in the mechanical properties of these structures.El objetivo de este artículo es analizar el efecto de oxidación térmica en la resistencia a la corrosión y las propiedades de dureza de nanoestructuras de TiO2 obtenidas por procesos de anodizado en solución de HF/ H3PO4. Las nanoestructuras de TiO2 sobre Ti6Al4V por procesos de anodizado fueron sometidas a tratamiento de oxidación térmica (OT)en un rango de 500 ºC a 620 ºC por dos (2) horas. La morfología superficial fue evaluada mediante microscopia electrónica de barrido; las propiedades de dureza de nanoestructuras de TiO2 fueron obtenidas por medidas de nanoindentación usando una probeta Berkovich de radio 150 mm. El comportamiento a la corrosión de las muestras fue estudiado usando polarización potenciodinámica y espectroscopia de impedancia electroquímica (EIS). Los resultados mostraron que la nanoestructuras de TiO2, modificadas por oxidación térmica, incrementaron las propiedades superficiales de dureza y resistencia a la corrosión, comparadas a las del substrato, manteniendo su estructura mixta o tubular. Además, se evidenció una transformación de nanotubos a nanoporos después de 600 ºC generando cambios significativos en las propiedades mecánicas de estas estructuras.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ingeniarehttps://scielo.conicyt.cl/scielo.php?script=sci_abstract&pid=S0718-33052020000300362&lng=es&nrm=iso&tlng=enNanostructuresTiO2NanohardnessEISThermal oxidationNanostructurasNanodurezaOxidación térmicaEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistanceEfecto de la oxidación térmica en nanoestructuras de TiO2 sobre la nanodureza y resistencia a la corrosiónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia. “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review”. Prog. Mater. Sci. Vol. 54, Issue 3, pp. 397-425. May, 2009.[2] M. Long and H.J. Rack. “Titanium alloys in total joint replacement--a materials science perspective”. Biomaterials. Vol. 19, Issue 18, pp. 1621-1639. Sep., 1998.[3] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami and N.M. Davies. “Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants”. Acta Biomater. Vol. 6, Issue 4, pp. 1640-1648. Apr., 2010.[4] S. Bose and A. Bandyopadhyay. “Introduction to Biomaterials”. Characterization of Biomaterials, pp. 1-9. 2013.[5] S.R. Paital and N.B. Dahotre. “Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies”. Mater. Sci. Eng. R Reports. Vol. 66, Issue 1-3, pp. 1-70. Aug., 2009.[6] S.D. Sartale, A.A. Ansari and S.-J. Rezvani. “Influence of Ti film thickness and oxidation temperature on TiO2 thin film formation via thermal oxidation of sputtered Ti film”. Mater. Sci. Semicond. Process. Vol. 16, Issue 6, pp. 2005-2012. Dec., 2013.[7] M. Fazel, H.R. Salimijazi, M.A. Golozar and M.R. Garsivaz. “Applied Surface Science A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process”. Appl. Surf. Sci. Vol. 324, pp. 751-756. 2015.[8] Q. Chen and G.A. Thouas. “Metallic implant biomaterials”. Mater. Sci. Eng. R Reports. Vol. 87, pp. 1-57. 2015.[9] S. Kumar, T.S.N.S. Narayanan, S.G.S. Raman and S.K. Seshadri. “Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time”. Mater. Sci. Eng. C. Vol. 29, Issue 6, pp. 1942-1949. Aug., 2009.[10] S. Kumar, T.S.N. Sankara Narayanan, S.G.S. Raman and S.K. Seshadri. “Thermal oxidation of Ti6Al4V alloy: Microstructural and electrochemical characterization”. Mater. Chem. Phys. Vol. 119, Issue 1-2, pp. 337- 346. Jan., 2010.[11] S. Wang, Z. Liao, Y. Liu and W. Liu. “Influence of thermal oxidation duration on the microstructure and fretting wear behavior of Ti6Al4V alloy”. Surf. Coatings Technol. Vol. 240, pp. 470-477. 2014.[12] R. Narayanan and S.K. Seshadri. “Phosphoric acid anodization of Ti-6Al-4V - Structural and corrosion aspects”. Corros. Sci. Vol. 49, Issue 2, pp. 542-558. Feb., 2007.[13] P. Roy, S. Berger and P. Schmuki. “TiO2 nanotubes: Synthesis and applications”.Angew. Chemie - Int. Ed. Vol. 50, Issue 13, pp. 2904-2939. 2011.[14] E. Matykina, A. Conde, J. De Damborenea, D.M.Y. Marero and M.A. Arenas. “Growth of TiO2-based nanotubes on Ti-6Al-4V alloy”. Electrochim. Acta. Vol. 56, Issue 25, pp. 9209-9218. 2011.[15] V. Vega. “Fabricación y Caracterización de Materiales Nanoestructurados Obtenidos Mediante Técnicas Electroquímicas”. Univ. Oviedo. 2012.[16] J.M. Hernández-López, A. Conde, J.J. De Damborenea and M.A. Arenas. “TiO2 nanotubes with tunable morphologies”. RSC Adv. Vol. 4, Issue 107, pp. 62576-62585. 2014.[17] M. Kulkarni, A. Mazare, E. Gongadze, S. Perutkova, V. Kralj-Iglic, I. Milosev, P. chmuki, A. Iglic and M. Mozetic. “Titanium nanostructures for biomedical applications”. Nanotechnology. Vol. 26, pp. 62002 (1-18). 2015.[18] S. Minagar, C.C. Berndt, J. Wang, E. Ivanova and C. Wen. “A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces”. Acta Biomater. Vol. 8, Issue 8, pp. 2875-2888. 2012.[19] J.A. Fernandes, E.C. Kohlrausch, S. Khan and R.C. Brito. “E ff ect of anodisation time and thermal treatment temperature on the structural and photoelectrochemical properties of TiO2 nanotubes”. J. Solid State Chem. Vol. 251, pp. 217-223. February, 2017.[20] E. Matykina, J.M. Hernandez-lópez, A. Conde, C. Domingo, J.J. De Damborenea and M.A. Arenas. “Electrochimica Acta Morphologies of nanostructured TiO2 doped with F on Ti6Al-4V alloy”. Vol. 56, pp. 2221-2229. 2011.[21] B. Munirathinam and L. Neelakantan. “Role of crystallinity on the nanomechanical and electrochemical properties of TiO2 nanotubes”. J. Electroanal. Chem. Vol. 770, pp. 73-83. 2016.[22] T. Dikici and M. Toparli. “Microstructure and mechanical properties of nanostructured and microstructured TiO2 films”. Mater. Sci. Eng. A. Vol. 661, pp. 19-24. 2016.[23] R. Narayanan, P. Mukherjee and S.K. Seshadri. “Synthesis, corrosion and wear of anodic oxide coatings on Ti-6Al-4V”. J. Mater. Sci. Mater. Med. Vol. 18, Issue 5, pp. 779-786. 2007.[24] H. Song, M. Kim, G. Jung, M. Vang and Y. Park. “The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics”. Surf. Coatings Technol. Vol. 201, Issue 21, pp. 8738-8745. Aug., 2007.[25] M. de las M. Cely Bautista. “Efecto de la modificacion supercicial de la aleación Ti6Al4V en condición de contacto lubricado con polietileno de ultra alto peso molecular (UHMWPE)”. Universidad Nacional de Colombia. 2013.[26] S. Kumar, T.S.N.S. Narayanan, S.G.S. Raman and S.K. Seshadri. “Surface modification of CP-Ti to improve the fretting-corrosion resistance: Thermal oxidation vs. anodizing”. Mater. Sci. Eng. C. Vol. 30, Issue 6, pp. 921- 927. Jul., 2010.[27] Y. Rambabu, M. Jaiswal and S.C. Roy. “Effect of annealing temperature on the phase transition, structural stability and photo-electrochemical performance of TiO2 multi-leg nanotubes”. Vol. 278, pp. 255-261. 2016.[28] S. Wang, Z. Liao, Y. Liu and W. Liu. “Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy”. Surf. Coatings Technol. Vol. 240, pp. 470-477. Feb., 2014.[29] B. Munirathinam and L. Neelakantan. “Titania nanotubes from weak organic acid electrolyte : Fabrication, characterization and oxide fi lm properties”. Mater. Sci. Eng. C. Vol. 49, pp. 567-578. 2015.[30] W.-Q. Yu, J. Qiu, L. Xu and F.-Q. Zhang. “Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution”. Biomed. Mater. Vol. 4, Issue 6, p. 065012. 2009.[31] M. Sarraf, E. Zalnezhad, A.R. Bushroa, A.M.S. Hamouda, A.R. Rafieerad and B. Nasiri-Tabrizi. “Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti-6Al-4V”. Ceram. Int. Vol. 41, Issue 6, pp. 7952-7962. 2015.[32] K.M. Deen, A. Farooq, M.A. Raza and W. Haider. “Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation”. Electrochim. Acta. Vol. 117, pp. 329-335. 2014.[33] J. Huang, X. Zhang, W. Yan, Z. Chen, X. Shuai, A. Wang and Y. Wang. “Nanotubular topography enhances the bioactivity of titanium implants”. Nanomedicine, pp. 1-11. 2017.[34] K. Das, S. Bose and A. Bandyopadhyay. “TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction”. J. Biomed. Mater. Res. - Part A. Vol. 90, Issue 1, pp. 225-237. 2009.[35] G.A. Crawford, N. Chawla, K. Das, S. Bose and A. Bandyopadhyay. “Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate”. Acta Biomater. Vol. 3, Issue 3, pp. 359-367. 2007.[36] A. Munoz-Mizuno, A. Sandoval-Amador, M.M. Cely, D.Y. Pena-Ballesteros and R.J. Hernandez. “TiO2 Nanostructures: Voltage Influence in Corrosion Resistance and Human Osteosarcoma HOS Cell Responses”. Indian J. Sci. Technol. Vol. 11, Issue 22, pp. 1-9. 2018.[37] M. Sarraf, E. Zalnezhad, A.R. Bushroa and A.M.S. Hamouda. “Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti - 6Al - 4V”. Vol. 41, pp. 7952-7962. 2015.[38] L.H. Bessauer. “Desenvolvimento e Caracterização de Nanotubos de TiO2 em Implantes de Titânio”. Pontifícia Universida de Católica do Rio Grande do Sul. 2011.[39] L. Mohan, C. Anandan and N. Rajendran. “Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications”. Electrochim. Acta. Vol. 155, pp. 411-420. 2015.[40] S. Bauer, J. Park, K. von der Mark and P. Schmuki. “Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes”. Acta Biomater. Vol. 4, Issue 5, pp. 1576-1582. 2008.[41] A. Biswas, I. Manna, U.K. Chatterjee, U. Bhattacharyya and D.J. Majumdar. “Evaluation of electrochemical properties of thermally oxidised Ti-6Al-4V for bioimplant application”. Surf. Eng. Vol. 25, Issue 2, pp. 141-145. Feb., 2009.[42] L. Le Guéhennec, A. Soueidan, P. Layrolle and Y. Amouriq. “Surface treatments of titanium dental implants for rapid osseointegration”. Dent. Mater. Vol. 23, Issue 7, pp. 844-854. Jul., 2007.[43] E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa and H.H. Soliman. “Roughness parameters”. J. Mater. Process. Technol. Vol. 123, Issue 1, pp. 133-145. 2002.[44] B. Munirathinam and L. Neelakantan. “Role of crystallinity on the nanomechanical and electrochemical properties of TiO2 nanotubes”. J. Electroanal. Chem. Vol. 770, pp. 73-83. 2016.[45] Q. Chen, G.D. McEwen, N. Zaveri, R. Karpagavalli and A. Zhou. “Corrosion Resistance of Ti6Al4V with Nanostructured TiO2 Coatings”. First Edit. Elsevier Inc. 2012.[46] J. Caballero Sarmiento, E. Correa Muñoz and H. Estupiñan Duran. “Analysis of the biocompatibility of Ti6Al4V and stainless steel 316 LVM based on pH effects, applying criteria of the ASTM F2129 standard”. Ingeniare. Revista Chilena de Ingeniería. Vol. 25 Nº 1, pp. 95-105. 2017.[47] Y. Liu, S. Kim, J.A. McLeod, J. Li, X. Guo, T.-K. Sham and L. Liu. “The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition”. Appl. Surf. Sci. Vol. 396, pp. 1212-1219. 2017.[48] J. Chen, Z. Zhang, J. Ouyang, X. Chen, Z. Xu and X. Sun. “Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition”. Appl. Surf. Sci. Vol. 305, pp. 24-32. 2014.[49] O. Pinilla and A. Siado. “Caracterizacion Microestructural de la Aleacion de Titanio Ti6Al4V Oxidada Térmicamente”. Universidad Autónoma del Caribe. 2014.[50] A. Sandoval-Amador, N.D. Montañez Supelano, A.M. Vera Arias, P. Escobar Rivero and D.Y. Peña-Ballesteros. “HOS cell adhesion on TiO2 nanotubes texturized by laser engraving”. J. Phys. Conf. Ser. Vol. 786, pp. 1-6. 2017.[51] A. Sandoval-Amador, L.J. MirandaVesga, J. Pérez and D.Y. Peña-Ballesteros. “Biofuncionalización de Ti6Al4V mediante crecimiento de nanoestructuras de TiO2 con contenido de calcio y fósforo”. Materia. Vol. 21, Issue 3, pp. 606-614. 2016.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/7677/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7677/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessORIGINALEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance.pdfEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance.pdfapplication/pdf2108609https://repositorio.cuc.edu.co/bitstream/11323/7677/1/Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance.pdf1d520c487d08e96a7d139302e2d15f74MD51open accessTHUMBNAILEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance.pdf.jpgEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance.pdf.jpgimage/jpeg51931https://repositorio.cuc.edu.co/bitstream/11323/7677/4/Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance.pdf.jpg67e8e652f1f8dd7a8d8fc94044f93fdaMD54open accessTEXTEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance.pdf.txtEffect on thermal oxidation in TiO2 nanostructures on nanohardness and corrosion resistance.pdf.txttext/plain39630https://repositorio.cuc.edu.co/bitstream/11323/7677/5/Effect%20on%20thermal%20oxidation%20in%20TiO2%20nanostructures%20on%20nanohardness%20and%20corrosion%20resistance.pdf.txt8f5e05d789981eb3a9468973c90cf8c1MD55open access11323/7677oai:repositorio.cuc.edu.co:11323/76772023-12-14 15:39:48.613CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==