Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales
In this research work, the energy modelling of a photovoltaic pumping system for rural areas is developed, taking as a case study the village of Aguada de Pablo, Atlántico. In the document you will find the design, sizing and selection of components of the pump system and the solar photovoltaic syst...
- Autores:
-
Ruiz Logreira, Dairo Miguel
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8176
- Acceso en línea:
- https://hdl.handle.net/11323/8176
https://repositorio.cuc.edu.co/
- Palabra clave:
- Pump
Energy
Production
Solar
Control
Operation
Maintenance
Evaluation
Modelling
Energetic
NPC
LCOE
Bombeo
Energía
Generación
Solar
Control
Operación
Mantenimiento
Evaluación
Modelación
Energética
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_3e8fb2c60143611e6edd44aedbf4eb0a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8176 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
title |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
spellingShingle |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales Pump Energy Production Solar Control Operation Maintenance Evaluation Modelling Energetic NPC LCOE Bombeo Energía Generación Solar Control Operación Mantenimiento Evaluación Modelación Energética |
title_short |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
title_full |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
title_fullStr |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
title_full_unstemmed |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
title_sort |
Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales |
dc.creator.fl_str_mv |
Ruiz Logreira, Dairo Miguel |
dc.contributor.advisor.spa.fl_str_mv |
Grimaldo Guerrero, John Willian Silva Ortega, Jorge Iván |
dc.contributor.author.spa.fl_str_mv |
Ruiz Logreira, Dairo Miguel |
dc.subject.eng.fl_str_mv |
Pump Energy Production |
topic |
Pump Energy Production Solar Control Operation Maintenance Evaluation Modelling Energetic NPC LCOE Bombeo Energía Generación Solar Control Operación Mantenimiento Evaluación Modelación Energética |
dc.subject.spa.fl_str_mv |
Solar Control Operation Maintenance Evaluation Modelling Energetic NPC LCOE Bombeo Energía Generación Solar Control Operación Mantenimiento Evaluación Modelación Energética |
description |
In this research work, the energy modelling of a photovoltaic pumping system for rural areas is developed, taking as a case study the village of Aguada de Pablo, Atlántico. In the document you will find the design, sizing and selection of components of the pump system and the solar photovoltaic system, as well as the strategy of control, operation and maintenance of these and the cost-benefit evaluation of the project. Simulations were carried out in the HOMER Energy software in order to evaluate the technical-economic performance, such as the correct one of the system, so that it can effectively validate its purpose and applicability. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-04-22T16:48:57Z |
dc.date.available.none.fl_str_mv |
2021-04-22T16:48:57Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Ruiz, D. (2021) Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/8176 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8176 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Ruiz, D. (2021) Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/8176 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8176 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ali, B. (2018). Comparative assessment of the feasibility for solar irrigation pumps in Sudan. Renewable and Sustainable Energy Reviews, 81(May 2017), 413–420. https://doi.org/10.1016/j.rser.2017.08.008 Amerisolar. (2015). Paneles Solares Transparentes. Retrieved March 15, 2020, from https://es.weamerisolar.eu/best-solar-panels/transparent-solar-panels/ Amerisolar. (2019). What is the difference between monocrystalline and polycrystalline solar panels. Retrieved October 31, 2019, from https://www.weamerisolar.eu/the-differencebetween-monocrystalline-and-polycrystalline-solar-panels/ Barata Carrelo Isaac, Almeida Hogan Rita, Narvarte Luis, M.-M. F. and C. L. M. (2019). Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the mediterranean region, 145, 2671–2682. Retrieved from https://doi.org/10.1016/j.renene.2019.08.030 Barrueto-Guzmán, A., Barraza-Vicencio, R., Ardila-Rey, J. A., Núñez-Ahumada, E., González-Araya, A., & Arancibia-Moreno, G. (2018). A cost-effective methodology for sizing solar pv systems for existing irrigation facilities in chile. Energies, 11(7), 1873. https://doi.org/10.3390/en11071853 Bey, M., Hamidat, A., Benyoucef, B., & Nacer, T. (2016). Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms. Renewable and Sustainable Energy Reviews, 63, 333–345. https://doi.org/10.1016/j.rser.2016.05.066 Blanco, E., Veladre, S., & Fernandez, J. (1994). Sistemas de bombeo. Gijón, España: Universidad de Oviedo. Retrieved from https://agasca.net/wpcontent/uploads/2018/08/PDF_SistemasdeBombeo2.pdf Bonduelle, G., & Muneret, X. (2000). VRLA batteries in telecom application: AGM or gel? TELESCON 2000 - 3rd International Telecommunications Energy Special Conference, Proceedings, 75–79. https://doi.org/10.1109/TELESC.2000.918408 Brackett, C. A. (1990). Dense Wavelength Division Multiplexing Networks: Principles and Applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964. https://doi.org/10.1109/49.57798 Brunini, R. G., Da Silva, A. B., De Paula, V. R., & De Oliveira, J. C. (2019). Economic analysis of photovoltaic energy in irrigating lettuce crops. Revista Brasileirade Ciencias Agrarias, 14(4). https://doi.org/10.5039/agraria.v14i4a6539 Businesswire. (2010). Evergreen Solar lanza los paneles solares String Ribbon TM certificados para instalaciones costeras en la feria solar Genera en Madrid ( España ) Director de Comunicaciones de Marketing. Retrieved February 27, 2020, from https://www.businesswire.com/news/home/20100519005896/es/ Cengel, Y. A., & Cimbala, J. M. (2012). Mecánica de Fluidos: fundamentos y aplicaciones. Statewide Agricultural Land Use Baseline 2015 (primera, Vol. 1). Mc Graw-Hill. Chandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084–1099. https://doi.org/10.1016/j.rser.2015.04.083 Chen, J., Liu, Y., & Wang, L. (2019). Research on coupling coordination development for photovoltaic agriculture system in China. Sustainability (Switzerland), 11(4). https://doi.org/10.3390/su11041065 Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16(8), 427–431. https://doi.org/10.1016/j.tplants.2011.03.011 Chilundo, R. J., Maúre, G. A., & Mahanjane, U. S. (2019). Dynamic mathematical model design of photovoltaic water pumping systems for horticultural crops irrigation: A guide to electrical energy potential assessment for increase access to electrical energy. Journal of Cleaner Production, 238. https://doi.org/10.1016/j.jclepro.2019.117878 Chilundo, R. J., Neves, D., & Mahanjane, U. S. (2019). Photovoltaic water pumping systems for horticultural crops irrigation: Advancements and opportunities towards a green energy strategy for Mozambique. Sustainable Energy Technologies and Assessments, 33(January), 61–68. https://doi.org/10.1016/j.seta.2019.03.004 Čotar, A. (2012). Photovoltaic systems. Retrieved from http://www.irenaistra.hr/uploads/media/Photovoltaic_systems.pdf DANE. (2020). Boletín Técnico: Producto Interno Bruto (PIB) IV Trimestre de 2019. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_produci on_y_gasto.pdf De las Heras, S. (2011). Fluidos, bombas e instalaciones hidráulicas. Universidat Politécnica de Catalunya. Retrieved from https://upcommons.upc.edu/bitstream/handle/2099.3/36653/9788476538937.pdf Departamento Nacional de Planeación (DNP). Plan Nacional de Desarrollo (Ley 1955) (2019). Colombia. Retrieved from http://www.andi.com.co/Uploads/LEY 1955 DEL 25 DE MAYO DE 2019_1 PLAN NACIONAL DE DESARROLLO 2.pdf Dias, L., Gouveia, J. P., Lourenço, P., & Seixas, J. (2019). Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy, 81(November 2018), 725–735. https://doi.org/10.1016/j.landusepol.2018.11.036 Dinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024 Elkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management, 196(August), 1453–1478. https://doi.org/10.1016/j.enconman.2019.06.085 Evergreen Solar. (2009). ES-A SERIES photovoltaic panels. Retrieved from https://www.evergreensolar.com/upload/MAY 2009 NEW LITERATURE/English (US)/US_Datasheet_010609_Lo.pdf Farfan, J., Lohrmann, A., & Breyer, C. (2019). Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution. Renewable and Sustainable Energy Reviews, 110(April), 368–377. https://doi.org/10.1016/j.rser.2019.04.084 Figgis, B., & Abdallah, A. (2019). Investigation of PV yield differences in a desert climate, 194(April), 136–140. https://doi.org/10.1016/j.solener.2019.10.044 Gao, X., Liu, J., Zhang, J., Yan, J., Bao, S., Xu, H., & Qin, T. (2013). Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Applied Energy, 105, 182–193. https://doi.org/10.1016/j.apenergy.2012.11.074 Gérenton, F., Eymard, J., Harrison, S., Clerc, R., & Muñoz, D. (2020). Analysis of edge losses on silicon heterojunction half solar cells. Solar Energy Materials and Solar Cells, 204(March 2019). https://doi.org/10.1016/j.solmat.2019.110213 Gobernación del atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132. Retrieved from http://www.atlantico.gov.co/images/stories/plan_desarrollo/plan_de_desarrollo_2016_2 016_definitivo.pdf%0Ahttp://cdim.esap.edu.co/BancoMedios/Documentos PDF/pd - fonseca - la guajira - formulación general - 2004 - 2007 (132 pag - 302 kb).pdf Gobernación del Atlántico. (2016). Sur del atlántico, una nueva oportunidad. Unidad Nacional para la Gestión del Riesgo de Desastres. Retrieved from http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/20493 Goetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy. Freiburgo: Harwood Academic Publishers GmbH. https://doi.org/10.1080/01425918208909875 Green Yellow. (2019). Monitoreo y mantenimiento de plantas solares. Exposolar. Retrieved from https://feriaexposolar.com/wp-content/uploads/2019/09/Presentacion-ExposolarMonitoreo-PV-Julio-2019.pdf GRUNDFOS. (2020). Bombas de carcasa bipartida. Retrieved March 8, 2020, from https://mx.grundfos.com/products/find-product/kp-kpv1.html Guzmán-Hernández, T. D. J., Araya-Rodríguez, F., Castro-Badilla, G., & Obando-Ulloa, J. M. (2016). Uso de la energía solar en sistemas de producción agropecuaria: producción más limpia y eficiencia energética. Revista Tecnología En Marcha, 29(8), 46. https://doi.org/10.18845/tm.v29i8.2984 Han, C., Liu, J., Liang, H., Guo, X., & Li, L. (2013). An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater. Journal of Environmental Sciences (China), 25(2), 274–279. https://doi.org/10.1016/S1001- 0742(12)60034-5 Hassan, W., & Kamran, F. (2018). A hybrid PV/utility powered irrigation water pumping system for rural agricultural areas. Cogent Engineering, 5(1), 1–15. https://doi.org/10.1080/23311916.2018.1466383 Hassanien, R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095 Hernández-Delgado, P. M. (2015). El mango : Generalidades. Canarias, España. Retrieved from https://www.icia.es/icia/download/noticias/CharlaMango.pdf Hicks, T. G. (1998). Bombas: su selección y aplicación. México: CIA EDITORIAL CONTINENTAL S.A. Retrieved from https://es.scribd.com/doc/220279833/Bombasby-Hicks-s HOMER. (2019). Operating cost. Retrieved May 8, 2020, from https://www.homerenergy.com/products/pro/docs/latest/operating_cost.html Howden, N. J. K., Burt, T. P., Worrall, F., Mathias, S., & Whelan, M. J. (2011). Nitrate pollution in intensively farmed regions: What are the prospects for sustaining highquality groundwater? Water Resources Research, 47(11), 1–13. https://doi.org/10.1029/2011WR010843 ICONTEC. (1998). Código Eléctrico Colombiano: NTC 2050. Código Eléctrico Colombiano. Instituto Colombiano de Normas Técnicas y Certificación. Retrieved from https://www.idrd.gov.co/sitio/idrd/sites/default/files/imagenes/ntc 20500.pdf ICONTEC. (2004). NTC 4552: Protección contra Rayos. ICONTEC. Retrieved from http://tienda.icontec.org/brief/NTC4552.pdf ICONTEC. (2008a). NTC 4552-1: Protección contra descargas eléctricas atmosféricas (Rayos). Parte 1: Principios generales. Ntc 4552 (Vol. Primera Ac). ICONTEC. Retrieved from https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC gQFjAA&url=http://destec-corp.com/download/49/&ei=0K0MU8- TMunP0wGH3YDIAg&usg=AFQjCNHQ0-NlAqn70czwB_akBRquWXtjwQ&cad=rja ICONTEC. (2008b). NTC 4552-3: Protección Contra Descargas Eléctricas Atmosféricas (Rayos). Parte 3: Daños Físicos a Estructuras Y Amenazas a La Vida. Ntc. ICONTEC. Retrieved from http://tienda.icontec.org/brief/NTC4552-3.pdf IEEE Power Engineering Society. (2000). IEEE Std 80-2000: Guide for Safety in AC Substation Grounding. Group (Vol. 2000). https://doi.org/10.1109/IEEESTD.2000.91902 Ingersoll-Rand. (1984). Cameron hydraulic data. (C. . Westaway & A. . Loomis, Eds.), Water. Nueva Jersey. Ito, M., & Gerritsen, E. (2016). Geographical mapping of the performance of vertically installed bifacial modules., (june), 1–35. Retrieved from https://www.researchgate.net/publication/305140702_Geographical_Mapping_of_the_P erformance_of_Vertically_Installed_Bifacial_Modules Jones, M. A., Odeh, I., Haddad, M., Mohammad, A. H., & Quinn, J. C. (2016). Economic analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture. Desalination, 387, 35–45. https://doi.org/10.1016/j.desal.2016.02.035 Karami Rad, M., Omid, M., Alimardani, R., & Mousazadeh, H. (2017). A novel application of stand-alone photovoltaic system in agriculture: solar-powered Microner sprayer. International Journal of Ambient Energy, 38(1), 69–76. https://doi.org/10.1080/01430750.2015.1035800 Khatib, T., Saleh, A., Eid, S., & Salah, M. (2019). Rehabilitation of Mauritanian oasis using an optimal photovoltaic based irrigation system. Energy Conversion and Management, 199(August), 111984. https://doi.org/10.1016/j.enconman.2019.111984 Kondili, E. (2010). Design and performance optimisation of stand-alone and hybrid wind energy systems. Stand-Alone and Hybrid Wind Energy System, 81–101. https://doi.org/10.1533/9781845699628.1.81 Lane, A. L., Boork, M., & Thollander, P. (2019). Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture. Energies, 12(18). https://doi.org/10.3390/en12183568 Liu, W., Liu, L., Guan, C., Zhang, F., Li, M., Lv, H., … Ingenhoff, J. (2018). A novel agricultural photovoltaic system based on solar spectrum separation. Solar Energy, 162(November 2017), 84–94. https://doi.org/10.1016/j.solener.2017.12.053 Liu, Z. (2014). China’s first photovoltaic and farming-integrated distributed photovoltaic power generation project connected to the grid. Retrieved from http://report.hebei.com.cn/system/2014/08/05/013771765.shtml López-Avendaño, J. E. (1987). Necesidades hídricas de los cultivos. Simposio sobre necesidades hídricas de los cultivos y su almacenamiento, AERYD. Retrieved from http://www.buyteknet.info/fileshare/data/analisis_lect/blanney.pdf Marucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., & Cappuccini, A. (2012). The semitransparent photovoltaic films for Mediterranean greenhouse: A new sustainable technology. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/451934 MAYRESA. (2020). Bombas Centrífugas. Retrieved March 7, 2020, from https://www.bombasparaagua.com.mx/bombas-centrifugas.html Mercado-Javier, J., Rico-Ponce, H. R., Miranda-Salcedo, M. A., Teniente-Oviedo, R., & Treviño-De La Fuente, C. A. (2011). El manejo del riego en las plantaciones de mango de Michoacán. Apatzingán, Michoacán, Mexico: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias - INIFAP. Retrieved from http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/3457 Ministerio de Agricultura de Colombia. (2017). “Solo el 20% de los cultivos en el país tienen algún sistema de riego.” Retrieved November 28, 2019, from https://www.minagricultura.gov.co/noticias/Paginas/“Solo-el-20-de-los-cultivos-en-elpaís-tienen-algún-sistema-de-riego”-Ministro-Iragorri.aspx Ministerio de Minas y Energía. (2013). Reglamento Técnico de Instalaciones Eléctricas (RETIE). Resolucion 9-0708. Bogotá D.C. Retrieved from https://www.minenergia.gov.co/documents/10180/1179442/Anexo+General+del+RETI E+vigente+actualizado+a+2015-1.pdf/57874c58-e61e-4104-8b8c-b64dbabedb13 Moretti, S., & Marucci, A. (2019). A photovoltaic greenhouse with variable shading for the optimization of agricultural and energy production. Energies, 12(13). https://doi.org/10.3390/en12132589 ONU. (2015). Ciudades y comunidades sostenibles. Retrieved February 21, 2020, from https://www.un.org/sustainabledevelopment/es/cities/ Ortiz Anaya, H. (2002). Analisis financiero aplicado. Universidad Externado de colombia (Vol. 52). Ould-Amrouche, S., Rekioua, D., & Hamidat, A. (2010). Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential. Applied Energy, 87(11), 3451–3459. https://doi.org/10.1016/j.apenergy.2010.05.021 PEDROLLO. (2019). Catalogo de electrobombas. Retrieved from https://www.pedrollo.com/es/productos Perea, R. G., García, A. M., García, I. F., Poyato, E. C., Montesinos, P., & Díaz, J. A. R. (2019). Middleware to operate smart photovoltaic irrigation systems in real time. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071508 Petroselli, A., Biondi, P., Colantoni, A., Monarca, D., Cecchini, M., Marucci, A., & Sirio, C. (2012). Photovoltaic pumps: Technical and practical aspects for applications in agriculture. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/343080 Pumps & systems. (2020). Pump Maintenance in 7 Easy Steps. Retrieved January 9, 2020, from https://www.pumpsandsystems.com/sponsored/pump-maintenance-7-easy-steps PV EASY. (2018). HALF-CUT CELL PANELS. Retrieved May 27, 2020, from https://www.pveasy.com.au/blog/2018/7/panels-with-half-cut-cells Ramirez, C. F. (2003). Subestaciones de alta y extra alta tensión (segunda). Mejia Villegas S.A - Ingenieros Consultores. Reichelstein, S., & Yorston, M. (2013). The prospects for cost competitive solar PV power. Energy Policy, 55, 117–127. https://doi.org/10.1016/j.enpol.2012.11.003 Rodríguez-gallegos, C. D., Bieri, M., Gandhi, O., Prakash, J., Reindl, T., & Panda, S. K. (2018). Monofacial vs bifacial Si-based PV modules : Which one is more costeffective ? Solar Energy, 176(October), 412–438. https://doi.org/10.1016/j.solener.2018.10.012 Rösch, P. (2015). Hidráulica en tuberías a presión. Retrieved from https://www.academia.edu/9948221/HIDRÁULICA_EN_TUBERÍAS_A_PRESIÓN_T UBERÍAS_A_PRESIÓN Rubio-Aliaga, García-Cascales, M. S., Sánchez-Lozano, J. M., & Molina-García, A. (2019). Multidimensional analysis of groundwater pumping for irrigation purposes: Economic, energy and environmental characterization for PV power plant integration. Renewable Energy, 138, 174–186. https://doi.org/10.1016/j.renene.2019.01.077 SENA. (1999). Operación y Mantenimiento de Pozos Profundos para Acueductos. Cali, Colombia. Sistema de Documentación e Información Municipal de Colombia. (2017). Relaciones espaciales del entorno urbano regional. Retrieved from http://cdim.esap.edu.co/BancoMedios/Documentos PDF/funcion_espacial_sabanalarga_(95_pag_191_kb).pdf Smets, A., Jager, K., Isabella, O., Van Swaaij, R., & Zeman, M. (2016). Solar energy: the physics and engineering of photovoltaic conversion technologies and systems. UIT Cambridge LTD. Sonneveld, P. J., Swinkels, G. L. A. M., Tuijl, B. A. J. va., Janssen, H. J. J., Campen, J., & Bot, G. P. A. (2011). Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses. Solar Energy, 85(3), 432–442. https://doi.org/10.1016/j.solener.2010.12.001 Sotelo-Ávila, G. (1994). Hidraúlica General (Primera). LIMUSA NORIEGA Editores. STATISTA. (2018). Electricity prices around the world 2018. Retrieved July 19, 2020, from https://es.statista.com/estadisticas/635212/precios-de-la-electricidad-en-determinadospaises/ Y https://www.statista.com/statistics/478005/global-levelized-electricity-costprediction-by-country/ Tantichanakul, T., Chailapakul, O., & Tantavichet, N. (2011). Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions. Journal of Power Sources, 196(20), 8764–8772. https://doi.org/10.1016/j.jpowsour.2011.05.080 Todde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L. (2019). Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Science of the Total Environment, 651, 2514–2523. https://doi.org/10.1016/j.scitotenv.2018.10.175 U.S. Department of Energy. (2015). The Five-Step Development Process Step 5: Project Operations and Maintenance. Retrieved from https://www.energy.gov/sites/prod/files/2015/09/f26/7a -Step5-OperationsMaintenance.pdf UNESCO. (2010). Llegar a los marginados: Informe de seguimiento de la EPT en el mundo. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000187865 Universidad de la Republica de Uruguay. (2015). Necesidades hídricas de los Cultivos. Retrieved from http://www.fagro.edu.uy/~hidrologia/riego/Necesidades hidricas de Cultivos intensivos2015.pdf Vernia, V. (2018). Bombeo Solar: tecnología fotovoltaica. Retrieved from http://www.fisica.uji.es/priv/web master SIH007/treballs 2017/Bombeo solar_trabajo.pdf Victron Energy. (2014). Baterías Gel y AGM. Retrieved from http://www.technosun.com/es/descargas/VICTRON-MONOBLOCK-GEL-AGM-ficharev07-ES.pdf Viejo-Zubicaray, M., & Álvares-Fernández, J. (2003). Bombas: teoría, diseño y aplicaciones. Desafíos del periodismo en la sociedad del conocimiento (tercera). LIMUSA NORIEGA Editore. https://doi.org/10.4000/books.eunrn.842 Wang, L., Wang, Y., & Chen, J. (2019). Assessment of the ecological niche of photovoltaic agriculture in China. Sustainability (Switzerland), 11(8), 1–17. https://doi.org/10.3390/su11082268 Wang, Y., Niu, H., Yang, L., Wang, W., & Liu, F. (2018). An optimization method for local consumption of photovoltaic power in a facility agriculture micro energy network. Energies, 11(6). https://doi.org/10.3390/en11061503 Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 1–20. https://doi.org/10.1007/s13593- 019-0581-3 Wettstein, S., Muir, K., Scharfy, D., & Stucki, M. (2017). The environmental mitigation potential of photovoltaic-powered irrigation in the production of South African Maize. Sustainability (Switzerland), 9(10). https://doi.org/10.3390/su9101772 WSP. (2019). Technical Overview of Bifacial Modules: A Canadian Perspective. Retrieved from https://solarcanadaconference.ca/wp-content/uploads/2019/05/TechnicalOverview-of-Bi-Facial-Photovoltaic-Modules.pdf XM. (2019). Comunicado de crecimiento de la demanda de la región caribe. Retrieved September 19, 2019, from http://www.xm.com.co/corporativo/Paginas/sala-deprensa/comunicados.aspx Xue, J. (2017). Photovoltaic agriculture - New opportunity for photovoltaic applications in China. Renewable and Sustainable Energy Reviews, 73(January), 1–9. https://doi.org/10.1016/j.rser.2017.01.098 Yangtze Solar Power. (2018). Transparent & BIPV Solar Panel. Retrieved March 20, 2020, from https://www.yangtze-solar.com/product/219.html Yano, A., Onoe, M., & Nakata, J. (2014). Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosystems Engineering, 122, 62–73. https://doi.org/10.1016/j.biosystemseng.2014.04.003 Zaki, A. M., & Eskander, M. N. (1996). Matching of photovolatic motor-pump systems for maximum efficiency operation. Renewable Energy, 7(3), 279–288. https://doi.org/https://doi.org/10.1016/0960-1481(95)00133-6 Zambon, I., Cecchini, M., Mosconi, E. M., & Colantoni, A. (2019). Revolutionizing towards sustainable agricultural systems: The role of energy. Energies, 12(19), 1–11. https://doi.org/10.3390/en12193659 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Eléctrica |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a12ae5ca-37c5-466c-b2fa-d9e8a78acc38/download https://repositorio.cuc.edu.co/bitstreams/ee52c384-0fc8-4341-a37a-6695a3c4ce9e/download https://repositorio.cuc.edu.co/bitstreams/476fc9a0-48e7-4946-b5d0-def9e1a3ce90/download https://repositorio.cuc.edu.co/bitstreams/a6bc4bbb-c07b-405c-935c-a7493ad91268/download https://repositorio.cuc.edu.co/bitstreams/31ee6207-2b28-4da3-ab55-0060ca88db12/download |
bitstream.checksum.fl_str_mv |
ae096cad9d09db2532ae2324f536f162 934f4ca17e109e0a05eaeaba504d7ce4 e30e9215131d99561d40d6b0abbe9bad 6e3d6d7d31ddfa4d30a91fdbda99b4f9 0ec541283b0d0e02b0a02035b62b587f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760755077283840 |
spelling |
Grimaldo Guerrero, John WillianSilva Ortega, Jorge IvánRuiz Logreira, Dairo Miguel2021-04-22T16:48:57Z2021-04-22T16:48:57Z2021Ruiz, D. (2021) Modelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/8176https://hdl.handle.net/11323/8176Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this research work, the energy modelling of a photovoltaic pumping system for rural areas is developed, taking as a case study the village of Aguada de Pablo, Atlántico. In the document you will find the design, sizing and selection of components of the pump system and the solar photovoltaic system, as well as the strategy of control, operation and maintenance of these and the cost-benefit evaluation of the project. Simulations were carried out in the HOMER Energy software in order to evaluate the technical-economic performance, such as the correct one of the system, so that it can effectively validate its purpose and applicability.En el presente trabajo de investigación se desarrollará la modelación energética de un sistema de bombeo fotovoltaico para zonas rurales, tomando como caso de estudio el corregimiento de Aguada de Pablo, Atlántico. En el documento se encontrará el diseño, dimensionamiento y selección de componentes del sistema de bombeo y el sistema solar fotovoltaico, así como la estrategia de control, operación y mantenimiento de estos y la evaluación de costo-beneficio del proyecto. Se realizaron simulaciones en el software HOMER Energy con la finalidad de evaluar el rendimiento técnico-económico, así como el correcto funcionamiento del sistema, de modoRuiz Logreira, Dairo Miguel-f2b9c4707e22464e3b086770e214dc53-0application/pdfspaCorporación Universidad de la CostaIngeniería EléctricaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PumpEnergyProductionSolarControlOperationMaintenanceEvaluationModellingEnergeticNPCLCOEBombeoEnergíaGeneraciónSolarControlOperaciónMantenimientoEvaluaciónModelaciónEnergéticaModelación energética de un sistema de bombeo solar fotovoltaico para zonas ruralesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAli, B. (2018). Comparative assessment of the feasibility for solar irrigation pumps in Sudan. Renewable and Sustainable Energy Reviews, 81(May 2017), 413–420. https://doi.org/10.1016/j.rser.2017.08.008Amerisolar. (2015). Paneles Solares Transparentes. Retrieved March 15, 2020, from https://es.weamerisolar.eu/best-solar-panels/transparent-solar-panels/Amerisolar. (2019). What is the difference between monocrystalline and polycrystalline solar panels. Retrieved October 31, 2019, from https://www.weamerisolar.eu/the-differencebetween-monocrystalline-and-polycrystalline-solar-panels/Barata Carrelo Isaac, Almeida Hogan Rita, Narvarte Luis, M.-M. F. and C. L. M. (2019). Comparative analysis of the economic feasibility of five large-power photovoltaic irrigation systems in the mediterranean region, 145, 2671–2682. Retrieved from https://doi.org/10.1016/j.renene.2019.08.030Barrueto-Guzmán, A., Barraza-Vicencio, R., Ardila-Rey, J. A., Núñez-Ahumada, E., González-Araya, A., & Arancibia-Moreno, G. (2018). A cost-effective methodology for sizing solar pv systems for existing irrigation facilities in chile. Energies, 11(7), 1873. https://doi.org/10.3390/en11071853Bey, M., Hamidat, A., Benyoucef, B., & Nacer, T. (2016). Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms. Renewable and Sustainable Energy Reviews, 63, 333–345. https://doi.org/10.1016/j.rser.2016.05.066Blanco, E., Veladre, S., & Fernandez, J. (1994). Sistemas de bombeo. Gijón, España: Universidad de Oviedo. Retrieved from https://agasca.net/wpcontent/uploads/2018/08/PDF_SistemasdeBombeo2.pdfBonduelle, G., & Muneret, X. (2000). VRLA batteries in telecom application: AGM or gel? TELESCON 2000 - 3rd International Telecommunications Energy Special Conference, Proceedings, 75–79. https://doi.org/10.1109/TELESC.2000.918408Brackett, C. A. (1990). Dense Wavelength Division Multiplexing Networks: Principles and Applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964. https://doi.org/10.1109/49.57798Brunini, R. G., Da Silva, A. B., De Paula, V. R., & De Oliveira, J. C. (2019). Economic analysis of photovoltaic energy in irrigating lettuce crops. Revista Brasileirade Ciencias Agrarias, 14(4). https://doi.org/10.5039/agraria.v14i4a6539Businesswire. (2010). Evergreen Solar lanza los paneles solares String Ribbon TM certificados para instalaciones costeras en la feria solar Genera en Madrid ( España ) Director de Comunicaciones de Marketing. Retrieved February 27, 2020, from https://www.businesswire.com/news/home/20100519005896/es/Cengel, Y. A., & Cimbala, J. M. (2012). Mecánica de Fluidos: fundamentos y aplicaciones. Statewide Agricultural Land Use Baseline 2015 (primera, Vol. 1). Mc Graw-Hill.Chandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renewable and Sustainable Energy Reviews, 49, 1084–1099. https://doi.org/10.1016/j.rser.2015.04.083Chen, J., Liu, Y., & Wang, L. (2019). Research on coupling coordination development for photovoltaic agriculture system in China. Sustainability (Switzerland), 11(4). https://doi.org/10.3390/su11041065Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16(8), 427–431. https://doi.org/10.1016/j.tplants.2011.03.011Chilundo, R. J., Maúre, G. A., & Mahanjane, U. S. (2019). Dynamic mathematical model design of photovoltaic water pumping systems for horticultural crops irrigation: A guide to electrical energy potential assessment for increase access to electrical energy. Journal of Cleaner Production, 238. https://doi.org/10.1016/j.jclepro.2019.117878Chilundo, R. J., Neves, D., & Mahanjane, U. S. (2019). Photovoltaic water pumping systems for horticultural crops irrigation: Advancements and opportunities towards a green energy strategy for Mozambique. Sustainable Energy Technologies and Assessments, 33(January), 61–68. https://doi.org/10.1016/j.seta.2019.03.004Čotar, A. (2012). Photovoltaic systems. Retrieved from http://www.irenaistra.hr/uploads/media/Photovoltaic_systems.pdfDANE. (2020). Boletín Técnico: Producto Interno Bruto (PIB) IV Trimestre de 2019. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim19_produci on_y_gasto.pdfDe las Heras, S. (2011). Fluidos, bombas e instalaciones hidráulicas. Universidat Politécnica de Catalunya. Retrieved from https://upcommons.upc.edu/bitstream/handle/2099.3/36653/9788476538937.pdfDepartamento Nacional de Planeación (DNP). Plan Nacional de Desarrollo (Ley 1955) (2019). Colombia. Retrieved from http://www.andi.com.co/Uploads/LEY 1955 DEL 25 DE MAYO DE 2019_1 PLAN NACIONAL DE DESARROLLO 2.pdfDias, L., Gouveia, J. P., Lourenço, P., & Seixas, J. (2019). Interplay between the potential of photovoltaic systems and agricultural land use. Land Use Policy, 81(November 2018), 725–735. https://doi.org/10.1016/j.landusepol.2018.11.036Dinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024Elkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management, 196(August), 1453–1478. https://doi.org/10.1016/j.enconman.2019.06.085Evergreen Solar. (2009). ES-A SERIES photovoltaic panels. Retrieved from https://www.evergreensolar.com/upload/MAY 2009 NEW LITERATURE/English (US)/US_Datasheet_010609_Lo.pdfFarfan, J., Lohrmann, A., & Breyer, C. (2019). Integration of greenhouse agriculture to the energy infrastructure as an alimentary solution. Renewable and Sustainable Energy Reviews, 110(April), 368–377. https://doi.org/10.1016/j.rser.2019.04.084Figgis, B., & Abdallah, A. (2019). Investigation of PV yield differences in a desert climate, 194(April), 136–140. https://doi.org/10.1016/j.solener.2019.10.044Gao, X., Liu, J., Zhang, J., Yan, J., Bao, S., Xu, H., & Qin, T. (2013). Feasibility evaluation of solar photovoltaic pumping irrigation system based on analysis of dynamic variation of groundwater table. Applied Energy, 105, 182–193. https://doi.org/10.1016/j.apenergy.2012.11.074Gérenton, F., Eymard, J., Harrison, S., Clerc, R., & Muñoz, D. (2020). Analysis of edge losses on silicon heterojunction half solar cells. Solar Energy Materials and Solar Cells, 204(March 2019). https://doi.org/10.1016/j.solmat.2019.110213Gobernación del atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132. Retrieved from http://www.atlantico.gov.co/images/stories/plan_desarrollo/plan_de_desarrollo_2016_2 016_definitivo.pdf%0Ahttp://cdim.esap.edu.co/BancoMedios/Documentos PDF/pd - fonseca - la guajira - formulación general - 2004 - 2007 (132 pag - 302 kb).pdfGobernación del Atlántico. (2016). Sur del atlántico, una nueva oportunidad. Unidad Nacional para la Gestión del Riesgo de Desastres. Retrieved from http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/20493Goetzberger, A., & Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy. Freiburgo: Harwood Academic Publishers GmbH. https://doi.org/10.1080/01425918208909875Green Yellow. (2019). Monitoreo y mantenimiento de plantas solares. Exposolar. Retrieved from https://feriaexposolar.com/wp-content/uploads/2019/09/Presentacion-ExposolarMonitoreo-PV-Julio-2019.pdfGRUNDFOS. (2020). Bombas de carcasa bipartida. Retrieved March 8, 2020, from https://mx.grundfos.com/products/find-product/kp-kpv1.htmlGuzmán-Hernández, T. D. J., Araya-Rodríguez, F., Castro-Badilla, G., & Obando-Ulloa, J. M. (2016). Uso de la energía solar en sistemas de producción agropecuaria: producción más limpia y eficiencia energética. Revista Tecnología En Marcha, 29(8), 46. https://doi.org/10.18845/tm.v29i8.2984Han, C., Liu, J., Liang, H., Guo, X., & Li, L. (2013). An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater. Journal of Environmental Sciences (China), 25(2), 274–279. https://doi.org/10.1016/S1001- 0742(12)60034-5Hassan, W., & Kamran, F. (2018). A hybrid PV/utility powered irrigation water pumping system for rural agricultural areas. Cogent Engineering, 5(1), 1–15. https://doi.org/10.1080/23311916.2018.1466383Hassanien, R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095Hernández-Delgado, P. M. (2015). El mango : Generalidades. Canarias, España. Retrieved from https://www.icia.es/icia/download/noticias/CharlaMango.pdfHicks, T. G. (1998). Bombas: su selección y aplicación. México: CIA EDITORIAL CONTINENTAL S.A. Retrieved from https://es.scribd.com/doc/220279833/Bombasby-Hicks-sHOMER. (2019). Operating cost. Retrieved May 8, 2020, from https://www.homerenergy.com/products/pro/docs/latest/operating_cost.htmlHowden, N. J. K., Burt, T. P., Worrall, F., Mathias, S., & Whelan, M. J. (2011). Nitrate pollution in intensively farmed regions: What are the prospects for sustaining highquality groundwater? Water Resources Research, 47(11), 1–13. https://doi.org/10.1029/2011WR010843ICONTEC. (1998). Código Eléctrico Colombiano: NTC 2050. Código Eléctrico Colombiano. Instituto Colombiano de Normas Técnicas y Certificación. Retrieved from https://www.idrd.gov.co/sitio/idrd/sites/default/files/imagenes/ntc 20500.pdfICONTEC. (2004). NTC 4552: Protección contra Rayos. ICONTEC. Retrieved from http://tienda.icontec.org/brief/NTC4552.pdfICONTEC. (2008a). NTC 4552-1: Protección contra descargas eléctricas atmosféricas (Rayos). Parte 1: Principios generales. Ntc 4552 (Vol. Primera Ac). ICONTEC. Retrieved from https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC gQFjAA&url=http://destec-corp.com/download/49/&ei=0K0MU8- TMunP0wGH3YDIAg&usg=AFQjCNHQ0-NlAqn70czwB_akBRquWXtjwQ&cad=rjaICONTEC. (2008b). NTC 4552-3: Protección Contra Descargas Eléctricas Atmosféricas (Rayos). Parte 3: Daños Físicos a Estructuras Y Amenazas a La Vida. Ntc. ICONTEC. Retrieved from http://tienda.icontec.org/brief/NTC4552-3.pdfIEEE Power Engineering Society. (2000). IEEE Std 80-2000: Guide for Safety in AC Substation Grounding. Group (Vol. 2000). https://doi.org/10.1109/IEEESTD.2000.91902Ingersoll-Rand. (1984). Cameron hydraulic data. (C. . Westaway & A. . Loomis, Eds.), Water. Nueva Jersey.Ito, M., & Gerritsen, E. (2016). Geographical mapping of the performance of vertically installed bifacial modules., (june), 1–35. Retrieved from https://www.researchgate.net/publication/305140702_Geographical_Mapping_of_the_P erformance_of_Vertically_Installed_Bifacial_ModulesJones, M. A., Odeh, I., Haddad, M., Mohammad, A. H., & Quinn, J. C. (2016). Economic analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture. Desalination, 387, 35–45. https://doi.org/10.1016/j.desal.2016.02.035Karami Rad, M., Omid, M., Alimardani, R., & Mousazadeh, H. (2017). A novel application of stand-alone photovoltaic system in agriculture: solar-powered Microner sprayer. International Journal of Ambient Energy, 38(1), 69–76. https://doi.org/10.1080/01430750.2015.1035800Khatib, T., Saleh, A., Eid, S., & Salah, M. (2019). Rehabilitation of Mauritanian oasis using an optimal photovoltaic based irrigation system. Energy Conversion and Management, 199(August), 111984. https://doi.org/10.1016/j.enconman.2019.111984Kondili, E. (2010). Design and performance optimisation of stand-alone and hybrid wind energy systems. Stand-Alone and Hybrid Wind Energy System, 81–101. https://doi.org/10.1533/9781845699628.1.81Lane, A. L., Boork, M., & Thollander, P. (2019). Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture. Energies, 12(18). https://doi.org/10.3390/en12183568Liu, W., Liu, L., Guan, C., Zhang, F., Li, M., Lv, H., … Ingenhoff, J. (2018). A novel agricultural photovoltaic system based on solar spectrum separation. Solar Energy, 162(November 2017), 84–94. https://doi.org/10.1016/j.solener.2017.12.053Liu, Z. (2014). China’s first photovoltaic and farming-integrated distributed photovoltaic power generation project connected to the grid. Retrieved from http://report.hebei.com.cn/system/2014/08/05/013771765.shtmlLópez-Avendaño, J. E. (1987). Necesidades hídricas de los cultivos. Simposio sobre necesidades hídricas de los cultivos y su almacenamiento, AERYD. Retrieved from http://www.buyteknet.info/fileshare/data/analisis_lect/blanney.pdfMarucci, A., Monarca, D., Cecchini, M., Colantoni, A., Manzo, A., & Cappuccini, A. (2012). The semitransparent photovoltaic films for Mediterranean greenhouse: A new sustainable technology. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/451934MAYRESA. (2020). Bombas Centrífugas. Retrieved March 7, 2020, from https://www.bombasparaagua.com.mx/bombas-centrifugas.htmlMercado-Javier, J., Rico-Ponce, H. R., Miranda-Salcedo, M. A., Teniente-Oviedo, R., & Treviño-De La Fuente, C. A. (2011). El manejo del riego en las plantaciones de mango de Michoacán. Apatzingán, Michoacán, Mexico: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias - INIFAP. Retrieved from http://biblioteca.inifap.gob.mx:8080/jspui/handle/123456789/3457Ministerio de Agricultura de Colombia. (2017). “Solo el 20% de los cultivos en el país tienen algún sistema de riego.” Retrieved November 28, 2019, from https://www.minagricultura.gov.co/noticias/Paginas/“Solo-el-20-de-los-cultivos-en-elpaís-tienen-algún-sistema-de-riego”-Ministro-Iragorri.aspxMinisterio de Minas y Energía. (2013). Reglamento Técnico de Instalaciones Eléctricas (RETIE). Resolucion 9-0708. Bogotá D.C. Retrieved from https://www.minenergia.gov.co/documents/10180/1179442/Anexo+General+del+RETI E+vigente+actualizado+a+2015-1.pdf/57874c58-e61e-4104-8b8c-b64dbabedb13Moretti, S., & Marucci, A. (2019). A photovoltaic greenhouse with variable shading for the optimization of agricultural and energy production. Energies, 12(13). https://doi.org/10.3390/en12132589ONU. (2015). Ciudades y comunidades sostenibles. Retrieved February 21, 2020, from https://www.un.org/sustainabledevelopment/es/cities/Ortiz Anaya, H. (2002). Analisis financiero aplicado. Universidad Externado de colombia (Vol. 52).Ould-Amrouche, S., Rekioua, D., & Hamidat, A. (2010). Modelling photovoltaic water pumping systems and evaluation of their CO2 emissions mitigation potential. Applied Energy, 87(11), 3451–3459. https://doi.org/10.1016/j.apenergy.2010.05.021PEDROLLO. (2019). Catalogo de electrobombas. Retrieved from https://www.pedrollo.com/es/productosPerea, R. G., García, A. M., García, I. F., Poyato, E. C., Montesinos, P., & Díaz, J. A. R. (2019). Middleware to operate smart photovoltaic irrigation systems in real time. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071508Petroselli, A., Biondi, P., Colantoni, A., Monarca, D., Cecchini, M., Marucci, A., & Sirio, C. (2012). Photovoltaic pumps: Technical and practical aspects for applications in agriculture. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/343080Pumps & systems. (2020). Pump Maintenance in 7 Easy Steps. Retrieved January 9, 2020, from https://www.pumpsandsystems.com/sponsored/pump-maintenance-7-easy-stepsPV EASY. (2018). HALF-CUT CELL PANELS. Retrieved May 27, 2020, from https://www.pveasy.com.au/blog/2018/7/panels-with-half-cut-cellsRamirez, C. F. (2003). Subestaciones de alta y extra alta tensión (segunda). Mejia Villegas S.A - Ingenieros Consultores.Reichelstein, S., & Yorston, M. (2013). The prospects for cost competitive solar PV power. Energy Policy, 55, 117–127. https://doi.org/10.1016/j.enpol.2012.11.003Rodríguez-gallegos, C. D., Bieri, M., Gandhi, O., Prakash, J., Reindl, T., & Panda, S. K. (2018). Monofacial vs bifacial Si-based PV modules : Which one is more costeffective ? Solar Energy, 176(October), 412–438. https://doi.org/10.1016/j.solener.2018.10.012Rösch, P. (2015). Hidráulica en tuberías a presión. Retrieved from https://www.academia.edu/9948221/HIDRÁULICA_EN_TUBERÍAS_A_PRESIÓN_T UBERÍAS_A_PRESIÓNRubio-Aliaga, García-Cascales, M. S., Sánchez-Lozano, J. M., & Molina-García, A. (2019). Multidimensional analysis of groundwater pumping for irrigation purposes: Economic, energy and environmental characterization for PV power plant integration. Renewable Energy, 138, 174–186. https://doi.org/10.1016/j.renene.2019.01.077SENA. (1999). Operación y Mantenimiento de Pozos Profundos para Acueductos. Cali, Colombia.Sistema de Documentación e Información Municipal de Colombia. (2017). Relaciones espaciales del entorno urbano regional. Retrieved from http://cdim.esap.edu.co/BancoMedios/Documentos PDF/funcion_espacial_sabanalarga_(95_pag_191_kb).pdfSmets, A., Jager, K., Isabella, O., Van Swaaij, R., & Zeman, M. (2016). Solar energy: the physics and engineering of photovoltaic conversion technologies and systems. UIT Cambridge LTD.Sonneveld, P. J., Swinkels, G. L. A. M., Tuijl, B. A. J. va., Janssen, H. J. J., Campen, J., & Bot, G. P. A. (2011). Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses. Solar Energy, 85(3), 432–442. https://doi.org/10.1016/j.solener.2010.12.001Sotelo-Ávila, G. (1994). Hidraúlica General (Primera). LIMUSA NORIEGA Editores.STATISTA. (2018). Electricity prices around the world 2018. Retrieved July 19, 2020, from https://es.statista.com/estadisticas/635212/precios-de-la-electricidad-en-determinadospaises/ Y https://www.statista.com/statistics/478005/global-levelized-electricity-costprediction-by-country/Tantichanakul, T., Chailapakul, O., & Tantavichet, N. (2011). Gelled electrolytes for use in absorptive glass mat valve-regulated lead-acid (AGM VRLA) batteries working under 100% depth of discharge conditions. Journal of Power Sources, 196(20), 8764–8772. https://doi.org/10.1016/j.jpowsour.2011.05.080Todde, G., Murgia, L., Deligios, P. A., Hogan, R., Carrelo, I., Moreira, M., … Narvarte, L. (2019). Energy and environmental performances of hybrid photovoltaic irrigation systems in Mediterranean intensive and super-intensive olive orchards. Science of the Total Environment, 651, 2514–2523. https://doi.org/10.1016/j.scitotenv.2018.10.175U.S. Department of Energy. (2015). The Five-Step Development Process Step 5: Project Operations and Maintenance. Retrieved from https://www.energy.gov/sites/prod/files/2015/09/f26/7a -Step5-OperationsMaintenance.pdfUNESCO. (2010). Llegar a los marginados: Informe de seguimiento de la EPT en el mundo. Retrieved from https://unesdoc.unesco.org/ark:/48223/pf0000187865Universidad de la Republica de Uruguay. (2015). Necesidades hídricas de los Cultivos. Retrieved from http://www.fagro.edu.uy/~hidrologia/riego/Necesidades hidricas de Cultivos intensivos2015.pdfVernia, V. (2018). Bombeo Solar: tecnología fotovoltaica. Retrieved from http://www.fisica.uji.es/priv/web master SIH007/treballs 2017/Bombeo solar_trabajo.pdfVictron Energy. (2014). Baterías Gel y AGM. Retrieved from http://www.technosun.com/es/descargas/VICTRON-MONOBLOCK-GEL-AGM-ficharev07-ES.pdfViejo-Zubicaray, M., & Álvares-Fernández, J. (2003). Bombas: teoría, diseño y aplicaciones. Desafíos del periodismo en la sociedad del conocimiento (tercera). LIMUSA NORIEGA Editore. https://doi.org/10.4000/books.eunrn.842Wang, L., Wang, Y., & Chen, J. (2019). Assessment of the ecological niche of photovoltaic agriculture in China. Sustainability (Switzerland), 11(8), 1–17. https://doi.org/10.3390/su11082268Wang, Y., Niu, H., Yang, L., Wang, W., & Liu, F. (2018). An optimization method for local consumption of photovoltaic power in a facility agriculture micro energy network. Energies, 11(6). https://doi.org/10.3390/en11061503Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 1–20. https://doi.org/10.1007/s13593- 019-0581-3Wettstein, S., Muir, K., Scharfy, D., & Stucki, M. (2017). The environmental mitigation potential of photovoltaic-powered irrigation in the production of South African Maize. Sustainability (Switzerland), 9(10). https://doi.org/10.3390/su9101772WSP. (2019). Technical Overview of Bifacial Modules: A Canadian Perspective. Retrieved from https://solarcanadaconference.ca/wp-content/uploads/2019/05/TechnicalOverview-of-Bi-Facial-Photovoltaic-Modules.pdfXM. (2019). Comunicado de crecimiento de la demanda de la región caribe. Retrieved September 19, 2019, from http://www.xm.com.co/corporativo/Paginas/sala-deprensa/comunicados.aspxXue, J. (2017). Photovoltaic agriculture - New opportunity for photovoltaic applications in China. Renewable and Sustainable Energy Reviews, 73(January), 1–9. https://doi.org/10.1016/j.rser.2017.01.098Yangtze Solar Power. (2018). Transparent & BIPV Solar Panel. Retrieved March 20, 2020, from https://www.yangtze-solar.com/product/219.htmlYano, A., Onoe, M., & Nakata, J. (2014). Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosystems Engineering, 122, 62–73. https://doi.org/10.1016/j.biosystemseng.2014.04.003Zaki, A. M., & Eskander, M. N. (1996). Matching of photovolatic motor-pump systems for maximum efficiency operation. Renewable Energy, 7(3), 279–288. https://doi.org/https://doi.org/10.1016/0960-1481(95)00133-6Zambon, I., Cecchini, M., Mosconi, E. M., & Colantoni, A. (2019). Revolutionizing towards sustainable agricultural systems: The role of energy. Energies, 12(19), 1–11. https://doi.org/10.3390/en12193659PublicationORIGINALModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales.pdfModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales.pdfapplication/pdf3907004https://repositorio.cuc.edu.co/bitstreams/a12ae5ca-37c5-466c-b2fa-d9e8a78acc38/downloadae096cad9d09db2532ae2324f536f162MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/ee52c384-0fc8-4341-a37a-6695a3c4ce9e/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/476fc9a0-48e7-4946-b5d0-def9e1a3ce90/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales.pdf.jpgModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales.pdf.jpgimage/jpeg24000https://repositorio.cuc.edu.co/bitstreams/a6bc4bbb-c07b-405c-935c-a7493ad91268/download6e3d6d7d31ddfa4d30a91fdbda99b4f9MD54TEXTModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales.pdf.txtModelación energética de un sistema de bombeo solar fotovoltaico para zonas rurales.pdf.txttext/plain217939https://repositorio.cuc.edu.co/bitstreams/31ee6207-2b28-4da3-ab55-0060ca88db12/download0ec541283b0d0e02b0a02035b62b587fMD5511323/8176oai:repositorio.cuc.edu.co:11323/81762024-09-17 10:59:39.036http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |