Selecting electrical billing attributes: big data preprocessing improvements

The attribute selection is a very relevant activity of data preprocessing when discovering knowledge on databases. Its main objective is to eliminate irrelevant and/or redundant attributes to obtain computationally treatable issues, without affecting the quality of the solution. Various techniques a...

Full description

Autores:
Viloria, Amelec
García Guiliany, Jesús Enrique
Orellano Llinás, Nataly
Hernandez-P, Hugo
Steffens Sanabria, Ernesto
Pineda, Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7786
Acceso en línea:
https://hdl.handle.net/11323/7786
https://doi.org/10.1007/978-981-15-3125-5_44
https://repositorio.cuc.edu.co/
Palabra clave:
Electric billing
Concave programming
Data mining
Electric service billing
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_3d2df6d54cc73f5414753ea38701947c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7786
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Selecting electrical billing attributes: big data preprocessing improvements
title Selecting electrical billing attributes: big data preprocessing improvements
spellingShingle Selecting electrical billing attributes: big data preprocessing improvements
Electric billing
Concave programming
Data mining
Electric service billing
title_short Selecting electrical billing attributes: big data preprocessing improvements
title_full Selecting electrical billing attributes: big data preprocessing improvements
title_fullStr Selecting electrical billing attributes: big data preprocessing improvements
title_full_unstemmed Selecting electrical billing attributes: big data preprocessing improvements
title_sort Selecting electrical billing attributes: big data preprocessing improvements
dc.creator.fl_str_mv Viloria, Amelec
García Guiliany, Jesús Enrique
Orellano Llinás, Nataly
Hernandez-P, Hugo
Steffens Sanabria, Ernesto
Pineda, Omar
dc.contributor.author.spa.fl_str_mv Viloria, Amelec
García Guiliany, Jesús Enrique
Orellano Llinás, Nataly
Hernandez-P, Hugo
Steffens Sanabria, Ernesto
Pineda, Omar
dc.subject.spa.fl_str_mv Electric billing
Concave programming
Data mining
Electric service billing
topic Electric billing
Concave programming
Data mining
Electric service billing
description The attribute selection is a very relevant activity of data preprocessing when discovering knowledge on databases. Its main objective is to eliminate irrelevant and/or redundant attributes to obtain computationally treatable issues, without affecting the quality of the solution. Various techniques are proposed, mainly from two approaches: wrapper and ranking. This article evaluates a novel approach proposed by Bradley and Mangasarian (Machine learning ICML. Morgan Kaufmann, Sn Fco, CA, pp. 82–90, 1998 [1]) which uses concave programming for minimizing the classification error and the number of attributes required to perform the task. The technique is evaluated using the electric service billing database in Colombia. The results are compared against traditional techniques for evaluating: attribute reduction, processing time, discovered knowledge size, and solution quality.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-28T13:01:00Z
dc.date.available.none.fl_str_mv 2021-01-28T13:01:00Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7786
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-3125-5_44
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7786
https://doi.org/10.1007/978-981-15-3125-5_44
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Bradley P, Mangasarian O (1998) Feature selection via concave minimization and support vector machines. In: Shavlik J (ed) Machine learning ICML. Morgan Kaufmann, Sn Fco, CA, pp 82–90
2. Hu C, Du S, Su J et al (2016) Discussion on the ways of purchasing and selling electricity and the mode of operation in China’s electricity sales companies under the background of new electric power reform. Power Netw Technol 40(11):3293–3299
3. Xue Y, Lai Y (2016) The integration of great energy thinking and big datas thinking: big data and electricity big data. Power Syst Autom 40(1):1–8
4. Wang Y, Chen Q, Kang C et al (2017) Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans Smart Grid 7(5):2437–2447
5. Liu R, Feng G, Ding W (2011) Statistical analysis and application of SAS. China Machine Press, China
6. Ozger M, Cetinkaya O, Akan OB (2017) Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob Netw Appl 23(4):956–966
7. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN 8420540250
8. Mangasarian O (1997) Arbitrary-norm separating plane. Technical report 97-07, Computer Science Dept., Univ. Wisconsin Madison
9. Bradley P, Fayyad U, Mangasarian O (1999) Mathematical programming for data mining: formulations and challenges. INFORMS J Comput 11:217–238
10. Rahmani AM, Liljeberg P, Preden J, Jantsch A (2018) Fog computing in the internet of things. Springer, New York ISBN: 978-3-319-57638-1, ISBN: 978-3-319-57639-8 (eBook)
11. Gangurde HD (2014) Feature selection using clustering approach for big data. Int J Comput Appl Innov Trends Comput Commun Eng (ITCCE):1–3
12. Abualigah LM, Khader AT, Al-Beta MA, Alomari OA (2017) Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst Appl 84:24–36
13. Sanchez L, Vásquez C, Viloria A, Cmeza-estrada (2018) Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham
14. Sánchez L, Vásquez C, Viloria A, Rodríguez Potes L (2018) Greenhouse gases emissions and electric power generation in Latin American countries in the period 2006–2013. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham
15. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham
16. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–625
17. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–185
18. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36(2):1627–1637 (Preprint)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Electrical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-3125-5_44
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/85b637cc-434c-4794-ae4e-f04b1e75f2e4/download
https://repositorio.cuc.edu.co/bitstreams/693dab98-4135-4f41-95c6-a65958324acb/download
https://repositorio.cuc.edu.co/bitstreams/f11d28e6-2253-40e5-b576-ed4f32676c2b/download
https://repositorio.cuc.edu.co/bitstreams/61fc69e2-2bdb-4e1e-a922-5377002872d5/download
https://repositorio.cuc.edu.co/bitstreams/13f0575f-2f22-4eac-bb54-22eec553ec8a/download
bitstream.checksum.fl_str_mv 48da0c42f8b7d5baf12d7eaa24eab34c
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
26baa34b936c5599802a38baf75753fa
666911a5b5177003b0630e20392c55e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166884790370304
spelling Viloria, AmelecGarcía Guiliany, Jesús EnriqueOrellano Llinás, NatalyHernandez-P, HugoSteffens Sanabria, ErnestoPineda, Omar2021-01-28T13:01:00Z2021-01-28T13:01:00Z2020https://hdl.handle.net/11323/7786https://doi.org/10.1007/978-981-15-3125-5_44Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The attribute selection is a very relevant activity of data preprocessing when discovering knowledge on databases. Its main objective is to eliminate irrelevant and/or redundant attributes to obtain computationally treatable issues, without affecting the quality of the solution. Various techniques are proposed, mainly from two approaches: wrapper and ranking. This article evaluates a novel approach proposed by Bradley and Mangasarian (Machine learning ICML. Morgan Kaufmann, Sn Fco, CA, pp. 82–90, 1998 [1]) which uses concave programming for minimizing the classification error and the number of attributes required to perform the task. The technique is evaluated using the electric service billing database in Colombia. The results are compared against traditional techniques for evaluating: attribute reduction, processing time, discovered knowledge size, and solution quality.Viloria, AmelecGarcía Guiliany, Jesús Enrique-will be generated-orcid-0000-0003-3777-3667-600Orellano Llinás, NatalyHernandez-P, HugoSteffens Sanabria, ErnestoPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Electrical Engineeringhttps://link.springer.com/chapter/10.1007/978-981-15-3125-5_44Electric billingConcave programmingData miningElectric service billingSelecting electrical billing attributes: big data preprocessing improvementsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Bradley P, Mangasarian O (1998) Feature selection via concave minimization and support vector machines. In: Shavlik J (ed) Machine learning ICML. Morgan Kaufmann, Sn Fco, CA, pp 82–902. Hu C, Du S, Su J et al (2016) Discussion on the ways of purchasing and selling electricity and the mode of operation in China’s electricity sales companies under the background of new electric power reform. Power Netw Technol 40(11):3293–32993. Xue Y, Lai Y (2016) The integration of great energy thinking and big datas thinking: big data and electricity big data. Power Syst Autom 40(1):1–84. Wang Y, Chen Q, Kang C et al (2017) Clustering of electricity consumption behaviour dynamics toward big data applications. IEEE Trans Smart Grid 7(5):2437–24475. Liu R, Feng G, Ding W (2011) Statistical analysis and application of SAS. China Machine Press, China6. Ozger M, Cetinkaya O, Akan OB (2017) Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob Netw Appl 23(4):956–9667. Isasi P, Galván I (2004) Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson, London. ISBN 84205402508. Mangasarian O (1997) Arbitrary-norm separating plane. Technical report 97-07, Computer Science Dept., Univ. Wisconsin Madison9. Bradley P, Fayyad U, Mangasarian O (1999) Mathematical programming for data mining: formulations and challenges. INFORMS J Comput 11:217–23810. Rahmani AM, Liljeberg P, Preden J, Jantsch A (2018) Fog computing in the internet of things. Springer, New York ISBN: 978-3-319-57638-1, ISBN: 978-3-319-57639-8 (eBook)11. Gangurde HD (2014) Feature selection using clustering approach for big data. Int J Comput Appl Innov Trends Comput Commun Eng (ITCCE):1–312. Abualigah LM, Khader AT, Al-Beta MA, Alomari OA (2017) Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst Appl 84:24–3613. Sanchez L, Vásquez C, Viloria A, Cmeza-estrada (2018) Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham14. Sánchez L, Vásquez C, Viloria A, Rodríguez Potes L (2018) Greenhouse gases emissions and electric power generation in Latin American countries in the period 2006–2013. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham15. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Cham16. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, Switzerland, pp 618–62517. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging, June. Springer, Cham, pp 174–18518. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 36(2):1627–1637 (Preprint)PublicationORIGINALSelecting electrical billing attributes big data preprocessing improvements.pdfSelecting electrical billing attributes big data preprocessing improvements.pdfapplication/pdf216211https://repositorio.cuc.edu.co/bitstreams/85b637cc-434c-4794-ae4e-f04b1e75f2e4/download48da0c42f8b7d5baf12d7eaa24eab34cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/693dab98-4135-4f41-95c6-a65958324acb/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f11d28e6-2253-40e5-b576-ed4f32676c2b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSelecting electrical billing attributes big data preprocessing improvements.pdf.jpgSelecting electrical billing attributes big data preprocessing improvements.pdf.jpgimage/jpeg31080https://repositorio.cuc.edu.co/bitstreams/61fc69e2-2bdb-4e1e-a922-5377002872d5/download26baa34b936c5599802a38baf75753faMD54TEXTSelecting electrical billing attributes big data preprocessing improvements.pdf.txtSelecting electrical billing attributes big data preprocessing improvements.pdf.txttext/plain1236https://repositorio.cuc.edu.co/bitstreams/13f0575f-2f22-4eac-bb54-22eec553ec8a/download666911a5b5177003b0630e20392c55e6MD5511323/7786oai:repositorio.cuc.edu.co:11323/77862024-09-17 14:21:59.616http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==