Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)

Modern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while t...

Full description

Autores:
Sagastume, Alexis
MENDOZA FANDIÑO, JORGE MARIO
Cabello Eras, Juan José
SOFAN GERMAN, STIVEN JAVIER
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9054
Acceso en línea:
https://hdl.handle.net/11323/9054
https://doi.org/10.1016/j.deveng.2022.100093
https://repositorio.cuc.edu.co/
Palabra clave:
Renewable energy
Anaerobic digestion
Biomass wastes
Firewood
Rights
openAccess
License
© 2022 The Authors. Published by Elsevier Ltd.
id RCUC2_3d2232508cb64242349435643d8037d4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9054
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
title Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
spellingShingle Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
Renewable energy
Anaerobic digestion
Biomass wastes
Firewood
title_short Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
title_full Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
title_fullStr Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
title_full_unstemmed Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
title_sort Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
dc.creator.fl_str_mv Sagastume, Alexis
MENDOZA FANDIÑO, JORGE MARIO
Cabello Eras, Juan José
SOFAN GERMAN, STIVEN JAVIER
dc.contributor.author.spa.fl_str_mv Sagastume, Alexis
MENDOZA FANDIÑO, JORGE MARIO
Cabello Eras, Juan José
SOFAN GERMAN, STIVEN JAVIER
dc.subject.proposal.eng.fl_str_mv Renewable energy
Anaerobic digestion
Biomass wastes
Firewood
topic Renewable energy
Anaerobic digestion
Biomass wastes
Firewood
description Modern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while two million people have either intermittent access or no access to electricity. This is particularly important in the department of Cordoba, where an average of 32% of the households relies on firewood for cooking, increasing to 66% of the households in rural areas. Furthermore, 20% of the rural population lack access to electricity. Therefore, this study aims at defining the biogas-based energy potential of the available agricultural and manure wastes in the department. To this end, governmental data is used to estimate the demand for firewood for cooking, the resulting GHG emissions, and the available agricultural and manure wastes. Overall, there are around 1.2 million t of agricultural wastes and 2.2 million t of manure yearly available in the department, representing an energy potential of 6687 TJ. Using 26% of the biogas-based energy potential identified suffices to support the 1334 TJ of biogas needed to replace cooking firewood and to supply the 390 TJ needed for household electricity generation. The use of biogas can reduce GHG emissions to 11% of the emissions resulting from cooking firewood. Polyethylene tubular digesters appear as the most indicated household technology, contrasted to geomembrane tubular digesters that need 2.4 times the initial capital investment while fixed dome digesters need 7.9 times the initial capital investment. Implementing household digesters to support the energy demand for cooking in the department, necessitates a minimum of 18 million USD, while the implementation of ‘digester + electric generator’ needs between 1.7 and 5.7 million USDdepending on the monthly demand of electricity of 60 kWh or 187 kWh.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-03-08T16:13:09Z
dc.date.available.none.fl_str_mv 2022-03-08T16:13:09Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2352-7285
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9054
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.deveng.2022.100093
dc.identifier.doi.spa.fl_str_mv 10.1016/j.deveng.2022.100093
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2352-7285
10.1016/j.deveng.2022.100093
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9054
https://doi.org/10.1016/j.deveng.2022.100093
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Development Engineering
dc.relation.references.spa.fl_str_mv Adeoti et al., 2014 O. Adeoti, T.A. Ayelegun, S.O. Osho Nigeria biogas potential from livestock manure and its estimated climate value Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2014.05.005
Bao et al., 2019 W. Bao, Y. Yang, T. Fu, G.H. Xie Estimation of Livestock Excrement and its Biogas Production Potential in China (2019), 10.1016/j.jclepro.2019.05.059
Bedi et al., 2017 A.S. Bedi, R. Sparrow, L. Tasciotti The impact of a household biogas programme on energy use and expenditure in East Java Energy Econ., 68 (2017), pp. 66-76, 10.1016/j.eneco.2017.09.006
Bhat et al., 2001 P.R. Bhat, H.N. Chanakya, N.H. Ravindranath Biogas plant dissemination: success story of Sirsi, India Energy Sustain. Dev., 5 (2001), pp. 39-46, 10.1016/S0973-0826(09)60019-3
BISON, 2021 BISON Biogas generator [WWW document] URL https://www.alibaba.com/product-detail/Biogas-Generator-1kw-BISON-CHINA-Small_1600341334722.html?spm=a2700.7724857.normal_offer.d_image.3a1f5a776lhaPR&s=p (2021), Accessed 18th Nov 2021
Bond and Templeton, 2011 T. Bond, M.R. Templeton History and future of domestic biogas plants in the developing world Energy Sustain. Dev. (2011), 10.1016/j.esd.2011.09.003
Bruun et al., 2014 S. Bruun, L.S. Jensen, V.T. Khanh Vu, S. Sommer Small-scale household biogas digesters: an option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev., 33 (2014), pp. 736-741, 10.1016/j.rser.2014.02.033
Carranza and Gutiérrez, 2012 J.Q. Carranza, C.C. Gutiérrez El fogón abierto de tres piedras en la península de Yucatán: tradición y transferencia tecnológica Rev. Pueblos y Front., 7 (2012), pp. 270-301
Castro et al., 2017 L. Castro, H. Escalante, J. Jaimes-Estévez, L.J. Díaz, K. Vecino, G. Rojas, L. Mantilla Low cost digester monitoring under realistic conditions: rural use of biogas and digestate quality Bioresour. Technol., 239 (2017), pp. 311-317, 10.1016/j.biortech.2017.05.035
Chakravarty and Tavoni, 2013 S. Chakravarty, M. Tavoni Energy poverty alleviation and climate change mitigation: is there a trade off? Energy Econ., 40 (2013), pp. 67-73, 10.1016/j.eneco.2013.09.022
CML - Department of Industrial Ecology, 2016 CML - Department of Industrial Ecology CML-IA Characterisation Factors [WWW Document]. C. is a database that Contain. characterisation factors life cycle impact Assess. is easily read by C. Softw. program (2016)
Consorcio Estrategia Rural Sostenible, 2019 Consorcio Estrategia Rural Sostenible Plan de sustitución progresiva de leña Bogotá, Colombia (2019)
Cornejo and Wilkie, 2010 C. Cornejo, A.C. Wilkie Greenhouse gas emissions and biogas potential from livestock in Ecuador Energy Sustain. Dev., 14 (2010), pp. 256-266, 10.1016/j.esd.2010.09.008
DANE, 2018 DANE Resultados del censo nacional de población y vivienda 2018 (2018) [WWW Document]. URL https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018, Accessed 9th Nov 2020
Delgado et al., 2020 R. Delgado, T.B. Wild, R. Arguello, L. Clarke, G. Romero Options for Colombia's mid-century deep decarbonization strategy Energy Strateg. Rev., 32 (2020), p. 100525, 10.1016/j.esr.2020.100525
Deng et al., 2020 L. Deng, Y. Liu, W. Wang Biogas Technology, Biogas Technology Springer, Singapore (2020), 10.1007/978-981-15-4940-3
Dhingra et al., 2011 R. Dhingra, E.R. Christensen, Y. Liu, B. Zhong, C.-F. Wu, M.G. Yost, J.V. Remais Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China Environ. Sci. Technol., 45 (2011), pp. 2345-2352, 10.1021/es103142y
Ding et al., 2012 W. Ding, H. Niu, J. Chen, J. Du, Y. Wu Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China Appl. Energy, 97 (2012), pp. 16-23, 10.1016/j.apenergy.2011.12.017
Dong et al., 2018 J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants Sci. Total Environ. J., 626 (2018), pp. 744-753, 10.1016/j.scitotenv.2018.01.151
Fan et al., 2011 J. Fan, Y. tian Liang, A. jun Tao, K. rong Sheng, H.L. Ma, Y. Xu, C.S. Wang, W. Sun Energy policies for sustainable livelihoods and sustainable development of poor areas in China Energy Pol., 39 (2011), pp. 1200-1212, 10.1016/j.enpol.2010.11.048
FAO, 2021 FAO Biogas Systems in Rwanda. A Critical Review FAO, Rome (2021), 10.4060/cb3409en
Ferrer-Martí et al., 2018 L. Ferrer-Martí, I. Ferrer, E. Sánchez, M. Garfí A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru Renew. Sustain. Energy Rev., 95 (2018), pp. 74-83, 10.1016/j.rser.2018.06.064
Figueroa et al., 2017 A. Figueroa, F. Boshell, L. Velzen van, A. Anisie Biogas for Domestic Cooking: Technology Brief (2017) Abu Dhabi
Flesch et al., 2011 T.K. Flesch, R.L. Desjardins, D. Worth Fugitive methane emissions from an agricultural biodigester Biomass Bioenergy, 35 (2011), pp. 3927-3935, 10.1016/j.biombioe.2011.06.009
Gaona et al., 2015 E.E. Gaona, C.L. Trujillo, J.A. Guacaneme Rural microgrids and its potential application in Colombia Renew. Sustain. Energy Rev., 51 (2015), pp. 125-137, 10.1016/j.rser.2015.04.176
Garfí et al., 2014 M. Garfí, E. Cadena, I. Pérez, I. Ferrer Technical, economic and environmental assessment of household biogas digesters for rural communities Renew. Energy, 62 (2014), pp. 313-318, 10.1016/j.renene.2013.07.017
Garfí et al., 2019 M. Garfí, L. Castro, N. Montero, H. Escalante, I. Ferrer Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: a life cycle assessment Bioresour. Technol., 274 (2019), pp. 541-548, 10.1016/j.biortech.2018.12.007
Garfí et al., 2012 M. Garfí, L. Ferrer-Martí, E. Velo, I. Ferrer Evaluating benefits of low-cost household digesters for rural Andean communities Renew. Sustain. Energy Rev., 16 (2012), pp. 575-581, 10.1016/j.rser.2011.08.023
GASNOVA, 2018 GASNOVA Reemplazar el consumo de leña , mediante la ampliación de la cobertura de gas licuado de petróleo (GLP) (2018)
Gómez-Navarro and Ribó-Pérez, 2018 T. Gómez-Navarro, D. Ribó-Pérez Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia Renew. Sustain. Energy Rev., 90 (2018), pp. 131-141, 10.1016/j.rser.2018.03.015
González-Eguino, 2015 M. González-Eguino Energy poverty: an overview Renew. Sustain. Energy Rev., 47 (2015), pp. 377-385, 10.1016/j.rser.2015.03.013
Gonzalez-Salazar et al., 2014a M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for estimating biomass energy potential and its application to Colombia Appl. Energy, 136 (2014), pp. 781-796, 10.1016/j.apenergy.2014.07.004
Gonzalez-Salazar et al., 2014b M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for biomass energy potential estimation: projections of future potential in Colombia Renew. Energy, 69 (2014), pp. 488-505, 10.1016/j.renene.2014.03.056
Gunnerson and Stuckey, 1986 C. Gunnerson, D. Stuckey Integrated Resource Recovery-Anaerobic digestion Principles and Practices for Biogas Systems (1986) Washington DC
Hijazi et al., 2019 O. Hijazi, S. Mettenleiter, M. Samer, E. Abdelsalam, J.G. Wiecha, K.L. Ziegler, H. Bernhardt Life cycle assessment of biogas production in small-scale in Columbia 2019 ASABE Annual International Meeting, ASABE, Boston (2019), pp. 2-9, 10.13031/aim.201900099
Hoffmann et al., 2018 C. Hoffmann, J.R. García Márquez, T. Krueger A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia Land Use Pol., 77 (2018), pp. 379-391, 10.1016/j.landusepol.2018.04.043
Hountalas and Mavropoulos, 2010 D. Hountalas, G. Mavropoulos Potential for improving HD diesel truck engine fuel consumption using exhaust heat recovery techniques New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (2010), 10.5772/10428
IDEAM, 2016 IDEAM Inventario nacional y departamental de gases efecto invernadero. Colombia Bogotá, Colombia (2016)
IDEAM, PNUD, 2016 IDEAM, PNUD Inventario nacional y departamental de gases efecto invernadero -Colombia Bogotá, Colombia (2016)
Ioannou-Ttofa et al., 2021 L. Ioannou-Ttofa, S. Foteinis, A. Seifelnasr Moustafa, E. Abdelsalam, M. Samer, D. Fatta-Kassinos Life cycle assessment of household biogas production in Egypt: influence of digester volume, biogas leakages, and digestate valorization as biofertilizer J. Clean. Prod., 286 (2021), p. 125468
Jegede et al., 2019 A.O. Jegede, G. Zeeman, H. Bruning A review of mixing, design and loading conditions in household anaerobic digesters Crit. Rev. Environ. Sci. Technol., 49 (2019), pp. 2117-2153, 10.1080/10643389.2019.1607441
Jelínek et al., 2021 M. Jelínek, J. Mazancová, D. Van Dung, L.D. Phung, J. Banout, H. Roubík Quantification of the impact of partial replacement of traditional cooking fuels by biogas on global warming: evidence from Vietnam J. Clean. Prod., 292 (2021), p. 126007, 10.1016/J.JCLEPRO.2021.126007
Kamalimeera and Kirubakaran, 2021 N. Kamalimeera, V. Kirubakaran Prospects and restraints in biogas fed SOFC for rural energization: a critical review in indian perspective Renew. Sustain. Energy Rev., 143 (2021), p. 110914, 10.1016/j.rser.2021.110914
Katuwal and Bohara, 2009 H. Katuwal, A.K. Bohara Biogas: a promising renewable technology and its impact on rural households in Nepal Renew. Sustain. Energy Rev. (2009), 10.1016/j.rser.2009.05.002
Khan and Martin, 2016 E.U. Khan, A.R. Martin Review of biogas digester technology in rural Bangladesh Renew. Sustain. Energy Rev. (2016), 10.1016/j.rser.2016.04.044
Ki-moon and Yumkella, 2010 B. Ki-moon, K.K. Yumkella Energy for a Sustainable Future (2010) New York
Kurchania et al., 2010 A.K. Kurchania, N.L. Panwar, S.D. Pagar Design and performance evaluation of biogas stove for community cooking application Int. J. Sustain. Energy, 29 (2010), pp. 116-123, 10.1080/14786460903497391org/10.1080/14786460903497391
Li et al., 2016 F. Li, S. Cheng, H. Yu, D. Yang Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China J. Clean. Prod., 126 (2016), pp. 451-460, 10.1016/j.jclepro.2016.02.104
Ltodo et al., 2007 I.N. Ltodo, G.E. Agyo, P. Yusuf Performance evaluation of a biogas stove for cooking in Nigeria J. Energy South Afr., 18 (2007), pp. 14-18, 10.17159/2413-3051/2007/v18i4a3391
Lwiza et al., 2017 F. Lwiza, J. Mugisha, P.N. Walekhwa, J. Smith, B. Balana Dis-adoption of household biogas technologies in Central Uganda Energy Sustain. Dev., 37 (2017), pp. 124-132, 10.1016/j.esd.2017.01.006
Mandal et al., 2018 S. Mandal, B.K. Das, N. Hoque Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh J. Clean. Prod., 200 (2018), pp. 12-27, 10.1016/j.jclepro.2018.07.257
Mayer et al., 2019 F. Mayer, R. Bhandari, S. Gäth Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies Sci. Total Environ., 672 (2019), pp. 708-721, 10.1016/j.scitotenv.2019.03.449
Mengistu et al., 2015 M.G. Mengistu, B. Simane, G. Eshete, T.S. Workneh A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia Renew. Sustain. Energy Rev., 48 (2015), pp. 306-316, 10.1016/j.rser.2015.04.026
MINAGRICULTURA, 2021 MINAGRICULTURA Área, producción, rendimiento y participación municipal en el departamento por cultivo (2021) [WWW Document]
MINAGRICULTURA, 2017 MINAGRICULTURA Anuario estadístico del sector agropecuario 2016 Bogotá, Colombia (2017)
Minenergía, 2019 Minenergía Grupo de gestión de la información y servicio al ciudadano. lnforme documento en discusión Bogotá, Colombia (2019)
Mulinda et al., 2013 C. Mulinda, Q. Hu, K. Pan Dissemination and problems of African biogas technology Energy Power Eng., 5 (2013), pp. 506-512, 10.4236/epe.2013.58055
Mwirigi et al., 2014 J. Mwirigi, B.B. Balana, J. Mugisha, P. Walekhwa, R. Melamu, S. Nakami, P. Makenzi Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review Biomass Bioenergy, 70 (2014), pp. 17-25, 10.1016/j.biombioe.2014.02.018
Nguyen et al., 2019 D. Nguyen, S. Nitayavardhana, C. Sawatdeenarunat, K.C. Surendra, S.K. Khanal Biogas production by anaerobic digestion: status and perspectives Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (second ed.), Elsevier Inc (2019), 10.1016/B978-0-12-816856-1.00031-2
Ni and Nyns, 1996 J.Q. Ni, E.J. Nyns New concept for the evaluation of rural biogas management in developing countries Energy Convers. Manag., 37 (1996), pp. 1525-1534, 10.1016/0196-8904(95)00354-1
Noorollahi et al., 2015 Y. Noorollahi, M. Kheirrouz, H. Farabi-Asl, H. Yousefi, A. Hajinezhad Biogas production potential from livestock manure in Iran Renew. Sustain. Energy Rev. (2015), 10.1016/j.rser.2015.04.190
Orskov et al., 2014 E.R. Orskov, K. Yongabi Anchang, M. Subedi, J. Smith Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa Biomass Bioenergy, 70 (2014), pp. 4-16, 10.1016/j.biombioe.2014.02.028
Pizarro-Loaiza et al., 2021 C.A. Pizarro-Loaiza, A. Anton, M. Torrellas, P. Torres-Lozada, J. Palatsi, A. Bonmatí Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas J. Clean. Prod., 126722 (2021), 10.1016/j.jclepro.2021.126722
Pöschl et al., 2010 M. Pöschl, S. Ward, P. Owende Evaluation of energy efficiency of various biogas production and utilization pathways Appl. Energy, 87 (2010), pp. 3305-3321, 10.1016/j.apenergy.2010.05.011
Rahut et al., 2019 D.B. Rahut, A. Ali, K.A. Mottaleb, J.P. Aryal Wealth, education and cooking-fuel choices among rural households in Pakistan Energy Strateg. Rev., 24 (2019), pp. 236-243, 10.1016/j.esr.2019.03.005
Ramírez et al., 2018 R. Ramírez, J.C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, O. Diaz Boletín estadístico de minas y energía 2018 Bogotá, Colombia (2018)
Sagastume et al., 2020 A. Sagastume, J.J. Cabello Eras, L. Hens, C. Vandecasteele The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia J. Clean. Prod., 122317 (2020), 10.1016/j.jclepro.2020.122317
Sarkodie and Adams, 2020 S.A. Sarkodie, S. Adams Electricity access and income inequality in South Africa: evidence from Bayesian and NARDL analyses Energy Strateg. Rev., 29 (2020), p. 100480, 10.1016/j.esr.2020.100480
Shen et al., 2018 G. Shen, M.D. Hays, K.R. Smith, C. Williams, J.W. Faircloth, J.J. Jetter Evaluating the performance of household liquefied petroleum gas cookstoves Environ. Sci. Technol., 52 (2018), pp. 904-915, 10.1021/acs.est.7b05155
Smith and Avery, 2014 J. Smith, L. Avery The Potential for Small-Scale Biogas Digesters in Sub-SaharanAfrica to Improve Sustainable Rural Livelihoods Biomass and Bioenergy (2014), 10.1016/j.biombioe.2014.09.001
Subedi et al., 2014 M. Subedi, R.B. Matthews, M. Pogson, A. Abegaz, B.B. Balana, J. Oyesiku-Blakemore, J. Smith Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy, 70 (2014), pp. 87-98, 10.1016/j.biombioe.2014.02.029
Superservicios, 2017 Superservicios Zonas no interconectadas- ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2017 Bogotá, Colombia (2017)
Surendra et al., 2014 K.C. Surendra, D. Takara, A.G. Hashimoto, S.K. Khanal Biogas as a sustainable energy source for developing countries: opportunities and challenges Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2013.12.015
Thomsen et al., 2014 S.T. Thomsen, H. Spliid, H. Østergård Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass Bioresour. Technol., 154 (2014), pp. 80-86, 10.1016/j.biortech.2013.12.029
UNDP, 2019 UNDP Córdoba. Retos y desafíos para el Desarrollo Sostenible (2019)
UPME, 2020a UPME Plan Energetico Nacional 2020-2050 Bogotá, Colombia (2020)
UPME, 2020b UPME Sistema de información eléctrico Colombiano Informes de cobertura [WWW Document]. Minist. Minas y energía. (2020) URL http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx, Accessed 20th Nov 2020
UPME, 2016a UPME Boletín Estadístico de Minas y energía 2012 – 2016, Boletín Estadístico de Minas y energía. Bogotá, Colombia (2016), 10.1017/CBO9781107415324.004
UPME, 2016b UPME Calculadora de emisiones [WWW Document] (2016)
UPME, 2012 UPME Caracterización energética del sector residencial urbano y rural en Colombia Bogotá, Colombia (2012)
UPME, 2011 UPME Determinación del consumo básico de subsistencia en el sector residencial y del consumo básico en los sectores industrial, comercial y hotelero en los departamentos de Guainía Vichada y Choco. Bogotá, Colombia (2011)
Wang et al., 2016 C. Wang, Y. Zhang, L. Zhang, M. Pang Alternative policies to subsidize rural household biogas digesters Energy Pol., 93 (2016), pp. 187-195, 10.1016/j.enpol.2016.03.007
Wang et al., 2018 S. Wang, U. Jena, K.C. Das Biomethane production potential of slaughterhouse waste in the United States Energy Convers. Manag., 173 (2018), pp. 143-157, 10.1016/j.enconman.2018.07.059
World Bank, 2014 World Bank Towards Sustainable Peace, Poverty Eradication, and Shared Prosperity (2014) Washington DC
Yasar et al., 2017 A. Yasar, S. Nazir, R. Rasheed, A.B. Tabinda, M. Nazar Economic review of different designs of biogas plants at household level in Pakistan Renew. Sustain. Energy Rev., 74 (2017), pp. 221-229, 10.1016/J.RSER.2017.01.128
Yepes et al., 2011 A. Yepes, D.A. Navarrete, J.F. Phillips, A.J. Duque, E. Cabrera, G. Galindo, D. Vargas, M. García, M.F. Ordoñez Estimación de las emisiones de dióxido de carbono generadas por deforestación durante el periodo 2005-2010 Bogotá, Colombia (2011)
Yu et al., 2008 L. Yu, K. Yaoqiu, H. Ningsheng, W. Zhifeng, X. Lianzhong Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation Renew. Energy, 33 (2008), pp. 2027-2035, 10.1016/j.renene.2007.12.004
Zhang et al., 2013 L.X. Zhang, C.B. Wang, B. Song Carbon emission reduction potential of a typical household biogas system in rural China J. Clean. Prod., 47 (2013), pp. 415-421, 10.1016/j.jclepro.2012.06.021
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 7
dc.rights.spa.fl_str_mv © 2022 The Authors. Published by Elsevier Ltd.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2022 The Authors. Published by Elsevier Ltd.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Córdoba
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Elsevier Ltd.
dc.publisher.place.spa.fl_str_mv United Kingdom
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352728522000021
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/26f3d534-d2df-4c99-b235-1b2ffa464933/download
https://repositorio.cuc.edu.co/bitstreams/ce5261cc-c702-4c48-b874-80479a403352/download
https://repositorio.cuc.edu.co/bitstreams/4a2a2f3f-56d1-49ad-845e-795f1bb3f3b6/download
https://repositorio.cuc.edu.co/bitstreams/72e7909e-2b45-4247-802f-8189ef986e05/download
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
fc6f6431fb2a13a9983efbf9ae81a34e
73bdb39cda11ebb30a90189346228da8
659eb4af753f82f41939d3a65e93dd02
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760760620056576
spelling Sagastume, AlexisMENDOZA FANDIÑO, JORGE MARIOCabello Eras, Juan JoséSOFAN GERMAN, STIVEN JAVIER2022-03-08T16:13:09Z2022-03-08T16:13:09Z20222352-7285https://hdl.handle.net/11323/9054https://doi.org/10.1016/j.deveng.2022.10009310.1016/j.deveng.2022.100093Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Modern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while two million people have either intermittent access or no access to electricity. This is particularly important in the department of Cordoba, where an average of 32% of the households relies on firewood for cooking, increasing to 66% of the households in rural areas. Furthermore, 20% of the rural population lack access to electricity. Therefore, this study aims at defining the biogas-based energy potential of the available agricultural and manure wastes in the department. To this end, governmental data is used to estimate the demand for firewood for cooking, the resulting GHG emissions, and the available agricultural and manure wastes. Overall, there are around 1.2 million t of agricultural wastes and 2.2 million t of manure yearly available in the department, representing an energy potential of 6687 TJ. Using 26% of the biogas-based energy potential identified suffices to support the 1334 TJ of biogas needed to replace cooking firewood and to supply the 390 TJ needed for household electricity generation. The use of biogas can reduce GHG emissions to 11% of the emissions resulting from cooking firewood. Polyethylene tubular digesters appear as the most indicated household technology, contrasted to geomembrane tubular digesters that need 2.4 times the initial capital investment while fixed dome digesters need 7.9 times the initial capital investment. Implementing household digesters to support the energy demand for cooking in the department, necessitates a minimum of 18 million USD, while the implementation of ‘digester + electric generator’ needs between 1.7 and 5.7 million USDdepending on the monthly demand of electricity of 60 kWh or 187 kWh.15 páginasapplication/pdfengElsevier Ltd.United Kingdom© 2022 The Authors. Published by Elsevier Ltd.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S2352728522000021CórdobaColombiaDevelopment EngineeringAdeoti et al., 2014 O. Adeoti, T.A. Ayelegun, S.O. Osho Nigeria biogas potential from livestock manure and its estimated climate value Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2014.05.005Bao et al., 2019 W. Bao, Y. Yang, T. Fu, G.H. Xie Estimation of Livestock Excrement and its Biogas Production Potential in China (2019), 10.1016/j.jclepro.2019.05.059Bedi et al., 2017 A.S. Bedi, R. Sparrow, L. Tasciotti The impact of a household biogas programme on energy use and expenditure in East Java Energy Econ., 68 (2017), pp. 66-76, 10.1016/j.eneco.2017.09.006Bhat et al., 2001 P.R. Bhat, H.N. Chanakya, N.H. Ravindranath Biogas plant dissemination: success story of Sirsi, India Energy Sustain. Dev., 5 (2001), pp. 39-46, 10.1016/S0973-0826(09)60019-3BISON, 2021 BISON Biogas generator [WWW document] URL https://www.alibaba.com/product-detail/Biogas-Generator-1kw-BISON-CHINA-Small_1600341334722.html?spm=a2700.7724857.normal_offer.d_image.3a1f5a776lhaPR&s=p (2021), Accessed 18th Nov 2021Bond and Templeton, 2011 T. Bond, M.R. Templeton History and future of domestic biogas plants in the developing world Energy Sustain. Dev. (2011), 10.1016/j.esd.2011.09.003Bruun et al., 2014 S. Bruun, L.S. Jensen, V.T. Khanh Vu, S. Sommer Small-scale household biogas digesters: an option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev., 33 (2014), pp. 736-741, 10.1016/j.rser.2014.02.033Carranza and Gutiérrez, 2012 J.Q. Carranza, C.C. Gutiérrez El fogón abierto de tres piedras en la península de Yucatán: tradición y transferencia tecnológica Rev. Pueblos y Front., 7 (2012), pp. 270-301Castro et al., 2017 L. Castro, H. Escalante, J. Jaimes-Estévez, L.J. Díaz, K. Vecino, G. Rojas, L. Mantilla Low cost digester monitoring under realistic conditions: rural use of biogas and digestate quality Bioresour. Technol., 239 (2017), pp. 311-317, 10.1016/j.biortech.2017.05.035Chakravarty and Tavoni, 2013 S. Chakravarty, M. Tavoni Energy poverty alleviation and climate change mitigation: is there a trade off? Energy Econ., 40 (2013), pp. 67-73, 10.1016/j.eneco.2013.09.022CML - Department of Industrial Ecology, 2016 CML - Department of Industrial Ecology CML-IA Characterisation Factors [WWW Document]. C. is a database that Contain. characterisation factors life cycle impact Assess. is easily read by C. Softw. program (2016)Consorcio Estrategia Rural Sostenible, 2019 Consorcio Estrategia Rural Sostenible Plan de sustitución progresiva de leña Bogotá, Colombia (2019)Cornejo and Wilkie, 2010 C. Cornejo, A.C. Wilkie Greenhouse gas emissions and biogas potential from livestock in Ecuador Energy Sustain. Dev., 14 (2010), pp. 256-266, 10.1016/j.esd.2010.09.008DANE, 2018 DANE Resultados del censo nacional de población y vivienda 2018 (2018) [WWW Document]. URL https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018, Accessed 9th Nov 2020Delgado et al., 2020 R. Delgado, T.B. Wild, R. Arguello, L. Clarke, G. Romero Options for Colombia's mid-century deep decarbonization strategy Energy Strateg. Rev., 32 (2020), p. 100525, 10.1016/j.esr.2020.100525Deng et al., 2020 L. Deng, Y. Liu, W. Wang Biogas Technology, Biogas Technology Springer, Singapore (2020), 10.1007/978-981-15-4940-3Dhingra et al., 2011 R. Dhingra, E.R. Christensen, Y. Liu, B. Zhong, C.-F. Wu, M.G. Yost, J.V. Remais Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China Environ. Sci. Technol., 45 (2011), pp. 2345-2352, 10.1021/es103142yDing et al., 2012 W. Ding, H. Niu, J. Chen, J. Du, Y. Wu Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China Appl. Energy, 97 (2012), pp. 16-23, 10.1016/j.apenergy.2011.12.017Dong et al., 2018 J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants Sci. Total Environ. J., 626 (2018), pp. 744-753, 10.1016/j.scitotenv.2018.01.151Fan et al., 2011 J. Fan, Y. tian Liang, A. jun Tao, K. rong Sheng, H.L. Ma, Y. Xu, C.S. Wang, W. Sun Energy policies for sustainable livelihoods and sustainable development of poor areas in China Energy Pol., 39 (2011), pp. 1200-1212, 10.1016/j.enpol.2010.11.048FAO, 2021 FAO Biogas Systems in Rwanda. A Critical Review FAO, Rome (2021), 10.4060/cb3409enFerrer-Martí et al., 2018 L. Ferrer-Martí, I. Ferrer, E. Sánchez, M. Garfí A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru Renew. Sustain. Energy Rev., 95 (2018), pp. 74-83, 10.1016/j.rser.2018.06.064Figueroa et al., 2017 A. Figueroa, F. Boshell, L. Velzen van, A. Anisie Biogas for Domestic Cooking: Technology Brief (2017) Abu DhabiFlesch et al., 2011 T.K. Flesch, R.L. Desjardins, D. Worth Fugitive methane emissions from an agricultural biodigester Biomass Bioenergy, 35 (2011), pp. 3927-3935, 10.1016/j.biombioe.2011.06.009Gaona et al., 2015 E.E. Gaona, C.L. Trujillo, J.A. Guacaneme Rural microgrids and its potential application in Colombia Renew. Sustain. Energy Rev., 51 (2015), pp. 125-137, 10.1016/j.rser.2015.04.176Garfí et al., 2014 M. Garfí, E. Cadena, I. Pérez, I. Ferrer Technical, economic and environmental assessment of household biogas digesters for rural communities Renew. Energy, 62 (2014), pp. 313-318, 10.1016/j.renene.2013.07.017Garfí et al., 2019 M. Garfí, L. Castro, N. Montero, H. Escalante, I. Ferrer Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: a life cycle assessment Bioresour. Technol., 274 (2019), pp. 541-548, 10.1016/j.biortech.2018.12.007Garfí et al., 2012 M. Garfí, L. Ferrer-Martí, E. Velo, I. Ferrer Evaluating benefits of low-cost household digesters for rural Andean communities Renew. Sustain. Energy Rev., 16 (2012), pp. 575-581, 10.1016/j.rser.2011.08.023GASNOVA, 2018 GASNOVA Reemplazar el consumo de leña , mediante la ampliación de la cobertura de gas licuado de petróleo (GLP) (2018)Gómez-Navarro and Ribó-Pérez, 2018 T. Gómez-Navarro, D. Ribó-Pérez Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia Renew. Sustain. Energy Rev., 90 (2018), pp. 131-141, 10.1016/j.rser.2018.03.015González-Eguino, 2015 M. González-Eguino Energy poverty: an overview Renew. Sustain. Energy Rev., 47 (2015), pp. 377-385, 10.1016/j.rser.2015.03.013Gonzalez-Salazar et al., 2014a M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for estimating biomass energy potential and its application to Colombia Appl. Energy, 136 (2014), pp. 781-796, 10.1016/j.apenergy.2014.07.004Gonzalez-Salazar et al., 2014b M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for biomass energy potential estimation: projections of future potential in Colombia Renew. Energy, 69 (2014), pp. 488-505, 10.1016/j.renene.2014.03.056Gunnerson and Stuckey, 1986 C. Gunnerson, D. Stuckey Integrated Resource Recovery-Anaerobic digestion Principles and Practices for Biogas Systems (1986) Washington DCHijazi et al., 2019 O. Hijazi, S. Mettenleiter, M. Samer, E. Abdelsalam, J.G. Wiecha, K.L. Ziegler, H. Bernhardt Life cycle assessment of biogas production in small-scale in Columbia 2019 ASABE Annual International Meeting, ASABE, Boston (2019), pp. 2-9, 10.13031/aim.201900099Hoffmann et al., 2018 C. Hoffmann, J.R. García Márquez, T. Krueger A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia Land Use Pol., 77 (2018), pp. 379-391, 10.1016/j.landusepol.2018.04.043Hountalas and Mavropoulos, 2010 D. Hountalas, G. Mavropoulos Potential for improving HD diesel truck engine fuel consumption using exhaust heat recovery techniques New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (2010), 10.5772/10428IDEAM, 2016 IDEAM Inventario nacional y departamental de gases efecto invernadero. Colombia Bogotá, Colombia (2016)IDEAM, PNUD, 2016 IDEAM, PNUD Inventario nacional y departamental de gases efecto invernadero -Colombia Bogotá, Colombia (2016)Ioannou-Ttofa et al., 2021 L. Ioannou-Ttofa, S. Foteinis, A. Seifelnasr Moustafa, E. Abdelsalam, M. Samer, D. Fatta-Kassinos Life cycle assessment of household biogas production in Egypt: influence of digester volume, biogas leakages, and digestate valorization as biofertilizer J. Clean. Prod., 286 (2021), p. 125468Jegede et al., 2019 A.O. Jegede, G. Zeeman, H. Bruning A review of mixing, design and loading conditions in household anaerobic digesters Crit. Rev. Environ. Sci. Technol., 49 (2019), pp. 2117-2153, 10.1080/10643389.2019.1607441Jelínek et al., 2021 M. Jelínek, J. Mazancová, D. Van Dung, L.D. Phung, J. Banout, H. Roubík Quantification of the impact of partial replacement of traditional cooking fuels by biogas on global warming: evidence from Vietnam J. Clean. Prod., 292 (2021), p. 126007, 10.1016/J.JCLEPRO.2021.126007Kamalimeera and Kirubakaran, 2021 N. Kamalimeera, V. Kirubakaran Prospects and restraints in biogas fed SOFC for rural energization: a critical review in indian perspective Renew. Sustain. Energy Rev., 143 (2021), p. 110914, 10.1016/j.rser.2021.110914Katuwal and Bohara, 2009 H. Katuwal, A.K. Bohara Biogas: a promising renewable technology and its impact on rural households in Nepal Renew. Sustain. Energy Rev. (2009), 10.1016/j.rser.2009.05.002Khan and Martin, 2016 E.U. Khan, A.R. Martin Review of biogas digester technology in rural Bangladesh Renew. Sustain. Energy Rev. (2016), 10.1016/j.rser.2016.04.044Ki-moon and Yumkella, 2010 B. Ki-moon, K.K. Yumkella Energy for a Sustainable Future (2010) New YorkKurchania et al., 2010 A.K. Kurchania, N.L. Panwar, S.D. Pagar Design and performance evaluation of biogas stove for community cooking application Int. J. Sustain. Energy, 29 (2010), pp. 116-123, 10.1080/14786460903497391org/10.1080/14786460903497391Li et al., 2016 F. Li, S. Cheng, H. Yu, D. Yang Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China J. Clean. Prod., 126 (2016), pp. 451-460, 10.1016/j.jclepro.2016.02.104Ltodo et al., 2007 I.N. Ltodo, G.E. Agyo, P. Yusuf Performance evaluation of a biogas stove for cooking in Nigeria J. Energy South Afr., 18 (2007), pp. 14-18, 10.17159/2413-3051/2007/v18i4a3391Lwiza et al., 2017 F. Lwiza, J. Mugisha, P.N. Walekhwa, J. Smith, B. Balana Dis-adoption of household biogas technologies in Central Uganda Energy Sustain. Dev., 37 (2017), pp. 124-132, 10.1016/j.esd.2017.01.006Mandal et al., 2018 S. Mandal, B.K. Das, N. Hoque Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh J. Clean. Prod., 200 (2018), pp. 12-27, 10.1016/j.jclepro.2018.07.257Mayer et al., 2019 F. Mayer, R. Bhandari, S. Gäth Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies Sci. Total Environ., 672 (2019), pp. 708-721, 10.1016/j.scitotenv.2019.03.449Mengistu et al., 2015 M.G. Mengistu, B. Simane, G. Eshete, T.S. Workneh A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia Renew. Sustain. Energy Rev., 48 (2015), pp. 306-316, 10.1016/j.rser.2015.04.026MINAGRICULTURA, 2021 MINAGRICULTURA Área, producción, rendimiento y participación municipal en el departamento por cultivo (2021) [WWW Document]MINAGRICULTURA, 2017 MINAGRICULTURA Anuario estadístico del sector agropecuario 2016 Bogotá, Colombia (2017)Minenergía, 2019 Minenergía Grupo de gestión de la información y servicio al ciudadano. lnforme documento en discusión Bogotá, Colombia (2019)Mulinda et al., 2013 C. Mulinda, Q. Hu, K. Pan Dissemination and problems of African biogas technology Energy Power Eng., 5 (2013), pp. 506-512, 10.4236/epe.2013.58055Mwirigi et al., 2014 J. Mwirigi, B.B. Balana, J. Mugisha, P. Walekhwa, R. Melamu, S. Nakami, P. Makenzi Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review Biomass Bioenergy, 70 (2014), pp. 17-25, 10.1016/j.biombioe.2014.02.018Nguyen et al., 2019 D. Nguyen, S. Nitayavardhana, C. Sawatdeenarunat, K.C. Surendra, S.K. Khanal Biogas production by anaerobic digestion: status and perspectives Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (second ed.), Elsevier Inc (2019), 10.1016/B978-0-12-816856-1.00031-2Ni and Nyns, 1996 J.Q. Ni, E.J. Nyns New concept for the evaluation of rural biogas management in developing countries Energy Convers. Manag., 37 (1996), pp. 1525-1534, 10.1016/0196-8904(95)00354-1Noorollahi et al., 2015 Y. Noorollahi, M. Kheirrouz, H. Farabi-Asl, H. Yousefi, A. Hajinezhad Biogas production potential from livestock manure in Iran Renew. Sustain. Energy Rev. (2015), 10.1016/j.rser.2015.04.190Orskov et al., 2014 E.R. Orskov, K. Yongabi Anchang, M. Subedi, J. Smith Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa Biomass Bioenergy, 70 (2014), pp. 4-16, 10.1016/j.biombioe.2014.02.028Pizarro-Loaiza et al., 2021 C.A. Pizarro-Loaiza, A. Anton, M. Torrellas, P. Torres-Lozada, J. Palatsi, A. Bonmatí Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas J. Clean. Prod., 126722 (2021), 10.1016/j.jclepro.2021.126722Pöschl et al., 2010 M. Pöschl, S. Ward, P. Owende Evaluation of energy efficiency of various biogas production and utilization pathways Appl. Energy, 87 (2010), pp. 3305-3321, 10.1016/j.apenergy.2010.05.011Rahut et al., 2019 D.B. Rahut, A. Ali, K.A. Mottaleb, J.P. Aryal Wealth, education and cooking-fuel choices among rural households in Pakistan Energy Strateg. Rev., 24 (2019), pp. 236-243, 10.1016/j.esr.2019.03.005Ramírez et al., 2018 R. Ramírez, J.C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, O. Diaz Boletín estadístico de minas y energía 2018 Bogotá, Colombia (2018)Sagastume et al., 2020 A. Sagastume, J.J. Cabello Eras, L. Hens, C. Vandecasteele The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia J. Clean. Prod., 122317 (2020), 10.1016/j.jclepro.2020.122317Sarkodie and Adams, 2020 S.A. Sarkodie, S. Adams Electricity access and income inequality in South Africa: evidence from Bayesian and NARDL analyses Energy Strateg. Rev., 29 (2020), p. 100480, 10.1016/j.esr.2020.100480Shen et al., 2018 G. Shen, M.D. Hays, K.R. Smith, C. Williams, J.W. Faircloth, J.J. Jetter Evaluating the performance of household liquefied petroleum gas cookstoves Environ. Sci. Technol., 52 (2018), pp. 904-915, 10.1021/acs.est.7b05155Smith and Avery, 2014 J. Smith, L. Avery The Potential for Small-Scale Biogas Digesters in Sub-SaharanAfrica to Improve Sustainable Rural Livelihoods Biomass and Bioenergy (2014), 10.1016/j.biombioe.2014.09.001Subedi et al., 2014 M. Subedi, R.B. Matthews, M. Pogson, A. Abegaz, B.B. Balana, J. Oyesiku-Blakemore, J. Smith Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy, 70 (2014), pp. 87-98, 10.1016/j.biombioe.2014.02.029Superservicios, 2017 Superservicios Zonas no interconectadas- ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2017 Bogotá, Colombia (2017)Surendra et al., 2014 K.C. Surendra, D. Takara, A.G. Hashimoto, S.K. Khanal Biogas as a sustainable energy source for developing countries: opportunities and challenges Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2013.12.015Thomsen et al., 2014 S.T. Thomsen, H. Spliid, H. Østergård Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass Bioresour. Technol., 154 (2014), pp. 80-86, 10.1016/j.biortech.2013.12.029UNDP, 2019 UNDP Córdoba. Retos y desafíos para el Desarrollo Sostenible (2019)UPME, 2020a UPME Plan Energetico Nacional 2020-2050 Bogotá, Colombia (2020)UPME, 2020b UPME Sistema de información eléctrico Colombiano Informes de cobertura [WWW Document]. Minist. Minas y energía. (2020) URL http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx, Accessed 20th Nov 2020UPME, 2016a UPME Boletín Estadístico de Minas y energía 2012 – 2016, Boletín Estadístico de Minas y energía. Bogotá, Colombia (2016), 10.1017/CBO9781107415324.004UPME, 2016b UPME Calculadora de emisiones [WWW Document] (2016)UPME, 2012 UPME Caracterización energética del sector residencial urbano y rural en Colombia Bogotá, Colombia (2012)UPME, 2011 UPME Determinación del consumo básico de subsistencia en el sector residencial y del consumo básico en los sectores industrial, comercial y hotelero en los departamentos de Guainía Vichada y Choco. Bogotá, Colombia (2011)Wang et al., 2016 C. Wang, Y. Zhang, L. Zhang, M. Pang Alternative policies to subsidize rural household biogas digesters Energy Pol., 93 (2016), pp. 187-195, 10.1016/j.enpol.2016.03.007Wang et al., 2018 S. Wang, U. Jena, K.C. Das Biomethane production potential of slaughterhouse waste in the United States Energy Convers. Manag., 173 (2018), pp. 143-157, 10.1016/j.enconman.2018.07.059World Bank, 2014 World Bank Towards Sustainable Peace, Poverty Eradication, and Shared Prosperity (2014) Washington DCYasar et al., 2017 A. Yasar, S. Nazir, R. Rasheed, A.B. Tabinda, M. Nazar Economic review of different designs of biogas plants at household level in Pakistan Renew. Sustain. Energy Rev., 74 (2017), pp. 221-229, 10.1016/J.RSER.2017.01.128Yepes et al., 2011 A. Yepes, D.A. Navarrete, J.F. Phillips, A.J. Duque, E. Cabrera, G. Galindo, D. Vargas, M. García, M.F. Ordoñez Estimación de las emisiones de dióxido de carbono generadas por deforestación durante el periodo 2005-2010 Bogotá, Colombia (2011)Yu et al., 2008 L. Yu, K. Yaoqiu, H. Ningsheng, W. Zhifeng, X. Lianzhong Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation Renew. Energy, 33 (2008), pp. 2027-2035, 10.1016/j.renene.2007.12.004Zhang et al., 2013 L.X. Zhang, C.B. Wang, B. Song Carbon emission reduction potential of a typical household biogas system in rural China J. Clean. Prod., 47 (2013), pp. 415-421, 10.1016/j.jclepro.2012.06.0211517Renewable energyAnaerobic digestionBiomass wastesFirewoodPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/26f3d534-d2df-4c99-b235-1b2ffa464933/downloade30e9215131d99561d40d6b0abbe9badMD52ORIGINALPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdfPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdfapplication/pdf7431774https://repositorio.cuc.edu.co/bitstreams/ce5261cc-c702-4c48-b874-80479a403352/downloadfc6f6431fb2a13a9983efbf9ae81a34eMD51TEXTPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.txtPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.txttext/plain76500https://repositorio.cuc.edu.co/bitstreams/4a2a2f3f-56d1-49ad-845e-795f1bb3f3b6/download73bdb39cda11ebb30a90189346228da8MD53THUMBNAILPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.jpgPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.jpgimage/jpeg14606https://repositorio.cuc.edu.co/bitstreams/72e7909e-2b45-4247-802f-8189ef986e05/download659eb4af753f82f41939d3a65e93dd02MD5411323/9054oai:repositorio.cuc.edu.co:11323/90542024-09-17 11:01:37.291https://creativecommons.org/licenses/by-nc-sa/4.0/© 2022 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==