Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
Modern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while t...
- Autores:
-
Sagastume, Alexis
MENDOZA FANDIÑO, JORGE MARIO
Cabello Eras, Juan José
SOFAN GERMAN, STIVEN JAVIER
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9054
- Acceso en línea:
- https://hdl.handle.net/11323/9054
https://doi.org/10.1016/j.deveng.2022.100093
https://repositorio.cuc.edu.co/
- Palabra clave:
- Renewable energy
Anaerobic digestion
Biomass wastes
Firewood
- Rights
- openAccess
- License
- © 2022 The Authors. Published by Elsevier Ltd.
id |
RCUC2_3d2232508cb64242349435643d8037d4 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9054 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
title |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
spellingShingle |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) Renewable energy Anaerobic digestion Biomass wastes Firewood |
title_short |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
title_full |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
title_fullStr |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
title_full_unstemmed |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
title_sort |
Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia) |
dc.creator.fl_str_mv |
Sagastume, Alexis MENDOZA FANDIÑO, JORGE MARIO Cabello Eras, Juan José SOFAN GERMAN, STIVEN JAVIER |
dc.contributor.author.spa.fl_str_mv |
Sagastume, Alexis MENDOZA FANDIÑO, JORGE MARIO Cabello Eras, Juan José SOFAN GERMAN, STIVEN JAVIER |
dc.subject.proposal.eng.fl_str_mv |
Renewable energy Anaerobic digestion Biomass wastes Firewood |
topic |
Renewable energy Anaerobic digestion Biomass wastes Firewood |
description |
Modern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while two million people have either intermittent access or no access to electricity. This is particularly important in the department of Cordoba, where an average of 32% of the households relies on firewood for cooking, increasing to 66% of the households in rural areas. Furthermore, 20% of the rural population lack access to electricity. Therefore, this study aims at defining the biogas-based energy potential of the available agricultural and manure wastes in the department. To this end, governmental data is used to estimate the demand for firewood for cooking, the resulting GHG emissions, and the available agricultural and manure wastes. Overall, there are around 1.2 million t of agricultural wastes and 2.2 million t of manure yearly available in the department, representing an energy potential of 6687 TJ. Using 26% of the biogas-based energy potential identified suffices to support the 1334 TJ of biogas needed to replace cooking firewood and to supply the 390 TJ needed for household electricity generation. The use of biogas can reduce GHG emissions to 11% of the emissions resulting from cooking firewood. Polyethylene tubular digesters appear as the most indicated household technology, contrasted to geomembrane tubular digesters that need 2.4 times the initial capital investment while fixed dome digesters need 7.9 times the initial capital investment. Implementing household digesters to support the energy demand for cooking in the department, necessitates a minimum of 18 million USD, while the implementation of ‘digester + electric generator’ needs between 1.7 and 5.7 million USDdepending on the monthly demand of electricity of 60 kWh or 187 kWh. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-08T16:13:09Z |
dc.date.available.none.fl_str_mv |
2022-03-08T16:13:09Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2352-7285 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9054 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.deveng.2022.100093 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.deveng.2022.100093 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2352-7285 10.1016/j.deveng.2022.100093 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9054 https://doi.org/10.1016/j.deveng.2022.100093 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Development Engineering |
dc.relation.references.spa.fl_str_mv |
Adeoti et al., 2014 O. Adeoti, T.A. Ayelegun, S.O. Osho Nigeria biogas potential from livestock manure and its estimated climate value Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2014.05.005 Bao et al., 2019 W. Bao, Y. Yang, T. Fu, G.H. Xie Estimation of Livestock Excrement and its Biogas Production Potential in China (2019), 10.1016/j.jclepro.2019.05.059 Bedi et al., 2017 A.S. Bedi, R. Sparrow, L. Tasciotti The impact of a household biogas programme on energy use and expenditure in East Java Energy Econ., 68 (2017), pp. 66-76, 10.1016/j.eneco.2017.09.006 Bhat et al., 2001 P.R. Bhat, H.N. Chanakya, N.H. Ravindranath Biogas plant dissemination: success story of Sirsi, India Energy Sustain. Dev., 5 (2001), pp. 39-46, 10.1016/S0973-0826(09)60019-3 BISON, 2021 BISON Biogas generator [WWW document] URL https://www.alibaba.com/product-detail/Biogas-Generator-1kw-BISON-CHINA-Small_1600341334722.html?spm=a2700.7724857.normal_offer.d_image.3a1f5a776lhaPR&s=p (2021), Accessed 18th Nov 2021 Bond and Templeton, 2011 T. Bond, M.R. Templeton History and future of domestic biogas plants in the developing world Energy Sustain. Dev. (2011), 10.1016/j.esd.2011.09.003 Bruun et al., 2014 S. Bruun, L.S. Jensen, V.T. Khanh Vu, S. Sommer Small-scale household biogas digesters: an option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev., 33 (2014), pp. 736-741, 10.1016/j.rser.2014.02.033 Carranza and Gutiérrez, 2012 J.Q. Carranza, C.C. Gutiérrez El fogón abierto de tres piedras en la península de Yucatán: tradición y transferencia tecnológica Rev. Pueblos y Front., 7 (2012), pp. 270-301 Castro et al., 2017 L. Castro, H. Escalante, J. Jaimes-Estévez, L.J. Díaz, K. Vecino, G. Rojas, L. Mantilla Low cost digester monitoring under realistic conditions: rural use of biogas and digestate quality Bioresour. Technol., 239 (2017), pp. 311-317, 10.1016/j.biortech.2017.05.035 Chakravarty and Tavoni, 2013 S. Chakravarty, M. Tavoni Energy poverty alleviation and climate change mitigation: is there a trade off? Energy Econ., 40 (2013), pp. 67-73, 10.1016/j.eneco.2013.09.022 CML - Department of Industrial Ecology, 2016 CML - Department of Industrial Ecology CML-IA Characterisation Factors [WWW Document]. C. is a database that Contain. characterisation factors life cycle impact Assess. is easily read by C. Softw. program (2016) Consorcio Estrategia Rural Sostenible, 2019 Consorcio Estrategia Rural Sostenible Plan de sustitución progresiva de leña Bogotá, Colombia (2019) Cornejo and Wilkie, 2010 C. Cornejo, A.C. Wilkie Greenhouse gas emissions and biogas potential from livestock in Ecuador Energy Sustain. Dev., 14 (2010), pp. 256-266, 10.1016/j.esd.2010.09.008 DANE, 2018 DANE Resultados del censo nacional de población y vivienda 2018 (2018) [WWW Document]. URL https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018, Accessed 9th Nov 2020 Delgado et al., 2020 R. Delgado, T.B. Wild, R. Arguello, L. Clarke, G. Romero Options for Colombia's mid-century deep decarbonization strategy Energy Strateg. Rev., 32 (2020), p. 100525, 10.1016/j.esr.2020.100525 Deng et al., 2020 L. Deng, Y. Liu, W. Wang Biogas Technology, Biogas Technology Springer, Singapore (2020), 10.1007/978-981-15-4940-3 Dhingra et al., 2011 R. Dhingra, E.R. Christensen, Y. Liu, B. Zhong, C.-F. Wu, M.G. Yost, J.V. Remais Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China Environ. Sci. Technol., 45 (2011), pp. 2345-2352, 10.1021/es103142y Ding et al., 2012 W. Ding, H. Niu, J. Chen, J. Du, Y. Wu Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China Appl. Energy, 97 (2012), pp. 16-23, 10.1016/j.apenergy.2011.12.017 Dong et al., 2018 J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants Sci. Total Environ. J., 626 (2018), pp. 744-753, 10.1016/j.scitotenv.2018.01.151 Fan et al., 2011 J. Fan, Y. tian Liang, A. jun Tao, K. rong Sheng, H.L. Ma, Y. Xu, C.S. Wang, W. Sun Energy policies for sustainable livelihoods and sustainable development of poor areas in China Energy Pol., 39 (2011), pp. 1200-1212, 10.1016/j.enpol.2010.11.048 FAO, 2021 FAO Biogas Systems in Rwanda. A Critical Review FAO, Rome (2021), 10.4060/cb3409en Ferrer-Martí et al., 2018 L. Ferrer-Martí, I. Ferrer, E. Sánchez, M. Garfí A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru Renew. Sustain. Energy Rev., 95 (2018), pp. 74-83, 10.1016/j.rser.2018.06.064 Figueroa et al., 2017 A. Figueroa, F. Boshell, L. Velzen van, A. Anisie Biogas for Domestic Cooking: Technology Brief (2017) Abu Dhabi Flesch et al., 2011 T.K. Flesch, R.L. Desjardins, D. Worth Fugitive methane emissions from an agricultural biodigester Biomass Bioenergy, 35 (2011), pp. 3927-3935, 10.1016/j.biombioe.2011.06.009 Gaona et al., 2015 E.E. Gaona, C.L. Trujillo, J.A. Guacaneme Rural microgrids and its potential application in Colombia Renew. Sustain. Energy Rev., 51 (2015), pp. 125-137, 10.1016/j.rser.2015.04.176 Garfí et al., 2014 M. Garfí, E. Cadena, I. Pérez, I. Ferrer Technical, economic and environmental assessment of household biogas digesters for rural communities Renew. Energy, 62 (2014), pp. 313-318, 10.1016/j.renene.2013.07.017 Garfí et al., 2019 M. Garfí, L. Castro, N. Montero, H. Escalante, I. Ferrer Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: a life cycle assessment Bioresour. Technol., 274 (2019), pp. 541-548, 10.1016/j.biortech.2018.12.007 Garfí et al., 2012 M. Garfí, L. Ferrer-Martí, E. Velo, I. Ferrer Evaluating benefits of low-cost household digesters for rural Andean communities Renew. Sustain. Energy Rev., 16 (2012), pp. 575-581, 10.1016/j.rser.2011.08.023 GASNOVA, 2018 GASNOVA Reemplazar el consumo de leña , mediante la ampliación de la cobertura de gas licuado de petróleo (GLP) (2018) Gómez-Navarro and Ribó-Pérez, 2018 T. Gómez-Navarro, D. Ribó-Pérez Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia Renew. Sustain. Energy Rev., 90 (2018), pp. 131-141, 10.1016/j.rser.2018.03.015 González-Eguino, 2015 M. González-Eguino Energy poverty: an overview Renew. Sustain. Energy Rev., 47 (2015), pp. 377-385, 10.1016/j.rser.2015.03.013 Gonzalez-Salazar et al., 2014a M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for estimating biomass energy potential and its application to Colombia Appl. Energy, 136 (2014), pp. 781-796, 10.1016/j.apenergy.2014.07.004 Gonzalez-Salazar et al., 2014b M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for biomass energy potential estimation: projections of future potential in Colombia Renew. Energy, 69 (2014), pp. 488-505, 10.1016/j.renene.2014.03.056 Gunnerson and Stuckey, 1986 C. Gunnerson, D. Stuckey Integrated Resource Recovery-Anaerobic digestion Principles and Practices for Biogas Systems (1986) Washington DC Hijazi et al., 2019 O. Hijazi, S. Mettenleiter, M. Samer, E. Abdelsalam, J.G. Wiecha, K.L. Ziegler, H. Bernhardt Life cycle assessment of biogas production in small-scale in Columbia 2019 ASABE Annual International Meeting, ASABE, Boston (2019), pp. 2-9, 10.13031/aim.201900099 Hoffmann et al., 2018 C. Hoffmann, J.R. García Márquez, T. Krueger A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia Land Use Pol., 77 (2018), pp. 379-391, 10.1016/j.landusepol.2018.04.043 Hountalas and Mavropoulos, 2010 D. Hountalas, G. Mavropoulos Potential for improving HD diesel truck engine fuel consumption using exhaust heat recovery techniques New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (2010), 10.5772/10428 IDEAM, 2016 IDEAM Inventario nacional y departamental de gases efecto invernadero. Colombia Bogotá, Colombia (2016) IDEAM, PNUD, 2016 IDEAM, PNUD Inventario nacional y departamental de gases efecto invernadero -Colombia Bogotá, Colombia (2016) Ioannou-Ttofa et al., 2021 L. Ioannou-Ttofa, S. Foteinis, A. Seifelnasr Moustafa, E. Abdelsalam, M. Samer, D. Fatta-Kassinos Life cycle assessment of household biogas production in Egypt: influence of digester volume, biogas leakages, and digestate valorization as biofertilizer J. Clean. Prod., 286 (2021), p. 125468 Jegede et al., 2019 A.O. Jegede, G. Zeeman, H. Bruning A review of mixing, design and loading conditions in household anaerobic digesters Crit. Rev. Environ. Sci. Technol., 49 (2019), pp. 2117-2153, 10.1080/10643389.2019.1607441 Jelínek et al., 2021 M. Jelínek, J. Mazancová, D. Van Dung, L.D. Phung, J. Banout, H. Roubík Quantification of the impact of partial replacement of traditional cooking fuels by biogas on global warming: evidence from Vietnam J. Clean. Prod., 292 (2021), p. 126007, 10.1016/J.JCLEPRO.2021.126007 Kamalimeera and Kirubakaran, 2021 N. Kamalimeera, V. Kirubakaran Prospects and restraints in biogas fed SOFC for rural energization: a critical review in indian perspective Renew. Sustain. Energy Rev., 143 (2021), p. 110914, 10.1016/j.rser.2021.110914 Katuwal and Bohara, 2009 H. Katuwal, A.K. Bohara Biogas: a promising renewable technology and its impact on rural households in Nepal Renew. Sustain. Energy Rev. (2009), 10.1016/j.rser.2009.05.002 Khan and Martin, 2016 E.U. Khan, A.R. Martin Review of biogas digester technology in rural Bangladesh Renew. Sustain. Energy Rev. (2016), 10.1016/j.rser.2016.04.044 Ki-moon and Yumkella, 2010 B. Ki-moon, K.K. Yumkella Energy for a Sustainable Future (2010) New York Kurchania et al., 2010 A.K. Kurchania, N.L. Panwar, S.D. Pagar Design and performance evaluation of biogas stove for community cooking application Int. J. Sustain. Energy, 29 (2010), pp. 116-123, 10.1080/14786460903497391org/10.1080/14786460903497391 Li et al., 2016 F. Li, S. Cheng, H. Yu, D. Yang Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China J. Clean. Prod., 126 (2016), pp. 451-460, 10.1016/j.jclepro.2016.02.104 Ltodo et al., 2007 I.N. Ltodo, G.E. Agyo, P. Yusuf Performance evaluation of a biogas stove for cooking in Nigeria J. Energy South Afr., 18 (2007), pp. 14-18, 10.17159/2413-3051/2007/v18i4a3391 Lwiza et al., 2017 F. Lwiza, J. Mugisha, P.N. Walekhwa, J. Smith, B. Balana Dis-adoption of household biogas technologies in Central Uganda Energy Sustain. Dev., 37 (2017), pp. 124-132, 10.1016/j.esd.2017.01.006 Mandal et al., 2018 S. Mandal, B.K. Das, N. Hoque Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh J. Clean. Prod., 200 (2018), pp. 12-27, 10.1016/j.jclepro.2018.07.257 Mayer et al., 2019 F. Mayer, R. Bhandari, S. Gäth Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies Sci. Total Environ., 672 (2019), pp. 708-721, 10.1016/j.scitotenv.2019.03.449 Mengistu et al., 2015 M.G. Mengistu, B. Simane, G. Eshete, T.S. Workneh A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia Renew. Sustain. Energy Rev., 48 (2015), pp. 306-316, 10.1016/j.rser.2015.04.026 MINAGRICULTURA, 2021 MINAGRICULTURA Área, producción, rendimiento y participación municipal en el departamento por cultivo (2021) [WWW Document] MINAGRICULTURA, 2017 MINAGRICULTURA Anuario estadístico del sector agropecuario 2016 Bogotá, Colombia (2017) Minenergía, 2019 Minenergía Grupo de gestión de la información y servicio al ciudadano. lnforme documento en discusión Bogotá, Colombia (2019) Mulinda et al., 2013 C. Mulinda, Q. Hu, K. Pan Dissemination and problems of African biogas technology Energy Power Eng., 5 (2013), pp. 506-512, 10.4236/epe.2013.58055 Mwirigi et al., 2014 J. Mwirigi, B.B. Balana, J. Mugisha, P. Walekhwa, R. Melamu, S. Nakami, P. Makenzi Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review Biomass Bioenergy, 70 (2014), pp. 17-25, 10.1016/j.biombioe.2014.02.018 Nguyen et al., 2019 D. Nguyen, S. Nitayavardhana, C. Sawatdeenarunat, K.C. Surendra, S.K. Khanal Biogas production by anaerobic digestion: status and perspectives Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (second ed.), Elsevier Inc (2019), 10.1016/B978-0-12-816856-1.00031-2 Ni and Nyns, 1996 J.Q. Ni, E.J. Nyns New concept for the evaluation of rural biogas management in developing countries Energy Convers. Manag., 37 (1996), pp. 1525-1534, 10.1016/0196-8904(95)00354-1 Noorollahi et al., 2015 Y. Noorollahi, M. Kheirrouz, H. Farabi-Asl, H. Yousefi, A. Hajinezhad Biogas production potential from livestock manure in Iran Renew. Sustain. Energy Rev. (2015), 10.1016/j.rser.2015.04.190 Orskov et al., 2014 E.R. Orskov, K. Yongabi Anchang, M. Subedi, J. Smith Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa Biomass Bioenergy, 70 (2014), pp. 4-16, 10.1016/j.biombioe.2014.02.028 Pizarro-Loaiza et al., 2021 C.A. Pizarro-Loaiza, A. Anton, M. Torrellas, P. Torres-Lozada, J. Palatsi, A. Bonmatí Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas J. Clean. Prod., 126722 (2021), 10.1016/j.jclepro.2021.126722 Pöschl et al., 2010 M. Pöschl, S. Ward, P. Owende Evaluation of energy efficiency of various biogas production and utilization pathways Appl. Energy, 87 (2010), pp. 3305-3321, 10.1016/j.apenergy.2010.05.011 Rahut et al., 2019 D.B. Rahut, A. Ali, K.A. Mottaleb, J.P. Aryal Wealth, education and cooking-fuel choices among rural households in Pakistan Energy Strateg. Rev., 24 (2019), pp. 236-243, 10.1016/j.esr.2019.03.005 Ramírez et al., 2018 R. Ramírez, J.C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, O. Diaz Boletín estadístico de minas y energía 2018 Bogotá, Colombia (2018) Sagastume et al., 2020 A. Sagastume, J.J. Cabello Eras, L. Hens, C. Vandecasteele The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia J. Clean. Prod., 122317 (2020), 10.1016/j.jclepro.2020.122317 Sarkodie and Adams, 2020 S.A. Sarkodie, S. Adams Electricity access and income inequality in South Africa: evidence from Bayesian and NARDL analyses Energy Strateg. Rev., 29 (2020), p. 100480, 10.1016/j.esr.2020.100480 Shen et al., 2018 G. Shen, M.D. Hays, K.R. Smith, C. Williams, J.W. Faircloth, J.J. Jetter Evaluating the performance of household liquefied petroleum gas cookstoves Environ. Sci. Technol., 52 (2018), pp. 904-915, 10.1021/acs.est.7b05155 Smith and Avery, 2014 J. Smith, L. Avery The Potential for Small-Scale Biogas Digesters in Sub-SaharanAfrica to Improve Sustainable Rural Livelihoods Biomass and Bioenergy (2014), 10.1016/j.biombioe.2014.09.001 Subedi et al., 2014 M. Subedi, R.B. Matthews, M. Pogson, A. Abegaz, B.B. Balana, J. Oyesiku-Blakemore, J. Smith Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy, 70 (2014), pp. 87-98, 10.1016/j.biombioe.2014.02.029 Superservicios, 2017 Superservicios Zonas no interconectadas- ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2017 Bogotá, Colombia (2017) Surendra et al., 2014 K.C. Surendra, D. Takara, A.G. Hashimoto, S.K. Khanal Biogas as a sustainable energy source for developing countries: opportunities and challenges Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2013.12.015 Thomsen et al., 2014 S.T. Thomsen, H. Spliid, H. Østergård Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass Bioresour. Technol., 154 (2014), pp. 80-86, 10.1016/j.biortech.2013.12.029 UNDP, 2019 UNDP Córdoba. Retos y desafíos para el Desarrollo Sostenible (2019) UPME, 2020a UPME Plan Energetico Nacional 2020-2050 Bogotá, Colombia (2020) UPME, 2020b UPME Sistema de información eléctrico Colombiano Informes de cobertura [WWW Document]. Minist. Minas y energía. (2020) URL http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx, Accessed 20th Nov 2020 UPME, 2016a UPME Boletín Estadístico de Minas y energía 2012 – 2016, Boletín Estadístico de Minas y energía. Bogotá, Colombia (2016), 10.1017/CBO9781107415324.004 UPME, 2016b UPME Calculadora de emisiones [WWW Document] (2016) UPME, 2012 UPME Caracterización energética del sector residencial urbano y rural en Colombia Bogotá, Colombia (2012) UPME, 2011 UPME Determinación del consumo básico de subsistencia en el sector residencial y del consumo básico en los sectores industrial, comercial y hotelero en los departamentos de Guainía Vichada y Choco. Bogotá, Colombia (2011) Wang et al., 2016 C. Wang, Y. Zhang, L. Zhang, M. Pang Alternative policies to subsidize rural household biogas digesters Energy Pol., 93 (2016), pp. 187-195, 10.1016/j.enpol.2016.03.007 Wang et al., 2018 S. Wang, U. Jena, K.C. Das Biomethane production potential of slaughterhouse waste in the United States Energy Convers. Manag., 173 (2018), pp. 143-157, 10.1016/j.enconman.2018.07.059 World Bank, 2014 World Bank Towards Sustainable Peace, Poverty Eradication, and Shared Prosperity (2014) Washington DC Yasar et al., 2017 A. Yasar, S. Nazir, R. Rasheed, A.B. Tabinda, M. Nazar Economic review of different designs of biogas plants at household level in Pakistan Renew. Sustain. Energy Rev., 74 (2017), pp. 221-229, 10.1016/J.RSER.2017.01.128 Yepes et al., 2011 A. Yepes, D.A. Navarrete, J.F. Phillips, A.J. Duque, E. Cabrera, G. Galindo, D. Vargas, M. García, M.F. Ordoñez Estimación de las emisiones de dióxido de carbono generadas por deforestación durante el periodo 2005-2010 Bogotá, Colombia (2011) Yu et al., 2008 L. Yu, K. Yaoqiu, H. Ningsheng, W. Zhifeng, X. Lianzhong Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation Renew. Energy, 33 (2008), pp. 2027-2035, 10.1016/j.renene.2007.12.004 Zhang et al., 2013 L.X. Zhang, C.B. Wang, B. Song Carbon emission reduction potential of a typical household biogas system in rural China J. Clean. Prod., 47 (2013), pp. 415-421, 10.1016/j.jclepro.2012.06.021 |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
7 |
dc.rights.spa.fl_str_mv |
© 2022 The Authors. Published by Elsevier Ltd. Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2022 The Authors. Published by Elsevier Ltd. Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Córdoba |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd. |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2352728522000021 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/26f3d534-d2df-4c99-b235-1b2ffa464933/download https://repositorio.cuc.edu.co/bitstreams/ce5261cc-c702-4c48-b874-80479a403352/download https://repositorio.cuc.edu.co/bitstreams/4a2a2f3f-56d1-49ad-845e-795f1bb3f3b6/download https://repositorio.cuc.edu.co/bitstreams/72e7909e-2b45-4247-802f-8189ef986e05/download |
bitstream.checksum.fl_str_mv |
e30e9215131d99561d40d6b0abbe9bad fc6f6431fb2a13a9983efbf9ae81a34e 73bdb39cda11ebb30a90189346228da8 659eb4af753f82f41939d3a65e93dd02 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760760620056576 |
spelling |
Sagastume, AlexisMENDOZA FANDIÑO, JORGE MARIOCabello Eras, Juan JoséSOFAN GERMAN, STIVEN JAVIER2022-03-08T16:13:09Z2022-03-08T16:13:09Z20222352-7285https://hdl.handle.net/11323/9054https://doi.org/10.1016/j.deveng.2022.10009310.1016/j.deveng.2022.100093Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Modern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while two million people have either intermittent access or no access to electricity. This is particularly important in the department of Cordoba, where an average of 32% of the households relies on firewood for cooking, increasing to 66% of the households in rural areas. Furthermore, 20% of the rural population lack access to electricity. Therefore, this study aims at defining the biogas-based energy potential of the available agricultural and manure wastes in the department. To this end, governmental data is used to estimate the demand for firewood for cooking, the resulting GHG emissions, and the available agricultural and manure wastes. Overall, there are around 1.2 million t of agricultural wastes and 2.2 million t of manure yearly available in the department, representing an energy potential of 6687 TJ. Using 26% of the biogas-based energy potential identified suffices to support the 1334 TJ of biogas needed to replace cooking firewood and to supply the 390 TJ needed for household electricity generation. The use of biogas can reduce GHG emissions to 11% of the emissions resulting from cooking firewood. Polyethylene tubular digesters appear as the most indicated household technology, contrasted to geomembrane tubular digesters that need 2.4 times the initial capital investment while fixed dome digesters need 7.9 times the initial capital investment. Implementing household digesters to support the energy demand for cooking in the department, necessitates a minimum of 18 million USD, while the implementation of ‘digester + electric generator’ needs between 1.7 and 5.7 million USDdepending on the monthly demand of electricity of 60 kWh or 187 kWh.15 páginasapplication/pdfengElsevier Ltd.United Kingdom© 2022 The Authors. Published by Elsevier Ltd.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S2352728522000021CórdobaColombiaDevelopment EngineeringAdeoti et al., 2014 O. Adeoti, T.A. Ayelegun, S.O. Osho Nigeria biogas potential from livestock manure and its estimated climate value Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2014.05.005Bao et al., 2019 W. Bao, Y. Yang, T. Fu, G.H. Xie Estimation of Livestock Excrement and its Biogas Production Potential in China (2019), 10.1016/j.jclepro.2019.05.059Bedi et al., 2017 A.S. Bedi, R. Sparrow, L. Tasciotti The impact of a household biogas programme on energy use and expenditure in East Java Energy Econ., 68 (2017), pp. 66-76, 10.1016/j.eneco.2017.09.006Bhat et al., 2001 P.R. Bhat, H.N. Chanakya, N.H. Ravindranath Biogas plant dissemination: success story of Sirsi, India Energy Sustain. Dev., 5 (2001), pp. 39-46, 10.1016/S0973-0826(09)60019-3BISON, 2021 BISON Biogas generator [WWW document] URL https://www.alibaba.com/product-detail/Biogas-Generator-1kw-BISON-CHINA-Small_1600341334722.html?spm=a2700.7724857.normal_offer.d_image.3a1f5a776lhaPR&s=p (2021), Accessed 18th Nov 2021Bond and Templeton, 2011 T. Bond, M.R. Templeton History and future of domestic biogas plants in the developing world Energy Sustain. Dev. (2011), 10.1016/j.esd.2011.09.003Bruun et al., 2014 S. Bruun, L.S. Jensen, V.T. Khanh Vu, S. Sommer Small-scale household biogas digesters: an option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev., 33 (2014), pp. 736-741, 10.1016/j.rser.2014.02.033Carranza and Gutiérrez, 2012 J.Q. Carranza, C.C. Gutiérrez El fogón abierto de tres piedras en la península de Yucatán: tradición y transferencia tecnológica Rev. Pueblos y Front., 7 (2012), pp. 270-301Castro et al., 2017 L. Castro, H. Escalante, J. Jaimes-Estévez, L.J. Díaz, K. Vecino, G. Rojas, L. Mantilla Low cost digester monitoring under realistic conditions: rural use of biogas and digestate quality Bioresour. Technol., 239 (2017), pp. 311-317, 10.1016/j.biortech.2017.05.035Chakravarty and Tavoni, 2013 S. Chakravarty, M. Tavoni Energy poverty alleviation and climate change mitigation: is there a trade off? Energy Econ., 40 (2013), pp. 67-73, 10.1016/j.eneco.2013.09.022CML - Department of Industrial Ecology, 2016 CML - Department of Industrial Ecology CML-IA Characterisation Factors [WWW Document]. C. is a database that Contain. characterisation factors life cycle impact Assess. is easily read by C. Softw. program (2016)Consorcio Estrategia Rural Sostenible, 2019 Consorcio Estrategia Rural Sostenible Plan de sustitución progresiva de leña Bogotá, Colombia (2019)Cornejo and Wilkie, 2010 C. Cornejo, A.C. Wilkie Greenhouse gas emissions and biogas potential from livestock in Ecuador Energy Sustain. Dev., 14 (2010), pp. 256-266, 10.1016/j.esd.2010.09.008DANE, 2018 DANE Resultados del censo nacional de población y vivienda 2018 (2018) [WWW Document]. URL https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018, Accessed 9th Nov 2020Delgado et al., 2020 R. Delgado, T.B. Wild, R. Arguello, L. Clarke, G. Romero Options for Colombia's mid-century deep decarbonization strategy Energy Strateg. Rev., 32 (2020), p. 100525, 10.1016/j.esr.2020.100525Deng et al., 2020 L. Deng, Y. Liu, W. Wang Biogas Technology, Biogas Technology Springer, Singapore (2020), 10.1007/978-981-15-4940-3Dhingra et al., 2011 R. Dhingra, E.R. Christensen, Y. Liu, B. Zhong, C.-F. Wu, M.G. Yost, J.V. Remais Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China Environ. Sci. Technol., 45 (2011), pp. 2345-2352, 10.1021/es103142yDing et al., 2012 W. Ding, H. Niu, J. Chen, J. Du, Y. Wu Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China Appl. Energy, 97 (2012), pp. 16-23, 10.1016/j.apenergy.2011.12.017Dong et al., 2018 J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants Sci. Total Environ. J., 626 (2018), pp. 744-753, 10.1016/j.scitotenv.2018.01.151Fan et al., 2011 J. Fan, Y. tian Liang, A. jun Tao, K. rong Sheng, H.L. Ma, Y. Xu, C.S. Wang, W. Sun Energy policies for sustainable livelihoods and sustainable development of poor areas in China Energy Pol., 39 (2011), pp. 1200-1212, 10.1016/j.enpol.2010.11.048FAO, 2021 FAO Biogas Systems in Rwanda. A Critical Review FAO, Rome (2021), 10.4060/cb3409enFerrer-Martí et al., 2018 L. Ferrer-Martí, I. Ferrer, E. Sánchez, M. Garfí A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru Renew. Sustain. Energy Rev., 95 (2018), pp. 74-83, 10.1016/j.rser.2018.06.064Figueroa et al., 2017 A. Figueroa, F. Boshell, L. Velzen van, A. Anisie Biogas for Domestic Cooking: Technology Brief (2017) Abu DhabiFlesch et al., 2011 T.K. Flesch, R.L. Desjardins, D. Worth Fugitive methane emissions from an agricultural biodigester Biomass Bioenergy, 35 (2011), pp. 3927-3935, 10.1016/j.biombioe.2011.06.009Gaona et al., 2015 E.E. Gaona, C.L. Trujillo, J.A. Guacaneme Rural microgrids and its potential application in Colombia Renew. Sustain. Energy Rev., 51 (2015), pp. 125-137, 10.1016/j.rser.2015.04.176Garfí et al., 2014 M. Garfí, E. Cadena, I. Pérez, I. Ferrer Technical, economic and environmental assessment of household biogas digesters for rural communities Renew. Energy, 62 (2014), pp. 313-318, 10.1016/j.renene.2013.07.017Garfí et al., 2019 M. Garfí, L. Castro, N. Montero, H. Escalante, I. Ferrer Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: a life cycle assessment Bioresour. Technol., 274 (2019), pp. 541-548, 10.1016/j.biortech.2018.12.007Garfí et al., 2012 M. Garfí, L. Ferrer-Martí, E. Velo, I. Ferrer Evaluating benefits of low-cost household digesters for rural Andean communities Renew. Sustain. Energy Rev., 16 (2012), pp. 575-581, 10.1016/j.rser.2011.08.023GASNOVA, 2018 GASNOVA Reemplazar el consumo de leña , mediante la ampliación de la cobertura de gas licuado de petróleo (GLP) (2018)Gómez-Navarro and Ribó-Pérez, 2018 T. Gómez-Navarro, D. Ribó-Pérez Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia Renew. Sustain. Energy Rev., 90 (2018), pp. 131-141, 10.1016/j.rser.2018.03.015González-Eguino, 2015 M. González-Eguino Energy poverty: an overview Renew. Sustain. Energy Rev., 47 (2015), pp. 377-385, 10.1016/j.rser.2015.03.013Gonzalez-Salazar et al., 2014a M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for estimating biomass energy potential and its application to Colombia Appl. Energy, 136 (2014), pp. 781-796, 10.1016/j.apenergy.2014.07.004Gonzalez-Salazar et al., 2014b M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for biomass energy potential estimation: projections of future potential in Colombia Renew. Energy, 69 (2014), pp. 488-505, 10.1016/j.renene.2014.03.056Gunnerson and Stuckey, 1986 C. Gunnerson, D. Stuckey Integrated Resource Recovery-Anaerobic digestion Principles and Practices for Biogas Systems (1986) Washington DCHijazi et al., 2019 O. Hijazi, S. Mettenleiter, M. Samer, E. Abdelsalam, J.G. Wiecha, K.L. Ziegler, H. Bernhardt Life cycle assessment of biogas production in small-scale in Columbia 2019 ASABE Annual International Meeting, ASABE, Boston (2019), pp. 2-9, 10.13031/aim.201900099Hoffmann et al., 2018 C. Hoffmann, J.R. García Márquez, T. Krueger A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia Land Use Pol., 77 (2018), pp. 379-391, 10.1016/j.landusepol.2018.04.043Hountalas and Mavropoulos, 2010 D. Hountalas, G. Mavropoulos Potential for improving HD diesel truck engine fuel consumption using exhaust heat recovery techniques New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (2010), 10.5772/10428IDEAM, 2016 IDEAM Inventario nacional y departamental de gases efecto invernadero. Colombia Bogotá, Colombia (2016)IDEAM, PNUD, 2016 IDEAM, PNUD Inventario nacional y departamental de gases efecto invernadero -Colombia Bogotá, Colombia (2016)Ioannou-Ttofa et al., 2021 L. Ioannou-Ttofa, S. Foteinis, A. Seifelnasr Moustafa, E. Abdelsalam, M. Samer, D. Fatta-Kassinos Life cycle assessment of household biogas production in Egypt: influence of digester volume, biogas leakages, and digestate valorization as biofertilizer J. Clean. Prod., 286 (2021), p. 125468Jegede et al., 2019 A.O. Jegede, G. Zeeman, H. Bruning A review of mixing, design and loading conditions in household anaerobic digesters Crit. Rev. Environ. Sci. Technol., 49 (2019), pp. 2117-2153, 10.1080/10643389.2019.1607441Jelínek et al., 2021 M. Jelínek, J. Mazancová, D. Van Dung, L.D. Phung, J. Banout, H. Roubík Quantification of the impact of partial replacement of traditional cooking fuels by biogas on global warming: evidence from Vietnam J. Clean. Prod., 292 (2021), p. 126007, 10.1016/J.JCLEPRO.2021.126007Kamalimeera and Kirubakaran, 2021 N. Kamalimeera, V. Kirubakaran Prospects and restraints in biogas fed SOFC for rural energization: a critical review in indian perspective Renew. Sustain. Energy Rev., 143 (2021), p. 110914, 10.1016/j.rser.2021.110914Katuwal and Bohara, 2009 H. Katuwal, A.K. Bohara Biogas: a promising renewable technology and its impact on rural households in Nepal Renew. Sustain. Energy Rev. (2009), 10.1016/j.rser.2009.05.002Khan and Martin, 2016 E.U. Khan, A.R. Martin Review of biogas digester technology in rural Bangladesh Renew. Sustain. Energy Rev. (2016), 10.1016/j.rser.2016.04.044Ki-moon and Yumkella, 2010 B. Ki-moon, K.K. Yumkella Energy for a Sustainable Future (2010) New YorkKurchania et al., 2010 A.K. Kurchania, N.L. Panwar, S.D. Pagar Design and performance evaluation of biogas stove for community cooking application Int. J. Sustain. Energy, 29 (2010), pp. 116-123, 10.1080/14786460903497391org/10.1080/14786460903497391Li et al., 2016 F. Li, S. Cheng, H. Yu, D. Yang Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China J. Clean. Prod., 126 (2016), pp. 451-460, 10.1016/j.jclepro.2016.02.104Ltodo et al., 2007 I.N. Ltodo, G.E. Agyo, P. Yusuf Performance evaluation of a biogas stove for cooking in Nigeria J. Energy South Afr., 18 (2007), pp. 14-18, 10.17159/2413-3051/2007/v18i4a3391Lwiza et al., 2017 F. Lwiza, J. Mugisha, P.N. Walekhwa, J. Smith, B. Balana Dis-adoption of household biogas technologies in Central Uganda Energy Sustain. Dev., 37 (2017), pp. 124-132, 10.1016/j.esd.2017.01.006Mandal et al., 2018 S. Mandal, B.K. Das, N. Hoque Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh J. Clean. Prod., 200 (2018), pp. 12-27, 10.1016/j.jclepro.2018.07.257Mayer et al., 2019 F. Mayer, R. Bhandari, S. Gäth Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies Sci. Total Environ., 672 (2019), pp. 708-721, 10.1016/j.scitotenv.2019.03.449Mengistu et al., 2015 M.G. Mengistu, B. Simane, G. Eshete, T.S. Workneh A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia Renew. Sustain. Energy Rev., 48 (2015), pp. 306-316, 10.1016/j.rser.2015.04.026MINAGRICULTURA, 2021 MINAGRICULTURA Área, producción, rendimiento y participación municipal en el departamento por cultivo (2021) [WWW Document]MINAGRICULTURA, 2017 MINAGRICULTURA Anuario estadístico del sector agropecuario 2016 Bogotá, Colombia (2017)Minenergía, 2019 Minenergía Grupo de gestión de la información y servicio al ciudadano. lnforme documento en discusión Bogotá, Colombia (2019)Mulinda et al., 2013 C. Mulinda, Q. Hu, K. Pan Dissemination and problems of African biogas technology Energy Power Eng., 5 (2013), pp. 506-512, 10.4236/epe.2013.58055Mwirigi et al., 2014 J. Mwirigi, B.B. Balana, J. Mugisha, P. Walekhwa, R. Melamu, S. Nakami, P. Makenzi Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review Biomass Bioenergy, 70 (2014), pp. 17-25, 10.1016/j.biombioe.2014.02.018Nguyen et al., 2019 D. Nguyen, S. Nitayavardhana, C. Sawatdeenarunat, K.C. Surendra, S.K. Khanal Biogas production by anaerobic digestion: status and perspectives Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (second ed.), Elsevier Inc (2019), 10.1016/B978-0-12-816856-1.00031-2Ni and Nyns, 1996 J.Q. Ni, E.J. Nyns New concept for the evaluation of rural biogas management in developing countries Energy Convers. Manag., 37 (1996), pp. 1525-1534, 10.1016/0196-8904(95)00354-1Noorollahi et al., 2015 Y. Noorollahi, M. Kheirrouz, H. Farabi-Asl, H. Yousefi, A. Hajinezhad Biogas production potential from livestock manure in Iran Renew. Sustain. Energy Rev. (2015), 10.1016/j.rser.2015.04.190Orskov et al., 2014 E.R. Orskov, K. Yongabi Anchang, M. Subedi, J. Smith Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa Biomass Bioenergy, 70 (2014), pp. 4-16, 10.1016/j.biombioe.2014.02.028Pizarro-Loaiza et al., 2021 C.A. Pizarro-Loaiza, A. Anton, M. Torrellas, P. Torres-Lozada, J. Palatsi, A. Bonmatí Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas J. Clean. Prod., 126722 (2021), 10.1016/j.jclepro.2021.126722Pöschl et al., 2010 M. Pöschl, S. Ward, P. Owende Evaluation of energy efficiency of various biogas production and utilization pathways Appl. Energy, 87 (2010), pp. 3305-3321, 10.1016/j.apenergy.2010.05.011Rahut et al., 2019 D.B. Rahut, A. Ali, K.A. Mottaleb, J.P. Aryal Wealth, education and cooking-fuel choices among rural households in Pakistan Energy Strateg. Rev., 24 (2019), pp. 236-243, 10.1016/j.esr.2019.03.005Ramírez et al., 2018 R. Ramírez, J.C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, O. Diaz Boletín estadístico de minas y energía 2018 Bogotá, Colombia (2018)Sagastume et al., 2020 A. Sagastume, J.J. Cabello Eras, L. Hens, C. Vandecasteele The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia J. Clean. Prod., 122317 (2020), 10.1016/j.jclepro.2020.122317Sarkodie and Adams, 2020 S.A. Sarkodie, S. Adams Electricity access and income inequality in South Africa: evidence from Bayesian and NARDL analyses Energy Strateg. Rev., 29 (2020), p. 100480, 10.1016/j.esr.2020.100480Shen et al., 2018 G. Shen, M.D. Hays, K.R. Smith, C. Williams, J.W. Faircloth, J.J. Jetter Evaluating the performance of household liquefied petroleum gas cookstoves Environ. Sci. Technol., 52 (2018), pp. 904-915, 10.1021/acs.est.7b05155Smith and Avery, 2014 J. Smith, L. Avery The Potential for Small-Scale Biogas Digesters in Sub-SaharanAfrica to Improve Sustainable Rural Livelihoods Biomass and Bioenergy (2014), 10.1016/j.biombioe.2014.09.001Subedi et al., 2014 M. Subedi, R.B. Matthews, M. Pogson, A. Abegaz, B.B. Balana, J. Oyesiku-Blakemore, J. Smith Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy, 70 (2014), pp. 87-98, 10.1016/j.biombioe.2014.02.029Superservicios, 2017 Superservicios Zonas no interconectadas- ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2017 Bogotá, Colombia (2017)Surendra et al., 2014 K.C. Surendra, D. Takara, A.G. Hashimoto, S.K. Khanal Biogas as a sustainable energy source for developing countries: opportunities and challenges Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2013.12.015Thomsen et al., 2014 S.T. Thomsen, H. Spliid, H. Østergård Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass Bioresour. Technol., 154 (2014), pp. 80-86, 10.1016/j.biortech.2013.12.029UNDP, 2019 UNDP Córdoba. Retos y desafíos para el Desarrollo Sostenible (2019)UPME, 2020a UPME Plan Energetico Nacional 2020-2050 Bogotá, Colombia (2020)UPME, 2020b UPME Sistema de información eléctrico Colombiano Informes de cobertura [WWW Document]. Minist. Minas y energía. (2020) URL http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx, Accessed 20th Nov 2020UPME, 2016a UPME Boletín Estadístico de Minas y energía 2012 – 2016, Boletín Estadístico de Minas y energía. Bogotá, Colombia (2016), 10.1017/CBO9781107415324.004UPME, 2016b UPME Calculadora de emisiones [WWW Document] (2016)UPME, 2012 UPME Caracterización energética del sector residencial urbano y rural en Colombia Bogotá, Colombia (2012)UPME, 2011 UPME Determinación del consumo básico de subsistencia en el sector residencial y del consumo básico en los sectores industrial, comercial y hotelero en los departamentos de Guainía Vichada y Choco. Bogotá, Colombia (2011)Wang et al., 2016 C. Wang, Y. Zhang, L. Zhang, M. Pang Alternative policies to subsidize rural household biogas digesters Energy Pol., 93 (2016), pp. 187-195, 10.1016/j.enpol.2016.03.007Wang et al., 2018 S. Wang, U. Jena, K.C. Das Biomethane production potential of slaughterhouse waste in the United States Energy Convers. Manag., 173 (2018), pp. 143-157, 10.1016/j.enconman.2018.07.059World Bank, 2014 World Bank Towards Sustainable Peace, Poverty Eradication, and Shared Prosperity (2014) Washington DCYasar et al., 2017 A. Yasar, S. Nazir, R. Rasheed, A.B. Tabinda, M. Nazar Economic review of different designs of biogas plants at household level in Pakistan Renew. Sustain. Energy Rev., 74 (2017), pp. 221-229, 10.1016/J.RSER.2017.01.128Yepes et al., 2011 A. Yepes, D.A. Navarrete, J.F. Phillips, A.J. Duque, E. Cabrera, G. Galindo, D. Vargas, M. García, M.F. Ordoñez Estimación de las emisiones de dióxido de carbono generadas por deforestación durante el periodo 2005-2010 Bogotá, Colombia (2011)Yu et al., 2008 L. Yu, K. Yaoqiu, H. Ningsheng, W. Zhifeng, X. Lianzhong Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation Renew. Energy, 33 (2008), pp. 2027-2035, 10.1016/j.renene.2007.12.004Zhang et al., 2013 L.X. Zhang, C.B. Wang, B. Song Carbon emission reduction potential of a typical household biogas system in rural China J. Clean. Prod., 47 (2013), pp. 415-421, 10.1016/j.jclepro.2012.06.0211517Renewable energyAnaerobic digestionBiomass wastesFirewoodPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/26f3d534-d2df-4c99-b235-1b2ffa464933/downloade30e9215131d99561d40d6b0abbe9badMD52ORIGINALPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdfPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdfapplication/pdf7431774https://repositorio.cuc.edu.co/bitstreams/ce5261cc-c702-4c48-b874-80479a403352/downloadfc6f6431fb2a13a9983efbf9ae81a34eMD51TEXTPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.txtPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.txttext/plain76500https://repositorio.cuc.edu.co/bitstreams/4a2a2f3f-56d1-49ad-845e-795f1bb3f3b6/download73bdb39cda11ebb30a90189346228da8MD53THUMBNAILPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.jpgPotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia).pdf.jpgimage/jpeg14606https://repositorio.cuc.edu.co/bitstreams/72e7909e-2b45-4247-802f-8189ef986e05/download659eb4af753f82f41939d3a65e93dd02MD5411323/9054oai:repositorio.cuc.edu.co:11323/90542024-09-17 11:01:37.291https://creativecommons.org/licenses/by-nc-sa/4.0/© 2022 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |