An extended generalized q -extensions for the apostol type polynomials
Through a modification on the parameters associated with generating function of the q-extensions for the Apostol type polynomials of order and level m, we obtain some new results related to a unified presentation of the q-analog of the generalized Apostol type polynomials of order and level m. In ad...
- Autores:
-
Ramirez Quiroga, William David
Castilla, Letelier
Urieles Guerrero, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1450
- Acceso en línea:
- https://hdl.handle.net/11323/1450
https://repositorio.cuc.edu.co/
- Palabra clave:
- Polynomial
Identity
fermionic p-adic
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_3c669446b6e733386a7dbd008209d2f6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1450 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An extended generalized q -extensions for the apostol type polynomials |
title |
An extended generalized q -extensions for the apostol type polynomials |
spellingShingle |
An extended generalized q -extensions for the apostol type polynomials Polynomial Identity fermionic p-adic |
title_short |
An extended generalized q -extensions for the apostol type polynomials |
title_full |
An extended generalized q -extensions for the apostol type polynomials |
title_fullStr |
An extended generalized q -extensions for the apostol type polynomials |
title_full_unstemmed |
An extended generalized q -extensions for the apostol type polynomials |
title_sort |
An extended generalized q -extensions for the apostol type polynomials |
dc.creator.fl_str_mv |
Ramirez Quiroga, William David Castilla, Letelier Urieles Guerrero, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Ramirez Quiroga, William David Castilla, Letelier Urieles Guerrero, Alejandro |
dc.subject.eng.fl_str_mv |
Polynomial Identity fermionic p-adic |
topic |
Polynomial Identity fermionic p-adic |
description |
Through a modification on the parameters associated with generating function of the q-extensions for the Apostol type polynomials of order and level m, we obtain some new results related to a unified presentation of the q-analog of the generalized Apostol type polynomials of order and level m. In addition, we introduce some algebraic and differential properties for the q-analog of the generalized Apostol type polynomials of order and level m and the relation of these with the q-Stirling numbers of the second kind, the generalized q-Bernoulli polynomials of level m, the generalized q-Apostol type Bernoulli polynomials, the generalized q-Apostol type Euler polynomials, the generalized q-Apostol type Genocchi polynomials of order and level m, and the q-Bernstein polynomials. © 2018 Letelier Castilla et al. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-20T16:57:15Z |
dc.date.available.none.fl_str_mv |
2018-11-20T16:57:15Z |
dc.date.issued.none.fl_str_mv |
2018-05-22 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
10853375 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1450 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
10853375 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1450 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Hindawi Limited |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b286898a-c31b-4ffb-9c13-2cfff67d20be/download https://repositorio.cuc.edu.co/bitstreams/a38110ba-e497-4e93-8600-2e733e18d6be/download https://repositorio.cuc.edu.co/bitstreams/cada923b-2af6-4a91-9929-1c9cc34fb2cc/download https://repositorio.cuc.edu.co/bitstreams/2dab950a-eb2e-4e94-87fe-b512e4cebce5/download |
bitstream.checksum.fl_str_mv |
3a6c671772c9b53d1a9c2aeb225e8d19 8a4605be74aa9ea9d79846c1fba20a33 db9166b0c4a26270d0b0ac6f7369e0dd 8ae4acda4a88d47115475353993f0681 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760838157008896 |
spelling |
Ramirez Quiroga, William DavidCastilla, LetelierUrieles Guerrero, Alejandro2018-11-20T16:57:15Z2018-11-20T16:57:15Z2018-05-2210853375https://hdl.handle.net/11323/1450Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Through a modification on the parameters associated with generating function of the q-extensions for the Apostol type polynomials of order and level m, we obtain some new results related to a unified presentation of the q-analog of the generalized Apostol type polynomials of order and level m. In addition, we introduce some algebraic and differential properties for the q-analog of the generalized Apostol type polynomials of order and level m and the relation of these with the q-Stirling numbers of the second kind, the generalized q-Bernoulli polynomials of level m, the generalized q-Apostol type Bernoulli polynomials, the generalized q-Apostol type Euler polynomials, the generalized q-Apostol type Genocchi polynomials of order and level m, and the q-Bernstein polynomials. © 2018 Letelier Castilla et al.Ramirez Quiroga, William David-bf4bc42b-26df-4138-a148-817eeed985d3-600Castilla, Letelier-64efa057-d109-4186-ab45-2562b843f117-600Urieles Guerrero, Alejandro-86e8e84b-825d-4379-8d1a-137aa1342376-600engHindawi LimitedAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PolynomialIdentityfermionic p-adicAn extended generalized q -extensions for the apostol type polynomialsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALAn Extended Generalized q -Extensions for the Apostol Type Polynomials.pdfAn Extended Generalized q -Extensions for the Apostol Type Polynomials.pdfapplication/pdf1490435https://repositorio.cuc.edu.co/bitstreams/b286898a-c31b-4ffb-9c13-2cfff67d20be/download3a6c671772c9b53d1a9c2aeb225e8d19MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a38110ba-e497-4e93-8600-2e733e18d6be/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILAn Extended Generalized q -Extensions for the Apostol Type Polynomials.pdf.jpgAn Extended Generalized q -Extensions for the Apostol Type Polynomials.pdf.jpgimage/jpeg52027https://repositorio.cuc.edu.co/bitstreams/cada923b-2af6-4a91-9929-1c9cc34fb2cc/downloaddb9166b0c4a26270d0b0ac6f7369e0ddMD54TEXTAn Extended Generalized q -Extensions for the Apostol Type Polynomials.pdf.txtAn Extended Generalized q -Extensions for the Apostol Type Polynomials.pdf.txttext/plain52869https://repositorio.cuc.edu.co/bitstreams/2dab950a-eb2e-4e94-87fe-b512e4cebce5/download8ae4acda4a88d47115475353993f0681MD5511323/1450oai:repositorio.cuc.edu.co:11323/14502024-09-17 14:08:23.774open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |