Multispectral image analysis for the detection of diseases in coffee production

Coffee is produced in Latin America, Africa and Asia, and is one of the most traded agricultural products in international markets. The coffee agribusiness has been diversified all over the world and constitutes an important source of employment, income and foreign exchange in many producing countri...

Full description

Autores:
Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7293
Acceso en línea:
https://hdl.handle.net/11323/7293
https://repositorio.cuc.edu.co/
Palabra clave:
Coffee production
Detection of diseases
Multispectral image analysis
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_3b36c300d133cbb25abba0fc4759983a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7293
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Multispectral image analysis for the detection of diseases in coffee production
title Multispectral image analysis for the detection of diseases in coffee production
spellingShingle Multispectral image analysis for the detection of diseases in coffee production
Coffee production
Detection of diseases
Multispectral image analysis
title_short Multispectral image analysis for the detection of diseases in coffee production
title_full Multispectral image analysis for the detection of diseases in coffee production
title_fullStr Multispectral image analysis for the detection of diseases in coffee production
title_full_unstemmed Multispectral image analysis for the detection of diseases in coffee production
title_sort Multispectral image analysis for the detection of diseases in coffee production
dc.creator.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Varela Izquierdo, Noel
Pineda, Omar
dc.subject.spa.fl_str_mv Coffee production
Detection of diseases
Multispectral image analysis
topic Coffee production
Detection of diseases
Multispectral image analysis
description Coffee is produced in Latin America, Africa and Asia, and is one of the most traded agricultural products in international markets. The coffee agribusiness has been diversified all over the world and constitutes an important source of employment, income and foreign exchange in many producing countries. In recent years, its global supply has been affected by adverse weather factors and pests such as rust, which has been reflected in a highly volatile international market for this product [1]. This paper shows a method for the detection of coffee crops and the presence of pests and diseases in the production of these crops, using multispectral images from the Landsat 8 satellite.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-12T21:11:07Z
dc.date.available.none.fl_str_mv 2020-11-12T21:11:07Z
dc.date.issued.none.fl_str_mv 2020
dc.date.embargoEnd.none.fl_str_mv 2021-06-19
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2194-5357
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7293
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2194-5357
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7293
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Chemura, A., Mutanga, O., Dube, T.: Separability of coffee leaf rust infection levels with machine learning methods at sentinel-2 MSI spectral resolutions. Precis. Agric. 23 (2016)
Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19, 17–28 (2002)
Velásquez, D., Sánchez, A., Sarmiento, S., Toro, M., Maiza, M., Sierra, B.: A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: case study of the caturra variety in Colombia. Appl. Sci. 10(2), 697 (2020)
Mahlein, A.K., Steiner, U., Hillnhutter, C., Dehne, H.W., Oerke, E.C.: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8, 3 (2012)
De Oliveira Pires, M.S., de Carvalho Alves, M., Pozza, E.A.: Multispectral radiometric characterization of coffee rust epidemic in different irrigation management systems. Int. J. Appl. Earth Obs. Geoinf. 86, 102016 (2020)
Viloria, A.: Commercial strategies providers pharmaceutical chains for logistics cost reduction. Indian J. Sci. Technol. 8(1), Q16 (2016)
Thomas, S., Wahabzada, M., Kuska, M.T., Rascher, U., Mahlein, A.K.: Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct. Plant Biol. 44, 23–34 (2016)
Huang, W., Lamb, D.W., Niu, Z., Zhang, Y., Liu, L., Wang, J.: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 8(4–5), 187–197 (2007)
Da Rocha Miranda, J., de Carvalho Alves, M., Pozza, E.A., Neto, H.S.: Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 85, 101983 (2020)
Nzimande, N., Mutanga, O., Kiala, Z., Sibanda, M.: Mapping the spatial distribution of the yellowwood tree (Podocarpus henkelii) in the Weza-Ngele forest using the newly launched Sentinel-2 multispectral imager data. South Afr. Geogr. J. 1–19 (2020)
Marin, D.B., de Carvalho Alves, M., Pozza, E.A., Belan, L.L., de Oliveira Freitas, M.L.: Multispectral radiometric monitoring of bacterial blight of coffee. Precis. Agric. 20(5), 959–982 (2019)
Oliveira, A.J., Assis, G.A., Guizilini, V., Faria, E.R., Souza, J.R.: Segmenting and detecting nematode in coffee crops using aerial images. In: International Conference on Computer Vision Systems, pp. 274–283. Springer, Cham (2019)
Folch-Fortuny, A., Prats-Montalbán, J.M., Cubero, S., Blasco, J., Ferrer, A.: VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometr. Intell. Lab. Syst. 156, 241–248 (2016)
Chemura, A., Mutanga, O., Sibanda, M., Chidoko, P.: Machine learning prediction of coffee rust severity on leaves using spectroradiometer data. Trop. Plant Pathol. 43(2), 117–127 (2018)
Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)
Katsuhama, N., Imai, M., Naruse, N., Takahashi, Y.: Discrimination of areas infected with coffee leaf rust using a vegetation index. Remote Sens. Lett. 9(12), 1186–1194 (2018)
Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: International Conference on Sensing and Imaging, pp. 164–173. Springer, Cham(2018)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089716858&doi=10.1007%2f978-3-030-53036-5_21&partnerID=40&md5=a061f6acfd1ce0ab466fc6216508eea7
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/010a3bb8-111a-45b0-881d-d62e2f41160d/download
https://repositorio.cuc.edu.co/bitstreams/d956de5f-189f-4dab-9be9-6fe5dba047e6/download
https://repositorio.cuc.edu.co/bitstreams/72698e17-c575-40d9-a9e0-8cf25c18fcd2/download
https://repositorio.cuc.edu.co/bitstreams/a406ae62-8bdd-4959-a848-8408080118ed/download
https://repositorio.cuc.edu.co/bitstreams/26286e71-6d10-44d9-926d-99d9a64de4c5/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
36600a5cbba8af46b25ebf64f724f11a
e30e9215131d99561d40d6b0abbe9bad
97f11ad99bea319dc9c820fa07368b64
656d2ffe42657e7514c3fed13bf2d823
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166831251128320
spelling Silva, JesúsVarela Izquierdo, NoelPineda, Omar2020-11-12T21:11:07Z2020-11-12T21:11:07Z20202021-06-192194-5357https://hdl.handle.net/11323/7293Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Coffee is produced in Latin America, Africa and Asia, and is one of the most traded agricultural products in international markets. The coffee agribusiness has been diversified all over the world and constitutes an important source of employment, income and foreign exchange in many producing countries. In recent years, its global supply has been affected by adverse weather factors and pests such as rust, which has been reflected in a highly volatile international market for this product [1]. This paper shows a method for the detection of coffee crops and the presence of pests and diseases in the production of these crops, using multispectral images from the Landsat 8 satellite.Silva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089716858&doi=10.1007%2f978-3-030-53036-5_21&partnerID=40&md5=a061f6acfd1ce0ab466fc6216508eea7Coffee productionDetection of diseasesMultispectral image analysisMultispectral image analysis for the detection of diseases in coffee productionPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionChemura, A., Mutanga, O., Dube, T.: Separability of coffee leaf rust infection levels with machine learning methods at sentinel-2 MSI spectral resolutions. Precis. Agric. 23 (2016)Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Process. Mag. 19, 17–28 (2002)Velásquez, D., Sánchez, A., Sarmiento, S., Toro, M., Maiza, M., Sierra, B.: A method for detecting coffee leaf rust through wireless sensor networks, remote sensing, and deep learning: case study of the caturra variety in Colombia. Appl. Sci. 10(2), 697 (2020)Mahlein, A.K., Steiner, U., Hillnhutter, C., Dehne, H.W., Oerke, E.C.: Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 8, 3 (2012)De Oliveira Pires, M.S., de Carvalho Alves, M., Pozza, E.A.: Multispectral radiometric characterization of coffee rust epidemic in different irrigation management systems. Int. J. Appl. Earth Obs. Geoinf. 86, 102016 (2020)Viloria, A.: Commercial strategies providers pharmaceutical chains for logistics cost reduction. Indian J. Sci. Technol. 8(1), Q16 (2016)Thomas, S., Wahabzada, M., Kuska, M.T., Rascher, U., Mahlein, A.K.: Observation of plant–pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct. Plant Biol. 44, 23–34 (2016)Huang, W., Lamb, D.W., Niu, Z., Zhang, Y., Liu, L., Wang, J.: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 8(4–5), 187–197 (2007)Da Rocha Miranda, J., de Carvalho Alves, M., Pozza, E.A., Neto, H.S.: Detection of coffee berry necrosis by digital image processing of landsat 8 oli satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 85, 101983 (2020)Nzimande, N., Mutanga, O., Kiala, Z., Sibanda, M.: Mapping the spatial distribution of the yellowwood tree (Podocarpus henkelii) in the Weza-Ngele forest using the newly launched Sentinel-2 multispectral imager data. South Afr. Geogr. J. 1–19 (2020)Marin, D.B., de Carvalho Alves, M., Pozza, E.A., Belan, L.L., de Oliveira Freitas, M.L.: Multispectral radiometric monitoring of bacterial blight of coffee. Precis. Agric. 20(5), 959–982 (2019)Oliveira, A.J., Assis, G.A., Guizilini, V., Faria, E.R., Souza, J.R.: Segmenting and detecting nematode in coffee crops using aerial images. In: International Conference on Computer Vision Systems, pp. 274–283. Springer, Cham (2019)Folch-Fortuny, A., Prats-Montalbán, J.M., Cubero, S., Blasco, J., Ferrer, A.: VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometr. Intell. Lab. Syst. 156, 241–248 (2016)Chemura, A., Mutanga, O., Sibanda, M., Chidoko, P.: Machine learning prediction of coffee rust severity on leaves using spectroradiometer data. Trop. Plant Pathol. 43(2), 117–127 (2018)Amelec, V.: Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv. Sci. Lett. 21(5), 1406–1408 (2015)Katsuhama, N., Imai, M., Naruse, N., Takahashi, Y.: Discrimination of areas infected with coffee leaf rust using a vegetation index. Remote Sens. Lett. 9(12), 1186–1194 (2018)Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: International Conference on Sensing and Imaging, pp. 164–173. Springer, Cham(2018)PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/010a3bb8-111a-45b0-881d-d62e2f41160d/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALMULTISPECTRAL IMAGE ANALYSIS FOR THE DETECTION OF DISEASES IN COFFEE PRODUCTION.pdfMULTISPECTRAL IMAGE ANALYSIS FOR THE DETECTION OF DISEASES IN COFFEE PRODUCTION.pdfapplication/pdf5889https://repositorio.cuc.edu.co/bitstreams/d956de5f-189f-4dab-9be9-6fe5dba047e6/download36600a5cbba8af46b25ebf64f724f11aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/72698e17-c575-40d9-a9e0-8cf25c18fcd2/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMULTISPECTRAL IMAGE ANALYSIS FOR THE DETECTION OF DISEASES IN COFFEE PRODUCTION.pdf.jpgMULTISPECTRAL IMAGE ANALYSIS FOR THE DETECTION OF DISEASES IN COFFEE PRODUCTION.pdf.jpgimage/jpeg38294https://repositorio.cuc.edu.co/bitstreams/a406ae62-8bdd-4959-a848-8408080118ed/download97f11ad99bea319dc9c820fa07368b64MD54TEXTMULTISPECTRAL IMAGE ANALYSIS FOR THE DETECTION OF DISEASES IN COFFEE PRODUCTION.pdf.txtMULTISPECTRAL IMAGE ANALYSIS FOR THE DETECTION OF DISEASES IN COFFEE PRODUCTION.pdf.txttext/plain943https://repositorio.cuc.edu.co/bitstreams/26286e71-6d10-44d9-926d-99d9a64de4c5/download656d2ffe42657e7514c3fed13bf2d823MD5511323/7293oai:repositorio.cuc.edu.co:11323/72932024-09-17 14:15:17.973http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==