Algorithms for the control of key performance indicators for smart cities

In addition to the increase in the population in cities, there is an increase in the demand for resources and services, and phenomena such as the lack of social inclusion and inequity appear. In order to mitigate these problems, Smart Cities propose the development of measurement strategies that sup...

Full description

Autores:
Silva, Jesus
Mojica, Julio
Piñeres Castillo, Aurora Patricia
Rojas, Rafael
Acosta, Sandra
Garcia Guliany, Jesus
Steffens Sanabria, Ernesto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7789
Acceso en línea:
https://hdl.handle.net/11323/7789
https://doi.org/10.1016/j.procs.2020.03.099
https://repositorio.cuc.edu.co/
Palabra clave:
smart cities
open data for cities evaluation
JSON documents of key
performance indicators
NOSQL
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_3a9adf3afe7e7d1b8510b0444118e7ac
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7789
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Algorithms for the control of key performance indicators for smart cities
title Algorithms for the control of key performance indicators for smart cities
spellingShingle Algorithms for the control of key performance indicators for smart cities
smart cities
open data for cities evaluation
JSON documents of key
performance indicators
NOSQL
title_short Algorithms for the control of key performance indicators for smart cities
title_full Algorithms for the control of key performance indicators for smart cities
title_fullStr Algorithms for the control of key performance indicators for smart cities
title_full_unstemmed Algorithms for the control of key performance indicators for smart cities
title_sort Algorithms for the control of key performance indicators for smart cities
dc.creator.fl_str_mv Silva, Jesus
Mojica, Julio
Piñeres Castillo, Aurora Patricia
Rojas, Rafael
Acosta, Sandra
Garcia Guliany, Jesus
Steffens Sanabria, Ernesto
dc.contributor.author.spa.fl_str_mv Silva, Jesus
Mojica, Julio
Piñeres Castillo, Aurora Patricia
Rojas, Rafael
Acosta, Sandra
Garcia Guliany, Jesus
Steffens Sanabria, Ernesto
dc.subject.spa.fl_str_mv smart cities
open data for cities evaluation
JSON documents of key
performance indicators
NOSQL
topic smart cities
open data for cities evaluation
JSON documents of key
performance indicators
NOSQL
description In addition to the increase in the population in cities, there is an increase in the demand for resources and services, and phenomena such as the lack of social inclusion and inequity appear. In order to mitigate these problems, Smart Cities propose the development of measurement strategies that support decision-making, which implies the management of an indefinite number of indicators. This paper presents the design and a prototype that implements the algorithms of a general scheme for the control of key performance indicators for Smart Cities.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-28T20:00:04Z
dc.date.available.none.fl_str_mv 2021-01-28T20:00:04Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7789
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.procs.2020.03.099
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7789
https://doi.org/10.1016/j.procs.2020.03.099
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1 Chourabi, H., Nam, T., Gil-Garcia, J.R., Mellouli, S., Pardo, T.A., Scholl, H.: Understanding Smart Cities: An Integrative Framework. In: 45th Hawaii International Conference on System Sciences, pp. 1–9 (2011)
2 Townsend Anthony M. Smart cities: Big data, civic hackers, and the quest for a new utopia, WW Norton & Company (2013)
3 ITU: General specifications and KPIs. Pp. 1–34 (2012)
4 Moonen T., Clark G. The Business of Cities 2013, Jones Lang Lasalle IP, INC (2013)
5 Cohen, B.: Boyd Cohen, https://www.smart-circle.org/smartcity/blog/boyd-cohen-the- smart-city-wheel/37120, S.I.D.: ISO37120
6 Institute for Urban Strategies the Mori Memorial Foundation: Global Power City 2017. (2017)
7 Weidema Bo P., et al. Carbon footprint: a catalyst for life cycle assessment? Journal of industrial Ecology, 12 (1) (2008), pp. 3-6
8 Estrada E., Maciel R., Ochoa A., Bernabe-Loranca B., Oliva D., Larios V. Smart City Visualization Tool for the Open Data Georeferenced Analysis Utilizing Machine Learning International Journal of Combinatorial Optimization Problems and Informatics, 9 (2018), pp. 25-40
9 Viloria A., Lis-Gutiérrez J.P., Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)
Herrmann P., Svae A., Svendsen H.H., Blech J.O. Collaborative Model-based Development of a Remote Train Monitoring System, ENASE (2016), pp. 383-390 (April)
11 Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernández, L., & Cali, E.G. (2018, June). Database performance tuning and query optimization. In International Conference on Data Mining and Big Data (pp. 3-11). Springer, Cham.
12 Viloria Amelec, et al. Integration of Data Mining Techniques to PostgreSQL Database Manager System Procedia Computer Science, 155 (2019), pp. 575-580
13 Gaurav, G., Karanjit, S., Ramkumar, K.R.: A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) Presented at the March 21 (2017)
14 Deng, X., Zhang, Y., Kang, B., Wu, J., Sun, X., & Deng, Y.: An application of genetic algorithm for university course timetabling problem, pp. 2119-2122, doi:10.1109/CCDC.2011.5968555 (2011)
15 Soria-Alcaraz Jorge A., Martín C., Héctor P., Sotelo-Figueroa M.A. Comparison of metaheuristic algorithms with a methodology of design for the evaluation of hard constraints over the course timetabling problem, Springer Berlin Heidel- berg, Berlin, Heidelberg (2013), pp. 289-302 doi:10.1007/978-3-642-33021-6_23
16 Viloria Amelec, Lezama Omar Bonerge Pineda Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs Procedia Computer Science, 151 (2019), pp. 1201-1206
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050920305378#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9454018f-6c08-49ea-9870-2fb45264c4cf/download
https://repositorio.cuc.edu.co/bitstreams/9c1d462b-0912-4d4c-8aab-a3785bb5ee02/download
https://repositorio.cuc.edu.co/bitstreams/ad3a089f-36f9-4c98-95bd-c30aa22eecf4/download
https://repositorio.cuc.edu.co/bitstreams/d574c5d0-fb80-401e-a15c-ac1d01df0d3d/download
https://repositorio.cuc.edu.co/bitstreams/ed035422-3af8-49af-b2d2-2a528a616b9e/download
https://repositorio.cuc.edu.co/bitstreams/354a6967-2f20-48c9-858e-1de5f8d750b5/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
7b25c22ff1d0db77dbe9bd4d407382b3
2dc90f00543dbb01f7c50a57680e0290
2dc90f00543dbb01f7c50a57680e0290
e92086c70c1f20379c08f348070e9825
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166850375057408
spelling Silva, JesusMojica, JulioPiñeres Castillo, Aurora PatriciaRojas, RafaelAcosta, SandraGarcia Guliany, JesusSteffens Sanabria, Ernesto2021-01-28T20:00:04Z2021-01-28T20:00:04Z2020https://hdl.handle.net/11323/7789https://doi.org/10.1016/j.procs.2020.03.099Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In addition to the increase in the population in cities, there is an increase in the demand for resources and services, and phenomena such as the lack of social inclusion and inequity appear. In order to mitigate these problems, Smart Cities propose the development of measurement strategies that support decision-making, which implies the management of an indefinite number of indicators. This paper presents the design and a prototype that implements the algorithms of a general scheme for the control of key performance indicators for Smart Cities.Silva, JesusMojica, JulioPiñeres Castillo, Aurora Patricia-will be generated-orcid-0000-0003-2445-8297-600Rojas, RafaelAcosta, SandraGarcia Guliany, JesusSteffens Sanabria, Ernestoapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer Sciencehttps://www.sciencedirect.com/science/article/pii/S1877050920305378#!smart citiesopen data for cities evaluationJSON documents of keyperformance indicatorsNOSQLAlgorithms for the control of key performance indicators for smart citiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1 Chourabi, H., Nam, T., Gil-Garcia, J.R., Mellouli, S., Pardo, T.A., Scholl, H.: Understanding Smart Cities: An Integrative Framework. In: 45th Hawaii International Conference on System Sciences, pp. 1–9 (2011)2 Townsend Anthony M. Smart cities: Big data, civic hackers, and the quest for a new utopia, WW Norton & Company (2013)3 ITU: General specifications and KPIs. Pp. 1–34 (2012)4 Moonen T., Clark G. The Business of Cities 2013, Jones Lang Lasalle IP, INC (2013)5 Cohen, B.: Boyd Cohen, https://www.smart-circle.org/smartcity/blog/boyd-cohen-the- smart-city-wheel/37120, S.I.D.: ISO371206 Institute for Urban Strategies the Mori Memorial Foundation: Global Power City 2017. (2017)7 Weidema Bo P., et al. Carbon footprint: a catalyst for life cycle assessment? Journal of industrial Ecology, 12 (1) (2008), pp. 3-68 Estrada E., Maciel R., Ochoa A., Bernabe-Loranca B., Oliva D., Larios V. Smart City Visualization Tool for the Open Data Georeferenced Analysis Utilizing Machine Learning International Journal of Combinatorial Optimization Problems and Informatics, 9 (2018), pp. 25-409 Viloria A., Lis-Gutiérrez J.P., Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018)Herrmann P., Svae A., Svendsen H.H., Blech J.O. Collaborative Model-based Development of a Remote Train Monitoring System, ENASE (2016), pp. 383-390 (April)11 Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernández, L., & Cali, E.G. (2018, June). Database performance tuning and query optimization. In International Conference on Data Mining and Big Data (pp. 3-11). Springer, Cham.12 Viloria Amelec, et al. Integration of Data Mining Techniques to PostgreSQL Database Manager System Procedia Computer Science, 155 (2019), pp. 575-58013 Gaurav, G., Karanjit, S., Ramkumar, K.R.: A detailed analysis of data consistency concepts in data exchange formats (JSON & XML) Presented at the March 21 (2017)14 Deng, X., Zhang, Y., Kang, B., Wu, J., Sun, X., & Deng, Y.: An application of genetic algorithm for university course timetabling problem, pp. 2119-2122, doi:10.1109/CCDC.2011.5968555 (2011)15 Soria-Alcaraz Jorge A., Martín C., Héctor P., Sotelo-Figueroa M.A. Comparison of metaheuristic algorithms with a methodology of design for the evaluation of hard constraints over the course timetabling problem, Springer Berlin Heidel- berg, Berlin, Heidelberg (2013), pp. 289-302 doi:10.1007/978-3-642-33021-6_2316 Viloria Amelec, Lezama Omar Bonerge Pineda Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs Procedia Computer Science, 151 (2019), pp. 1201-1206PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/9454018f-6c08-49ea-9870-2fb45264c4cf/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9c1d462b-0912-4d4c-8aab-a3785bb5ee02/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALAlgorithms for the control of key performance indicators for smart cities.pdfAlgorithms for the control of key performance indicators for smart cities.pdfapplication/pdf99026https://repositorio.cuc.edu.co/bitstreams/ad3a089f-36f9-4c98-95bd-c30aa22eecf4/download7b25c22ff1d0db77dbe9bd4d407382b3MD51THUMBNAILAlgorithms for the control of key performance indicators for smart cities.pdf.jpgAlgorithms for the control of key performance indicators for smart cities.pdf.jpgimage/jpeg27098https://repositorio.cuc.edu.co/bitstreams/d574c5d0-fb80-401e-a15c-ac1d01df0d3d/download2dc90f00543dbb01f7c50a57680e0290MD54THUMBNAILAlgorithms for the control of key performance indicators for smart cities.pdf.jpgAlgorithms for the control of key performance indicators for smart cities.pdf.jpgimage/jpeg27098https://repositorio.cuc.edu.co/bitstreams/ed035422-3af8-49af-b2d2-2a528a616b9e/download2dc90f00543dbb01f7c50a57680e0290MD54TEXTAlgorithms for the control of key performance indicators for smart cities.pdf.txtAlgorithms for the control of key performance indicators for smart cities.pdf.txttext/plain975https://repositorio.cuc.edu.co/bitstreams/354a6967-2f20-48c9-858e-1de5f8d750b5/downloade92086c70c1f20379c08f348070e9825MD5511323/7789oai:repositorio.cuc.edu.co:11323/77892024-09-17 14:17:57.18http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==