Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties

This study is intended to improve the methodology to calculate the tensile properties of natural coconut fiber and increasing confidence in the use of sustainable natural fibers as reinforcing in composites used for different components in the naval industry. Coconut fiber is an agribusiness by-prod...

Full description

Autores:
Mendoza Quiroga, Ricardo Andres
Mercado Caruso, Nohora Nubia
Fábregas Villegas, Jonathan
Villa Domínguez, Jennifer
Jairo, Chimento
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9395
Acceso en línea:
https://hdl.handle.net/11323/9395
https://doi.org/10.1080/15440478.2022.2044962
https://repositorio.cuc.edu.co/
Palabra clave:
Coconut
Fiber diameter
Lumen
Binarization
Mechanical properties
Maximum stress
Young´s modulus
椰子
纤维直径
流明
二值化
力学性能
最大应力
杨氏模量
Rights
embargoedAccess
License
© 2022 Taylor & Francis
id RCUC2_3999376bd26c831eeffd349d61e2e5be
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9395
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
title Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
spellingShingle Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
Coconut
Fiber diameter
Lumen
Binarization
Mechanical properties
Maximum stress
Young´s modulus
椰子
纤维直径
流明
二值化
力学性能
最大应力
杨氏模量
title_short Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
title_full Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
title_fullStr Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
title_full_unstemmed Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
title_sort Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
dc.creator.fl_str_mv Mendoza Quiroga, Ricardo Andres
Mercado Caruso, Nohora Nubia
Fábregas Villegas, Jonathan
Villa Domínguez, Jennifer
Jairo, Chimento
dc.contributor.author.spa.fl_str_mv Mendoza Quiroga, Ricardo Andres
Mercado Caruso, Nohora Nubia
Fábregas Villegas, Jonathan
Villa Domínguez, Jennifer
Jairo, Chimento
dc.subject.proposal.eng.fl_str_mv Coconut
Fiber diameter
Lumen
Binarization
Mechanical properties
Maximum stress
Young´s modulus
topic Coconut
Fiber diameter
Lumen
Binarization
Mechanical properties
Maximum stress
Young´s modulus
椰子
纤维直径
流明
二值化
力学性能
最大应力
杨氏模量
dc.subject.proposal.zho.fl_str_mv 椰子
纤维直径
流明
二值化
力学性能
最大应力
杨氏模量
description This study is intended to improve the methodology to calculate the tensile properties of natural coconut fiber and increasing confidence in the use of sustainable natural fibers as reinforcing in composites used for different components in the naval industry. Coconut fiber is an agribusiness by-product that has been shown to have the potential for the development of new materials. The morphology of different species of coconut fiber was studied, and their mechanical tensile properties were determined. The coconut fibers were tested under direct tension in a universal testing machine, and the cross-sectional area of the fibers was calculated using images obtained in an optical microscope and a scanning electron microscope. The study assessed the incidence of key factors to determine coconut fiber mechanical tensile properties including different area measuring methods and the percentage of lumens present through an image analysis software called ImageJ. The results indicate that coconut fiber has a round-shaped cross-section, and the percentage of lumens is between 15% and 27%. Therefore, the effective area is reduced increasing the fiber’s ultimate resistance to tension.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-22T12:59:06Z
dc.date.available.none.fl_str_mv 2022-07-22T12:59:06Z
2023-03-05
dc.date.issued.none.fl_str_mv 2022-03-05
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Ricardo Mendoza-Quiroga, Nohora Mercado-Caruso, Jonathan Fabregas Villegas, Jennifer Villa Domínguez & Jairo Chimento (2022): Effect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties, Journal of Natural Fibers, DOI: 10.1080/15440478.2022.2044962
dc.identifier.issn.spa.fl_str_mv 1544-0478
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9395
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1080/15440478.2022.2044962
dc.identifier.doi.spa.fl_str_mv 10.1080/15440478.2022.2044962
dc.identifier.eissn.spa.fl_str_mv 1544-046X
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Ricardo Mendoza-Quiroga, Nohora Mercado-Caruso, Jonathan Fabregas Villegas, Jennifer Villa Domínguez & Jairo Chimento (2022): Effect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties, Journal of Natural Fibers, DOI: 10.1080/15440478.2022.2044962
1544-0478
10.1080/15440478.2022.2044962
1544-046X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9395
https://doi.org/10.1080/15440478.2022.2044962
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Natural Fibers
dc.relation.references.spa.fl_str_mv Ali, M. 2011. Coconut fibre: A versatile material and its applications. Journal of Civil Engineerng and Construction Technology 2 (9):189–97. doi:https://doi.org/10.5897/JCECT.9000009.
Alves, M., T. Castro, O. Martins, and F. Andrade. 2013. The effect of fiber morphology on the tensile strength of natural fibers. Jmr&t 2 (2):149–52. doi:https://doi.org/10.1016/j.jmrt.2013.02.003.
Babu, R., K. Chethan, C. Kunchi, and S. Vadlamani. 2019. Tensile testing of single fibres. Procedia Structural Integrity 14:150–57. doi:https://doi.org/10.1016/j.prostr.2019.05.020.
Carvalho, K., D. Mulinari, H. Voorwald, and M. Cioffi. 2010. Chemical modification effect on the mechanical properties of hips /coconut fibers composites. BioResources 5 (2):1143–55.
Chandramohan, D., and K. Marimuthu. 2011. A review of natural fibers. Ijrras 8 (2):194–206.
Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 1–12. doi:https://doi.org/10.1080/15440478.2020.1848738.
Defoirdt, N., S. Biswas, L. Vriese, L. Tran, J. Van, Q. Ahsan, L. Gorbatikh, A. Van, and I. Verpoest. 2010. Assessment of the tensile properties of coir, bamboo and jute fibre. Composite Part A: Applied Science and Manufacturing 15 (2):588–95. doi:https://doi.org/10.1016/j.compositesa.2010.01.005.
Eveirtt, N., N. Aboulkhair, and M. Clifford. 2013. Looking for links between natural fibres’ structures and their physical properties. International Conference on Natural Fibers-Sustainable Materials for Advanced Applications, Guimarães (Portugal): 1–10.
Fernandez, J. 2012. Flax fiber reinforced concrete-a natural fiber. WIT Press 4:193–207.
Hamad, S., N. Stehling, C. Holland, J. Foreman, and C. Rodenburg. 2017. Low-Voltage SEM of natural plant fibers: Microstructure properties (Surface and cross-section) and their link to the tensile properties. Procedia Engineering 200:295–302. doi:https://doi.org/10.1016/j.proeng.2017.07.042.
Hossain, R., A. Islam, V. Vuure, and I. Verpoest. 2014. Quantitative analysis of hollow lumen in jute. Procedia Engineering 90:52–57. doi:https://doi.org/10.1016/j.proeng.2014.11.813.
Kommula, V., K. Obi, D. Shukla, and T. Marwala. 2013. “Morphological, structural and thermal characterization of acetic acid modified and unmodified Napier grass fiber strands.” 7th International Conference on Intelligent Systems and Control, Coimbatore, Tamil Nadu, India: 506–10. doi:https://doi.org/10.1109/ISCO.2013.6481207.
Mukherjee, P., and H. Satyanarayana. 1984. Structure and properties of some vegetable fibres, Part 1 sisal fibre. Journal of Materials Science 19:3925–34. doi:https://doi.org/10.1007/BF00980755.
Munawar, S., K. Umemura, and S. Kawai. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53:108–13. doi:https://doi.org/10.1007/s10086-006-0836-x.
Pickering, K., M. Aruan, and T. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:https://doi.org/10.1016/j.compositesa.2015.08.038.
Satyanarayana, K. 2010. Biodegradable polymer composites based on Brazilian lignocellulosic. Revista Matéria 2 (9):189–97.
Shahzad, A. 2013. A study in physical and mechanical properties of hemp fibres. Advances in Materials Science and Engineering 2013:1–9. doi:https://doi.org/10.1155/2013/325085.
Silva, F., C. Nikhilesh, and R. Toledo. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68 (15):3438–43. doi:https://doi.org/10.1016/j.compscitech.2008.10.001.
Thomason, J., and J. Carruthers. 2012. Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. Journal of Biobased Materials and Bioenergy 6 (4):424–30. doi:https://doi.org/10.1166/jbmb.2012.1231.
Verma, D., K. Lim, and V. Vimal. 2020. Interfacial studies of natural fiber-reinforced particulate thermoplastic composites and their mechanical properties. Journal of Natural Fibers 1–28. doi:https://doi.org/10.1080/15440478.2020.1808147.
Waifielate, A., and B. Oluseun. 2008. “Mechanical property evaluation of coconut fibre.” Master´s degree thesis, Blekinge Institute of technology.
Wei, H., T. Thatt, S. Florence, and J. Denault. 2009. An improved method for single tensile test of natural fibers. Polymer Engineering and Science 50 (4):819–25. doi:https://doi.org/10.1002/pen.21593.
Yusoff, R., H. Takagi, and A. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod 94:562–73. doi:https://doi.org/10.1016/j.indcrop.2016.09.017.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.rights.spa.fl_str_mv © 2022 Taylor & Francis
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2022 Taylor & Francis
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 14 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Ltd.
dc.publisher.place.spa.fl_str_mv United States
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/15440478.2022.2044962?_gl=1*5vbjq5*_ga*MTQ1Mjg0OTI4MC4xNjU2NjE1NDc2*_ga_0HYE8YG0M6*MTY1ODQzMDMyMC4yLjEuMTY1ODQzMDM1My4w&_ga=2.233990622.1787409220.1658430320-1452849280.1656615476
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/fd6f30c6-429b-4d39-af48-572e12fbf7f1/download
https://repositorio.cuc.edu.co/bitstreams/26d75490-46cd-4a54-a98f-926eca73b987/download
https://repositorio.cuc.edu.co/bitstreams/09b2bcd6-dad9-484e-bcda-4b1763c838fb/download
https://repositorio.cuc.edu.co/bitstreams/1d9d2ca1-3cd3-4a78-a516-8a7ba4a0b3d0/download
bitstream.checksum.fl_str_mv b3c07a9402073ef45e6908c12dbc03c8
e30e9215131d99561d40d6b0abbe9bad
f57df168a60d186671cc8ce9844646e6
5ac934fa9a38fb11c87bd48855d66516
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760666890993664
spelling Mendoza Quiroga, Ricardo AndresMercado Caruso, Nohora NubiaFábregas Villegas, JonathanVilla Domínguez, JenniferJairo, Chimento2022-07-22T12:59:06Z2023-03-052022-07-22T12:59:06Z2022-03-05Ricardo Mendoza-Quiroga, Nohora Mercado-Caruso, Jonathan Fabregas Villegas, Jennifer Villa Domínguez & Jairo Chimento (2022): Effect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties, Journal of Natural Fibers, DOI: 10.1080/15440478.2022.20449621544-0478https://hdl.handle.net/11323/9395https://doi.org/10.1080/15440478.2022.204496210.1080/15440478.2022.20449621544-046XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study is intended to improve the methodology to calculate the tensile properties of natural coconut fiber and increasing confidence in the use of sustainable natural fibers as reinforcing in composites used for different components in the naval industry. Coconut fiber is an agribusiness by-product that has been shown to have the potential for the development of new materials. The morphology of different species of coconut fiber was studied, and their mechanical tensile properties were determined. The coconut fibers were tested under direct tension in a universal testing machine, and the cross-sectional area of the fibers was calculated using images obtained in an optical microscope and a scanning electron microscope. The study assessed the incidence of key factors to determine coconut fiber mechanical tensile properties including different area measuring methods and the percentage of lumens present through an image analysis software called ImageJ. The results indicate that coconut fiber has a round-shaped cross-section, and the percentage of lumens is between 15% and 27%. Therefore, the effective area is reduced increasing the fiber’s ultimate resistance to tension.这项研究旨在改进计算天然椰子纤维拉伸性能的方法, 并增加使用可持续天然纤维作为增强材料用于海军工业不同组件的信心. 椰子纤维是农业综合企业的副产品, 已被证明具有开发新材料的潜力. 研究了不同种类椰子纤维的形态, 测定了椰子纤维的机械拉伸性能. 椰子纤维在万能试验机上进行直接拉伸试验, 并使用光学显微镜和扫描电子显微镜获得的图像计算纤维的横截面积. 该研究评估了确定椰子纤维机械拉伸性能的关键因素的发生率, 包括不同的面积测量方法, 以及通过名为 的图像分析软件显示的管腔百分比. 结果表明, 椰子纤维的横截面呈圆形, 管腔百分比在15%到27%之间. 因此, 有效面积减小, 增加了纤维的极限抗张力.14 Páginasapplication/pdfengTaylor and Francis Ltd.United States© 2022 Taylor & FrancisAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEffect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile propertiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.tandfonline.com/doi/full/10.1080/15440478.2022.2044962?_gl=1*5vbjq5*_ga*MTQ1Mjg0OTI4MC4xNjU2NjE1NDc2*_ga_0HYE8YG0M6*MTY1ODQzMDMyMC4yLjEuMTY1ODQzMDM1My4w&_ga=2.233990622.1787409220.1658430320-1452849280.1656615476Journal of Natural FibersAli, M. 2011. Coconut fibre: A versatile material and its applications. Journal of Civil Engineerng and Construction Technology 2 (9):189–97. doi:https://doi.org/10.5897/JCECT.9000009.Alves, M., T. Castro, O. Martins, and F. Andrade. 2013. The effect of fiber morphology on the tensile strength of natural fibers. Jmr&t 2 (2):149–52. doi:https://doi.org/10.1016/j.jmrt.2013.02.003.Babu, R., K. Chethan, C. Kunchi, and S. Vadlamani. 2019. Tensile testing of single fibres. Procedia Structural Integrity 14:150–57. doi:https://doi.org/10.1016/j.prostr.2019.05.020.Carvalho, K., D. Mulinari, H. Voorwald, and M. Cioffi. 2010. Chemical modification effect on the mechanical properties of hips /coconut fibers composites. BioResources 5 (2):1143–55.Chandramohan, D., and K. Marimuthu. 2011. A review of natural fibers. Ijrras 8 (2):194–206.Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 1–12. doi:https://doi.org/10.1080/15440478.2020.1848738.Defoirdt, N., S. Biswas, L. Vriese, L. Tran, J. Van, Q. Ahsan, L. Gorbatikh, A. Van, and I. Verpoest. 2010. Assessment of the tensile properties of coir, bamboo and jute fibre. Composite Part A: Applied Science and Manufacturing 15 (2):588–95. doi:https://doi.org/10.1016/j.compositesa.2010.01.005.Eveirtt, N., N. Aboulkhair, and M. Clifford. 2013. Looking for links between natural fibres’ structures and their physical properties. International Conference on Natural Fibers-Sustainable Materials for Advanced Applications, Guimarães (Portugal): 1–10.Fernandez, J. 2012. Flax fiber reinforced concrete-a natural fiber. WIT Press 4:193–207.Hamad, S., N. Stehling, C. Holland, J. Foreman, and C. Rodenburg. 2017. Low-Voltage SEM of natural plant fibers: Microstructure properties (Surface and cross-section) and their link to the tensile properties. Procedia Engineering 200:295–302. doi:https://doi.org/10.1016/j.proeng.2017.07.042.Hossain, R., A. Islam, V. Vuure, and I. Verpoest. 2014. Quantitative analysis of hollow lumen in jute. Procedia Engineering 90:52–57. doi:https://doi.org/10.1016/j.proeng.2014.11.813.Kommula, V., K. Obi, D. Shukla, and T. Marwala. 2013. “Morphological, structural and thermal characterization of acetic acid modified and unmodified Napier grass fiber strands.” 7th International Conference on Intelligent Systems and Control, Coimbatore, Tamil Nadu, India: 506–10. doi:https://doi.org/10.1109/ISCO.2013.6481207.Mukherjee, P., and H. Satyanarayana. 1984. Structure and properties of some vegetable fibres, Part 1 sisal fibre. Journal of Materials Science 19:3925–34. doi:https://doi.org/10.1007/BF00980755.Munawar, S., K. Umemura, and S. Kawai. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53:108–13. doi:https://doi.org/10.1007/s10086-006-0836-x.Pickering, K., M. Aruan, and T. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:https://doi.org/10.1016/j.compositesa.2015.08.038.Satyanarayana, K. 2010. Biodegradable polymer composites based on Brazilian lignocellulosic. Revista Matéria 2 (9):189–97.Shahzad, A. 2013. A study in physical and mechanical properties of hemp fibres. Advances in Materials Science and Engineering 2013:1–9. doi:https://doi.org/10.1155/2013/325085.Silva, F., C. Nikhilesh, and R. Toledo. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68 (15):3438–43. doi:https://doi.org/10.1016/j.compscitech.2008.10.001.Thomason, J., and J. Carruthers. 2012. Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. Journal of Biobased Materials and Bioenergy 6 (4):424–30. doi:https://doi.org/10.1166/jbmb.2012.1231.Verma, D., K. Lim, and V. Vimal. 2020. Interfacial studies of natural fiber-reinforced particulate thermoplastic composites and their mechanical properties. Journal of Natural Fibers 1–28. doi:https://doi.org/10.1080/15440478.2020.1808147.Waifielate, A., and B. Oluseun. 2008. “Mechanical property evaluation of coconut fibre.” Master´s degree thesis, Blekinge Institute of technology.Wei, H., T. Thatt, S. Florence, and J. Denault. 2009. An improved method for single tensile test of natural fibers. Polymer Engineering and Science 50 (4):819–25. doi:https://doi.org/10.1002/pen.21593.Yusoff, R., H. Takagi, and A. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod 94:562–73. doi:https://doi.org/10.1016/j.indcrop.2016.09.017.131CoconutFiber diameterLumenBinarizationMechanical propertiesMaximum stressYoung´s modulus椰子纤维直径流明二值化力学性能最大应力杨氏模量PublicationORIGINALEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdfEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdfapplication/pdf3946381https://repositorio.cuc.edu.co/bitstreams/fd6f30c6-429b-4d39-af48-572e12fbf7f1/downloadb3c07a9402073ef45e6908c12dbc03c8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/26d75490-46cd-4a54-a98f-926eca73b987/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.txtEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.txttext/plain33030https://repositorio.cuc.edu.co/bitstreams/09b2bcd6-dad9-484e-bcda-4b1763c838fb/downloadf57df168a60d186671cc8ce9844646e6MD53THUMBNAILEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.jpgEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.jpgimage/jpeg9954https://repositorio.cuc.edu.co/bitstreams/1d9d2ca1-3cd3-4a78-a516-8a7ba4a0b3d0/download5ac934fa9a38fb11c87bd48855d66516MD5411323/9395oai:repositorio.cuc.edu.co:11323/93952024-09-16 16:39:11.859https://creativecommons.org/licenses/by-nc/4.0/© 2022 Taylor & Francisopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==