Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties
This study is intended to improve the methodology to calculate the tensile properties of natural coconut fiber and increasing confidence in the use of sustainable natural fibers as reinforcing in composites used for different components in the naval industry. Coconut fiber is an agribusiness by-prod...
- Autores:
-
Mendoza Quiroga, Ricardo Andres
Mercado Caruso, Nohora Nubia
Fábregas Villegas, Jonathan
Villa Domínguez, Jennifer
Jairo, Chimento
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9395
- Acceso en línea:
- https://hdl.handle.net/11323/9395
https://doi.org/10.1080/15440478.2022.2044962
https://repositorio.cuc.edu.co/
- Palabra clave:
- Coconut
Fiber diameter
Lumen
Binarization
Mechanical properties
Maximum stress
Young´s modulus
椰子
纤维直径
流明
二值化
力学性能
最大应力
杨氏模量
- Rights
- embargoedAccess
- License
- © 2022 Taylor & Francis
id |
RCUC2_3999376bd26c831eeffd349d61e2e5be |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9395 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
title |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
spellingShingle |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties Coconut Fiber diameter Lumen Binarization Mechanical properties Maximum stress Young´s modulus 椰子 纤维直径 流明 二值化 力学性能 最大应力 杨氏模量 |
title_short |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
title_full |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
title_fullStr |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
title_full_unstemmed |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
title_sort |
Effect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile properties |
dc.creator.fl_str_mv |
Mendoza Quiroga, Ricardo Andres Mercado Caruso, Nohora Nubia Fábregas Villegas, Jonathan Villa Domínguez, Jennifer Jairo, Chimento |
dc.contributor.author.spa.fl_str_mv |
Mendoza Quiroga, Ricardo Andres Mercado Caruso, Nohora Nubia Fábregas Villegas, Jonathan Villa Domínguez, Jennifer Jairo, Chimento |
dc.subject.proposal.eng.fl_str_mv |
Coconut Fiber diameter Lumen Binarization Mechanical properties Maximum stress Young´s modulus |
topic |
Coconut Fiber diameter Lumen Binarization Mechanical properties Maximum stress Young´s modulus 椰子 纤维直径 流明 二值化 力学性能 最大应力 杨氏模量 |
dc.subject.proposal.zho.fl_str_mv |
椰子 纤维直径 流明 二值化 力学性能 最大应力 杨氏模量 |
description |
This study is intended to improve the methodology to calculate the tensile properties of natural coconut fiber and increasing confidence in the use of sustainable natural fibers as reinforcing in composites used for different components in the naval industry. Coconut fiber is an agribusiness by-product that has been shown to have the potential for the development of new materials. The morphology of different species of coconut fiber was studied, and their mechanical tensile properties were determined. The coconut fibers were tested under direct tension in a universal testing machine, and the cross-sectional area of the fibers was calculated using images obtained in an optical microscope and a scanning electron microscope. The study assessed the incidence of key factors to determine coconut fiber mechanical tensile properties including different area measuring methods and the percentage of lumens present through an image analysis software called ImageJ. The results indicate that coconut fiber has a round-shaped cross-section, and the percentage of lumens is between 15% and 27%. Therefore, the effective area is reduced increasing the fiber’s ultimate resistance to tension. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-22T12:59:06Z |
dc.date.available.none.fl_str_mv |
2022-07-22T12:59:06Z 2023-03-05 |
dc.date.issued.none.fl_str_mv |
2022-03-05 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Ricardo Mendoza-Quiroga, Nohora Mercado-Caruso, Jonathan Fabregas Villegas, Jennifer Villa Domínguez & Jairo Chimento (2022): Effect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties, Journal of Natural Fibers, DOI: 10.1080/15440478.2022.2044962 |
dc.identifier.issn.spa.fl_str_mv |
1544-0478 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9395 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1080/15440478.2022.2044962 |
dc.identifier.doi.spa.fl_str_mv |
10.1080/15440478.2022.2044962 |
dc.identifier.eissn.spa.fl_str_mv |
1544-046X |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Ricardo Mendoza-Quiroga, Nohora Mercado-Caruso, Jonathan Fabregas Villegas, Jennifer Villa Domínguez & Jairo Chimento (2022): Effect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties, Journal of Natural Fibers, DOI: 10.1080/15440478.2022.2044962 1544-0478 10.1080/15440478.2022.2044962 1544-046X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9395 https://doi.org/10.1080/15440478.2022.2044962 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Natural Fibers |
dc.relation.references.spa.fl_str_mv |
Ali, M. 2011. Coconut fibre: A versatile material and its applications. Journal of Civil Engineerng and Construction Technology 2 (9):189–97. doi:https://doi.org/10.5897/JCECT.9000009. Alves, M., T. Castro, O. Martins, and F. Andrade. 2013. The effect of fiber morphology on the tensile strength of natural fibers. Jmr&t 2 (2):149–52. doi:https://doi.org/10.1016/j.jmrt.2013.02.003. Babu, R., K. Chethan, C. Kunchi, and S. Vadlamani. 2019. Tensile testing of single fibres. Procedia Structural Integrity 14:150–57. doi:https://doi.org/10.1016/j.prostr.2019.05.020. Carvalho, K., D. Mulinari, H. Voorwald, and M. Cioffi. 2010. Chemical modification effect on the mechanical properties of hips /coconut fibers composites. BioResources 5 (2):1143–55. Chandramohan, D., and K. Marimuthu. 2011. A review of natural fibers. Ijrras 8 (2):194–206. Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 1–12. doi:https://doi.org/10.1080/15440478.2020.1848738. Defoirdt, N., S. Biswas, L. Vriese, L. Tran, J. Van, Q. Ahsan, L. Gorbatikh, A. Van, and I. Verpoest. 2010. Assessment of the tensile properties of coir, bamboo and jute fibre. Composite Part A: Applied Science and Manufacturing 15 (2):588–95. doi:https://doi.org/10.1016/j.compositesa.2010.01.005. Eveirtt, N., N. Aboulkhair, and M. Clifford. 2013. Looking for links between natural fibres’ structures and their physical properties. International Conference on Natural Fibers-Sustainable Materials for Advanced Applications, Guimarães (Portugal): 1–10. Fernandez, J. 2012. Flax fiber reinforced concrete-a natural fiber. WIT Press 4:193–207. Hamad, S., N. Stehling, C. Holland, J. Foreman, and C. Rodenburg. 2017. Low-Voltage SEM of natural plant fibers: Microstructure properties (Surface and cross-section) and their link to the tensile properties. Procedia Engineering 200:295–302. doi:https://doi.org/10.1016/j.proeng.2017.07.042. Hossain, R., A. Islam, V. Vuure, and I. Verpoest. 2014. Quantitative analysis of hollow lumen in jute. Procedia Engineering 90:52–57. doi:https://doi.org/10.1016/j.proeng.2014.11.813. Kommula, V., K. Obi, D. Shukla, and T. Marwala. 2013. “Morphological, structural and thermal characterization of acetic acid modified and unmodified Napier grass fiber strands.” 7th International Conference on Intelligent Systems and Control, Coimbatore, Tamil Nadu, India: 506–10. doi:https://doi.org/10.1109/ISCO.2013.6481207. Mukherjee, P., and H. Satyanarayana. 1984. Structure and properties of some vegetable fibres, Part 1 sisal fibre. Journal of Materials Science 19:3925–34. doi:https://doi.org/10.1007/BF00980755. Munawar, S., K. Umemura, and S. Kawai. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53:108–13. doi:https://doi.org/10.1007/s10086-006-0836-x. Pickering, K., M. Aruan, and T. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:https://doi.org/10.1016/j.compositesa.2015.08.038. Satyanarayana, K. 2010. Biodegradable polymer composites based on Brazilian lignocellulosic. Revista Matéria 2 (9):189–97. Shahzad, A. 2013. A study in physical and mechanical properties of hemp fibres. Advances in Materials Science and Engineering 2013:1–9. doi:https://doi.org/10.1155/2013/325085. Silva, F., C. Nikhilesh, and R. Toledo. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68 (15):3438–43. doi:https://doi.org/10.1016/j.compscitech.2008.10.001. Thomason, J., and J. Carruthers. 2012. Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. Journal of Biobased Materials and Bioenergy 6 (4):424–30. doi:https://doi.org/10.1166/jbmb.2012.1231. Verma, D., K. Lim, and V. Vimal. 2020. Interfacial studies of natural fiber-reinforced particulate thermoplastic composites and their mechanical properties. Journal of Natural Fibers 1–28. doi:https://doi.org/10.1080/15440478.2020.1808147. Waifielate, A., and B. Oluseun. 2008. “Mechanical property evaluation of coconut fibre.” Master´s degree thesis, Blekinge Institute of technology. Wei, H., T. Thatt, S. Florence, and J. Denault. 2009. An improved method for single tensile test of natural fibers. Polymer Engineering and Science 50 (4):819–25. doi:https://doi.org/10.1002/pen.21593. Yusoff, R., H. Takagi, and A. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod 94:562–73. doi:https://doi.org/10.1016/j.indcrop.2016.09.017. |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.rights.spa.fl_str_mv |
© 2022 Taylor & Francis Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
© 2022 Taylor & Francis Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
14 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Ltd. |
dc.publisher.place.spa.fl_str_mv |
United States |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/15440478.2022.2044962?_gl=1*5vbjq5*_ga*MTQ1Mjg0OTI4MC4xNjU2NjE1NDc2*_ga_0HYE8YG0M6*MTY1ODQzMDMyMC4yLjEuMTY1ODQzMDM1My4w&_ga=2.233990622.1787409220.1658430320-1452849280.1656615476 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/fd6f30c6-429b-4d39-af48-572e12fbf7f1/download https://repositorio.cuc.edu.co/bitstreams/26d75490-46cd-4a54-a98f-926eca73b987/download https://repositorio.cuc.edu.co/bitstreams/09b2bcd6-dad9-484e-bcda-4b1763c838fb/download https://repositorio.cuc.edu.co/bitstreams/1d9d2ca1-3cd3-4a78-a516-8a7ba4a0b3d0/download |
bitstream.checksum.fl_str_mv |
b3c07a9402073ef45e6908c12dbc03c8 e30e9215131d99561d40d6b0abbe9bad f57df168a60d186671cc8ce9844646e6 5ac934fa9a38fb11c87bd48855d66516 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760666890993664 |
spelling |
Mendoza Quiroga, Ricardo AndresMercado Caruso, Nohora NubiaFábregas Villegas, JonathanVilla Domínguez, JenniferJairo, Chimento2022-07-22T12:59:06Z2023-03-052022-07-22T12:59:06Z2022-03-05Ricardo Mendoza-Quiroga, Nohora Mercado-Caruso, Jonathan Fabregas Villegas, Jennifer Villa Domínguez & Jairo Chimento (2022): Effect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties, Journal of Natural Fibers, DOI: 10.1080/15440478.2022.20449621544-0478https://hdl.handle.net/11323/9395https://doi.org/10.1080/15440478.2022.204496210.1080/15440478.2022.20449621544-046XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study is intended to improve the methodology to calculate the tensile properties of natural coconut fiber and increasing confidence in the use of sustainable natural fibers as reinforcing in composites used for different components in the naval industry. Coconut fiber is an agribusiness by-product that has been shown to have the potential for the development of new materials. The morphology of different species of coconut fiber was studied, and their mechanical tensile properties were determined. The coconut fibers were tested under direct tension in a universal testing machine, and the cross-sectional area of the fibers was calculated using images obtained in an optical microscope and a scanning electron microscope. The study assessed the incidence of key factors to determine coconut fiber mechanical tensile properties including different area measuring methods and the percentage of lumens present through an image analysis software called ImageJ. The results indicate that coconut fiber has a round-shaped cross-section, and the percentage of lumens is between 15% and 27%. Therefore, the effective area is reduced increasing the fiber’s ultimate resistance to tension.这项研究旨在改进计算天然椰子纤维拉伸性能的方法, 并增加使用可持续天然纤维作为增强材料用于海军工业不同组件的信心. 椰子纤维是农业综合企业的副产品, 已被证明具有开发新材料的潜力. 研究了不同种类椰子纤维的形态, 测定了椰子纤维的机械拉伸性能. 椰子纤维在万能试验机上进行直接拉伸试验, 并使用光学显微镜和扫描电子显微镜获得的图像计算纤维的横截面积. 该研究评估了确定椰子纤维机械拉伸性能的关键因素的发生率, 包括不同的面积测量方法, 以及通过名为 的图像分析软件显示的管腔百分比. 结果表明, 椰子纤维的横截面呈圆形, 管腔百分比在15%到27%之间. 因此, 有效面积减小, 增加了纤维的极限抗张力.14 Páginasapplication/pdfengTaylor and Francis Ltd.United States© 2022 Taylor & FrancisAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEffect of the morphology measuring methods of coconut fiber on the determination of mechanical tensile propertiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.tandfonline.com/doi/full/10.1080/15440478.2022.2044962?_gl=1*5vbjq5*_ga*MTQ1Mjg0OTI4MC4xNjU2NjE1NDc2*_ga_0HYE8YG0M6*MTY1ODQzMDMyMC4yLjEuMTY1ODQzMDM1My4w&_ga=2.233990622.1787409220.1658430320-1452849280.1656615476Journal of Natural FibersAli, M. 2011. Coconut fibre: A versatile material and its applications. Journal of Civil Engineerng and Construction Technology 2 (9):189–97. doi:https://doi.org/10.5897/JCECT.9000009.Alves, M., T. Castro, O. Martins, and F. Andrade. 2013. The effect of fiber morphology on the tensile strength of natural fibers. Jmr&t 2 (2):149–52. doi:https://doi.org/10.1016/j.jmrt.2013.02.003.Babu, R., K. Chethan, C. Kunchi, and S. Vadlamani. 2019. Tensile testing of single fibres. Procedia Structural Integrity 14:150–57. doi:https://doi.org/10.1016/j.prostr.2019.05.020.Carvalho, K., D. Mulinari, H. Voorwald, and M. Cioffi. 2010. Chemical modification effect on the mechanical properties of hips /coconut fibers composites. BioResources 5 (2):1143–55.Chandramohan, D., and K. Marimuthu. 2011. A review of natural fibers. Ijrras 8 (2):194–206.Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 1–12. doi:https://doi.org/10.1080/15440478.2020.1848738.Defoirdt, N., S. Biswas, L. Vriese, L. Tran, J. Van, Q. Ahsan, L. Gorbatikh, A. Van, and I. Verpoest. 2010. Assessment of the tensile properties of coir, bamboo and jute fibre. Composite Part A: Applied Science and Manufacturing 15 (2):588–95. doi:https://doi.org/10.1016/j.compositesa.2010.01.005.Eveirtt, N., N. Aboulkhair, and M. Clifford. 2013. Looking for links between natural fibres’ structures and their physical properties. International Conference on Natural Fibers-Sustainable Materials for Advanced Applications, Guimarães (Portugal): 1–10.Fernandez, J. 2012. Flax fiber reinforced concrete-a natural fiber. WIT Press 4:193–207.Hamad, S., N. Stehling, C. Holland, J. Foreman, and C. Rodenburg. 2017. Low-Voltage SEM of natural plant fibers: Microstructure properties (Surface and cross-section) and their link to the tensile properties. Procedia Engineering 200:295–302. doi:https://doi.org/10.1016/j.proeng.2017.07.042.Hossain, R., A. Islam, V. Vuure, and I. Verpoest. 2014. Quantitative analysis of hollow lumen in jute. Procedia Engineering 90:52–57. doi:https://doi.org/10.1016/j.proeng.2014.11.813.Kommula, V., K. Obi, D. Shukla, and T. Marwala. 2013. “Morphological, structural and thermal characterization of acetic acid modified and unmodified Napier grass fiber strands.” 7th International Conference on Intelligent Systems and Control, Coimbatore, Tamil Nadu, India: 506–10. doi:https://doi.org/10.1109/ISCO.2013.6481207.Mukherjee, P., and H. Satyanarayana. 1984. Structure and properties of some vegetable fibres, Part 1 sisal fibre. Journal of Materials Science 19:3925–34. doi:https://doi.org/10.1007/BF00980755.Munawar, S., K. Umemura, and S. Kawai. 2007. Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science 53:108–13. doi:https://doi.org/10.1007/s10086-006-0836-x.Pickering, K., M. Aruan, and T. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 83:98–112. doi:https://doi.org/10.1016/j.compositesa.2015.08.038.Satyanarayana, K. 2010. Biodegradable polymer composites based on Brazilian lignocellulosic. Revista Matéria 2 (9):189–97.Shahzad, A. 2013. A study in physical and mechanical properties of hemp fibres. Advances in Materials Science and Engineering 2013:1–9. doi:https://doi.org/10.1155/2013/325085.Silva, F., C. Nikhilesh, and R. Toledo. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68 (15):3438–43. doi:https://doi.org/10.1016/j.compscitech.2008.10.001.Thomason, J., and J. Carruthers. 2012. Natural fibre cross sectional area, its variability and effects on the determination of fibre properties. Journal of Biobased Materials and Bioenergy 6 (4):424–30. doi:https://doi.org/10.1166/jbmb.2012.1231.Verma, D., K. Lim, and V. Vimal. 2020. Interfacial studies of natural fiber-reinforced particulate thermoplastic composites and their mechanical properties. Journal of Natural Fibers 1–28. doi:https://doi.org/10.1080/15440478.2020.1808147.Waifielate, A., and B. Oluseun. 2008. “Mechanical property evaluation of coconut fibre.” Master´s degree thesis, Blekinge Institute of technology.Wei, H., T. Thatt, S. Florence, and J. Denault. 2009. An improved method for single tensile test of natural fibers. Polymer Engineering and Science 50 (4):819–25. doi:https://doi.org/10.1002/pen.21593.Yusoff, R., H. Takagi, and A. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops Prod 94:562–73. doi:https://doi.org/10.1016/j.indcrop.2016.09.017.131CoconutFiber diameterLumenBinarizationMechanical propertiesMaximum stressYoung´s modulus椰子纤维直径流明二值化力学性能最大应力杨氏模量PublicationORIGINALEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdfEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdfapplication/pdf3946381https://repositorio.cuc.edu.co/bitstreams/fd6f30c6-429b-4d39-af48-572e12fbf7f1/downloadb3c07a9402073ef45e6908c12dbc03c8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/26d75490-46cd-4a54-a98f-926eca73b987/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.txtEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.txttext/plain33030https://repositorio.cuc.edu.co/bitstreams/09b2bcd6-dad9-484e-bcda-4b1763c838fb/downloadf57df168a60d186671cc8ce9844646e6MD53THUMBNAILEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.jpgEffect of the Morphology Measuring Methods of Coconut Fiber on the Determination of Mechanical Tensile Properties.pdf.jpgimage/jpeg9954https://repositorio.cuc.edu.co/bitstreams/1d9d2ca1-3cd3-4a78-a516-8a7ba4a0b3d0/download5ac934fa9a38fb11c87bd48855d66516MD5411323/9395oai:repositorio.cuc.edu.co:11323/93952024-09-16 16:39:11.859https://creativecommons.org/licenses/by-nc/4.0/© 2022 Taylor & Francisopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |