Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software

To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the ga...

Full description

Autores:
Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4681
Acceso en línea:
https://hdl.handle.net/11323/4681
https://repositorio.cuc.edu.co/
Palabra clave:
Desarrollo sostenible
Cambio climático
Energía
Biomasa
Caribe colombiano
Sustainable development
Climate change
Energy
Biomass
Colombian caribbean
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_397790c134953c3b0e54d5ca99c735be
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4681
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
dc.title.translated.spa.fl_str_mv Simulación computacional de la emisión de gases en una biomasa en el sistema de energía de la red utilizando el software HOMER pro
title Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
spellingShingle Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
Desarrollo sostenible
Cambio climático
Energía
Biomasa
Caribe colombiano
Sustainable development
Climate change
Energy
Biomass
Colombian caribbean
title_short Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_full Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_fullStr Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_full_unstemmed Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
title_sort Computational simulation of the gas emission in a biomass on grid energy system using HOMER pro software
dc.creator.fl_str_mv Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
dc.contributor.author.spa.fl_str_mv Barrozo, Farid B.
Valencia Ochoa, Guillermo Eliecer
Cardenas Escorcia, Yulineth del Carmen
dc.subject.spa.fl_str_mv Desarrollo sostenible
Cambio climático
Energía
Biomasa
Caribe colombiano
Sustainable development
Climate change
Energy
Biomass
Colombian caribbean
topic Desarrollo sostenible
Cambio climático
Energía
Biomasa
Caribe colombiano
Sustainable development
Climate change
Energy
Biomass
Colombian caribbean
description To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the gas emission of a Biomass on Grid Energy System Using HOMER Pro Software, composed by two 500 kW biogas-powered electric generator, using different types of biomass resource from the Colombian Caribbean Region like manure obtained from the livestock sector and solid urban organic waste. The simulation results showed some emission decrease when operating on the grid the Biogas generator such as the carbon dioxide, the sulfur dioxide and the nitrogen oxides on 11.6% while the carbon monoxide increased on 8.7% concerning the power supply system through electrical grid coming from thermoelectric power plants and hydroelectric power plants
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-05-22T13:23:32Z
dc.date.available.none.fl_str_mv 2019-05-22T13:23:32Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2283-9216
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4681
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2283-9216
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4681
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemporary engineering sciences, 10(26), pp. 1269-1278. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping centre using HOMER Pro. Contemporary engineering sciences, 10(26), pp. 1287-1295. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10(13), pp. 311-316. Chandra, R. et al., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148–159. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261910005283 [Accessed November 20, 2017]. Commission, E.E., Biofuels. Available at: ec. europa.eu/energy/en/topics/renewable-energy/biofuels. EIA, U.S.E.I.A., Short-Term Energy Outlook. Available at: www.eia.gov/outlooks/steo/report/global_oil.cfm. Esteves, V.P. et al., 2017. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). Journal of Cleaner Production, 151, pp.578–591. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617304985 [Accessed November 20, 2017]. Greene CH, Pershing AJ. Climate-driven sea change. Science 2007; 315:1084-5. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005; 29:225–57 IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press; 2007. p. 93. McCormic, R.L. et al., 2005. Regulated Emissions from Biodiesel Tested in Heavy Duty Engines Meeting 2004 Emission Standards Mondani, F. et al., 2017. Evaluation of greenhouse gases emission based on energy consumption in wheat Agro ecosystems. Energy Reports, 3, pp.37–45. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S2352484717300082 [Accessed November 19, 2017]. O´Shea, R., Wall, D.M. & Murphy, J.D., 2017. An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network. Applied Energy, 208, pp.108–122. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261917314599 [Accessed November 20, 2017]. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, et al., editors. Climate change 2001: the scientific basis. Cambridge University Press; 2001. p. 239-87. Panjicko, M. et al., 2017. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, pp.519–529. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617316529 [Accessed November 20, 2017]. Rodríguez A., Ángel J., Rivero E., Acevedo, P., Santis A., Cabeza I., Acosta M. & Hernández M., 2017. Evaluation of the Biochemical Methane Potential of Pig Manure, Organic Fraction of Municipal Solid Waste and Cocoa Industry Residues in Colombia. Chemical Engineering Transactions, vol. 57, pp. 55 – 60. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Martinez Gaspar, R. J., 2016. Study of the persistence of wind in the Colombian Caribbean region with emphasis on La Guajira. ISBN: 978-958-8742-69-4 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Polo Jimenez, J. P., 2016. Statistical analysis of wind speed and direction in the Colombian Caribbean coast with emphasis on La Guajira. ISBN: 978-958-8742- 73-1 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Villicana Ortiz, E., 2016. Solar Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-70-0 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C. & Valencia Ochoa, G. E., 2016. Wind Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-71-7 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C., Valencia Ochoa, G. E. & Villicana Ortiz, E., 2016. Geographic and temporal availability of solar energy in the Colombian Caribbean Coast. ISBN: 978-958-8742-72-4 ed. Colombia: Atlantic University
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Chemical Engineering Transactions
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5a587f94-6970-4fc3-82d8-b04a82495c1f/download
https://repositorio.cuc.edu.co/bitstreams/cf3cc256-451d-4880-bb58-e3a1e7c87e55/download
https://repositorio.cuc.edu.co/bitstreams/decc58ba-648a-4c81-8652-f7a9c7515589/download
https://repositorio.cuc.edu.co/bitstreams/d0a9ee24-7e03-49c8-bd44-29ab4c98ad94/download
https://repositorio.cuc.edu.co/bitstreams/dd1c992d-10e1-48f1-8cb6-deed65b5fc28/download
bitstream.checksum.fl_str_mv 9bf3004eedee8899ce51875d3c9fff2e
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
711ba2d39ec2904f7071712c2e21b9c8
8535c58bb21b3111f4443a3b9102322a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166904465850368
spelling Barrozo, Farid B.Valencia Ochoa, Guillermo EliecerCardenas Escorcia, Yulineth del Carmen2019-05-22T13:23:32Z2019-05-22T13:23:32Z20182283-9216https://hdl.handle.net/11323/4681Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/To reach the Sustainable Development Goals and delivering on the Paris Agreement on climate change mitigation, a Biomass on grid power system is proposed to supply 33,640 kWh/day, which is the average annual energy consumption from a group of office buildings. This study shows the behavior of the gas emission of a Biomass on Grid Energy System Using HOMER Pro Software, composed by two 500 kW biogas-powered electric generator, using different types of biomass resource from the Colombian Caribbean Region like manure obtained from the livestock sector and solid urban organic waste. The simulation results showed some emission decrease when operating on the grid the Biogas generator such as the carbon dioxide, the sulfur dioxide and the nitrogen oxides on 11.6% while the carbon monoxide increased on 8.7% concerning the power supply system through electrical grid coming from thermoelectric power plants and hydroelectric power plantsPara alcanzar los Objetivos de Desarrollo Sostenible y cumplir con el Acuerdo de París sobre la mitigación del cambio climático, se propone un sistema de biomasa en la red eléctrica para suministrar 33,640 kWh / día, que es el consumo promedio anual de energía de un grupo de edificios de oficinas. Este estudio muestra el comportamiento de la emisión de gases de un sistema de energía de biomasa en la red que utiliza el software HOMER Pro, compuesto por dos generadores eléctricos de biogás de 500 kW, que utilizan diferentes tipos de recursos de biomasa de la región del Caribe colombiano como el estiércol obtenido del sector ganadero Y sólidos residuos orgánicos urbanos. Los resultados de la simulación mostraron cierta disminución de las emisiones al operar en la red el generador de biogás, como el dióxido de carbono, el dióxido de azufre y los óxidos de nitrógeno en un 11,6%, mientras que el monóxido de carbono aumentó en un 8,7% en relación con el sistema de suministro de energía a través de la red eléctrica proveniente de la termoeléctrica. En las centrales eléctricas y en las centrales hidroeléctricas, se propone un sistema de biomasa en la red eléctrica para suministrar 33,640 kWh / día, que es el promedioBarrozo, Farid B.-80668d58-a960-484f-8ce9-ab9cd59bd3b9-0Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0Cardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600engChemical Engineering TransactionsAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Desarrollo sostenibleCambio climáticoEnergíaBiomasaCaribe colombianoSustainable developmentClimate changeEnergyBiomassColombian caribbeanComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro softwareSimulación computacional de la emisión de gases en una biomasa en el sistema de energía de la red utilizando el software HOMER proArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBarrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost. Contemporary engineering sciences, 10(26), pp. 1269-1278. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. An economic evaluation of Renewable and Conventional Electricity Generation Systems in a shopping centre using HOMER Pro. Contemporary engineering sciences, 10(26), pp. 1287-1295. Barrozo Budes, F., Valencia Ochoa, G. & Cárdenas Escorcia, Y., 2017. Biomass generator to reduce the gas emission and operation cost in a grid-connected renewable energy systems. International Journal of ChemTech Research, 10(13), pp. 311-316. Chandra, R. et al., 2012. Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, pp.148–159. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261910005283 [Accessed November 20, 2017]. Commission, E.E., Biofuels. Available at: ec. europa.eu/energy/en/topics/renewable-energy/biofuels. EIA, U.S.E.I.A., Short-Term Energy Outlook. Available at: www.eia.gov/outlooks/steo/report/global_oil.cfm. Esteves, V.P. et al., 2017. Assessment of greenhouse gases (GHG) emissions from the tallow biodiesel production chain including land use change (LUC). Journal of Cleaner Production, 151, pp.578–591. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617304985 [Accessed November 20, 2017]. Greene CH, Pershing AJ. Climate-driven sea change. Science 2007; 315:1084-5. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 2005; 29:225–57 IPCC. Climate change 2007. Impacts, adaptation and vulnerability, Summary for policymakers and technical summary, WG II contribution to the AR4. UK: Cambridge University Press; 2007. p. 93. McCormic, R.L. et al., 2005. Regulated Emissions from Biodiesel Tested in Heavy Duty Engines Meeting 2004 Emission Standards Mondani, F. et al., 2017. Evaluation of greenhouse gases emission based on energy consumption in wheat Agro ecosystems. Energy Reports, 3, pp.37–45. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S2352484717300082 [Accessed November 19, 2017]. O´Shea, R., Wall, D.M. & Murphy, J.D., 2017. An energy and greenhouse gas comparison of centralised biogas production with road haulage of pig slurry, and decentralised biogas production with biogas transportation in a low-pressure pipe network. Applied Energy, 208, pp.108–122. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0306261917314599 [Accessed November 20, 2017]. Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, et al., editors. Climate change 2001: the scientific basis. Cambridge University Press; 2001. p. 239-87. Panjicko, M. et al., 2017. Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 166, pp.519–529. Available at: http://www.sciencedirect.com.ezproxy.unbosque.edu.co/science/article/pii/S0959652617316529 [Accessed November 20, 2017]. Rodríguez A., Ángel J., Rivero E., Acevedo, P., Santis A., Cabeza I., Acosta M. & Hernández M., 2017. Evaluation of the Biochemical Methane Potential of Pig Manure, Organic Fraction of Municipal Solid Waste and Cocoa Industry Residues in Colombia. Chemical Engineering Transactions, vol. 57, pp. 55 – 60. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Martinez Gaspar, R. J., 2016. Study of the persistence of wind in the Colombian Caribbean region with emphasis on La Guajira. ISBN: 978-958-8742-69-4 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Polo Jimenez, J. P., 2016. Statistical analysis of wind speed and direction in the Colombian Caribbean coast with emphasis on La Guajira. ISBN: 978-958-8742- 73-1 ed. Colombia: Atlantic University. Valencia Ochoa, G. E., Vanegas Chamorro, M. C. & Villicana Ortiz, E., 2016. Solar Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-70-0 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C. & Valencia Ochoa, G. E., 2016. Wind Atlas of the Colombian Caribbean Coast. ISBN: 978-958-8742-71-7 ed. Colombia: Atlantic University. Vanegas Chamorro, M. C., Valencia Ochoa, G. E. & Villicana Ortiz, E., 2016. Geographic and temporal availability of solar energy in the Colombian Caribbean Coast. ISBN: 978-958-8742-72-4 ed. Colombia: Atlantic UniversityPublicationORIGINALComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdfComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdfapplication/pdf262632https://repositorio.cuc.edu.co/bitstreams/5a587f94-6970-4fc3-82d8-b04a82495c1f/download9bf3004eedee8899ce51875d3c9fff2eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/cf3cc256-451d-4880-bb58-e3a1e7c87e55/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/decc58ba-648a-4c81-8652-f7a9c7515589/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.jpgComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.jpgimage/jpeg72780https://repositorio.cuc.edu.co/bitstreams/d0a9ee24-7e03-49c8-bd44-29ab4c98ad94/download711ba2d39ec2904f7071712c2e21b9c8MD55TEXTComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.txtComputational simulation of the gas emission in a biomass on grid energy system using HOMER pro software.pdf.txttext/plain19067https://repositorio.cuc.edu.co/bitstreams/dd1c992d-10e1-48f1-8cb6-deed65b5fc28/download8535c58bb21b3111f4443a3b9102322aMD5611323/4681oai:repositorio.cuc.edu.co:11323/46812024-09-17 14:24:16.755http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=