Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia
Introducción: Actualmente en Colombia, existe gran interés por la aplicación de energías renovables y la diversificación de la matriz energética. Por lo tanto, en el presente trabajo se muestran los resultados de la simulación de una planta solar térmica hibrida de ciclo Brayton cerrado en Colombia,...
- Autores:
-
Moreno Gamboa, Faustino
Nieto Londoño, Cesar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/2393
- Acceso en línea:
- https://hdl.handle.net/11323/2393
https://doi.org/10.17981/ingecuc.14.2.2018.12
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energía solar térmica
Concentración solar
Ciclo Brayton cerrado
Radiación solar
Destrucción de exergía
Solar thermal energy
Solar concentration
Closed Brayton cycle
Solar radiation
Exergy destruction
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RCUC2_395868e7e2a9a338229e4c30139942a2 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/2393 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
dc.title.translated.eng.fl_str_mv |
Thermodynamic modeling of a Brayton cycle hybrid solar thermal plant in Colombia |
title |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
spellingShingle |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia Energía solar térmica Concentración solar Ciclo Brayton cerrado Radiación solar Destrucción de exergía Solar thermal energy Solar concentration Closed Brayton cycle Solar radiation Exergy destruction |
title_short |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
title_full |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
title_fullStr |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
title_full_unstemmed |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
title_sort |
Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia |
dc.creator.fl_str_mv |
Moreno Gamboa, Faustino Nieto Londoño, Cesar |
dc.contributor.author.spa.fl_str_mv |
Moreno Gamboa, Faustino Nieto Londoño, Cesar |
dc.subject.proposal.spa.fl_str_mv |
Energía solar térmica Concentración solar Ciclo Brayton cerrado Radiación solar Destrucción de exergía |
topic |
Energía solar térmica Concentración solar Ciclo Brayton cerrado Radiación solar Destrucción de exergía Solar thermal energy Solar concentration Closed Brayton cycle Solar radiation Exergy destruction |
dc.subject.proposal.eng.fl_str_mv |
Solar thermal energy Solar concentration Closed Brayton cycle Solar radiation Exergy destruction |
description |
Introducción: Actualmente en Colombia, existe gran interés por la aplicación de energías renovables y la diversificación de la matriz energética. Por lo tanto, en el presente trabajo se muestran los resultados de la simulación de una planta solar térmica hibrida de ciclo Brayton cerrado en Colombia, que recibe calor de un sistema de concentración de torre central y heliostatos. El recurso solar se estima por un modelo horario, adicionalmente cuenta con una cámara de combustión que utiliza gas natural como combustible, la cual garantiza la estabilidad del calor suministrado a la planta. La ubicación de la planta se selecciona en función de la radiación global y difusa media diaria mensual, y adicionalmente, se realiza una simulación de los principales parámetros de operación, optimizando la potencia y el rendimiento global en función de la relación de presión. Por último, se realiza un análisis exergético de la planta, especialmente de los componentes afectados por la variación de la radiación en el día. Objetivo: Evaluar una planta solar térmica de concentración de ciclo Brayton cerrado, desde el punto de vista energético y exegético bajo las condiciones ambientales de Colombia. Metodología: Integrar en lenguaje modélica, por medio de un compilador Dymola un modelo de recurso solar, un modelo energético y un modelo exergético aplicado a las condiciones ambientales de Colombia. Resultados: Se presenta el análisis correspondiente a la evolución de los principales parámetros de operación de la planta a lo largo del día, la variación del rendimiento y la potencia en función de la relación de presiones. Conclusiones: Es viable técnicamente la operación de una planta solar térmica de concentración de ciclo Brayton en algunos lugares de Colombia, dado el recurso solar disponible y el ahorro de combustible que genera a pesar del detrimento del rendimiento energético y exergético. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-12-18 |
dc.date.accessioned.none.fl_str_mv |
2019-02-11T23:17:49Z |
dc.date.available.none.fl_str_mv |
2019-02-11T23:17:49Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
F. Moreno Gamboa y C. Nieto Londoño “Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia”, INGE CUC, vol. 14, no. 2, pp. 126-136 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.12 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/2393 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.14.2.2018.12 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.14.2.2018.12 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
F. Moreno Gamboa y C. Nieto Londoño “Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia”, INGE CUC, vol. 14, no. 2, pp. 126-136 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.12 10.17981/ingecuc.14.2.2018.12 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/2393 https://doi.org/10.17981/ingecuc.14.2.2018.12 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 14, Núm. 2 (2018) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
S. Kalogirou, Solar Engineering Processes and Systems, San Diego: Academic Press Elsevier, 2009. REN21, Steering Committee, Renewable Energy Policy Network for the 21st Century, Renewable 2016 energy Status Report, Paris, 2016. Y . Goswami, Principles of Solar Engineering, Boca Raton, USA: CRC Press, 2015. B. Liu y R. Jordan, “The Interrelationship and Characteristic Distribution of Direct, Diffuse ant Total Solar Radiation”, Solar Energy, vol. 4, pp. 1-12, 1960. https://doi.org/10.1016/0038-092X(60)90062-1 M. Collares-Pereira y A. Rabl, “Hourly Diffuse Fraction Correlation at a Tropical Location”, Solar Energy, vol. 53, pp. 505-510, 1994. https://doi.org/10.1016/0038-092X(94)90130-T C. Gueymard, “Prediction and Performance Assessment of Mean Hourly Global Radiation”, Solar Energy, vol. 68, pp. 285-303, 2000. https://doi.org/10.1016/S0038-092X(99)00070-5 W. Le Roux, T. Bello-Ochende y J. Meyer, “A review on the Thermodynamic Optimization and Modelling of the Solar Thermal Brayton Cycle”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 677-690, 2013. https://doi.org/10.1016/j.rser.2013.08.053 CSP Today, Concentrated Solar Power Market Report 2014, Business Intelligence Ltd, London, 2015. C. Ho y B. Iverson, “A Review of High-Temperature Central Receiver Design for Concentrating Solar Power”, Renewable and Sustainable Energy Reviews, vol. 29, pp. 835-846, 2014. https://doi.org/10.1016/j.rser.2013.08.099 A. Avila-Martin, J. Fernandez-Reche y F. Tellez, “Evaluation of the Potential of Central Receiver Solar Power Plants”, Applied Energy, vol. 112, pp. 274-288, 2013. https://doi.org/10.1016/j.apenergy.2013.05.049 F. Collado y J. Guallar, “A Review of Optimized Design Layouts for Solar Power Tower Plants With Campo Code”, Renewable and Sustainable Energy Reviews, vol. 20, pp. 142-145, 2015. https://doi.org/10.1016/j.rser.2012.11.076 Y . Zhang, B. Lin y J. Chen, “Optimum Performance Characteristics of an Irreversible Solar-Driven Brayton Heat Engine at the Maximum Overall Efficiency”, Renewable Energy, vol. 32, pp. 856-867, 2007. https://doi.org/10.1016/j.renene.2006.02.008 R. Kehlhofer, F. Hannemann y F. Stirnimann, Combined Cycle Gas and Steam Turbine Power Plants, Tusla. Oklahoma, USA: PennWall Corporation, 2009. L. Wu, G. Lin y J. Chen, “Parametric Optimization of a Solar-driven Braysson Heat Engine with Variable Heat Capacity of the Working Fluid and Radiation Convective Losses,” Renewable Energy, vol. 35, pp. 95-100, 2010. https://doi.org/10.1016/j.renene.2009.07.015 S. Sánchez, Modelización, Análisis y Optimización “Termodinámica de Plantas de Potencia Multietapas Tipo Brayton. Aplicación a Centrales Termosolares”, Tesis Doctoral, Universidad de Salamanca, Salamanca, 2012. S. Sanchez, A. Medina y A. Calvo Hernandez, “Thermodynamic Model and Optimization of a Multi-Step Irreversible Brayton Cycle”, Energy Conversion and Management, vol. 51, pp. 2134-2143, 2010. https://doi.org/10.1016/j.enconman.2010.03.006 D. Olivenza-Leon, A. Medina y A. Calvo Hernández, “Thermodynamic Modelling of a Hybrid Solar Gas Turbine”, Energy Conversion and Management, vol. 93, pp. 435-447, 2015. https://doi.org/10.1016/j.enconman.2015.01.027 M. J. Santos, R. Mechan, A. Medina y A. Calvo Hernandez, “Seasonal Thermodynamic Prediction of the Performance of Hybrid Solar Gas-Turbine”, Energy Conversion and Management, vol. 115, pp. 80-102, 2016. https://doi.org/10.1016/j.enconman.2016.02.019 W. LeRoux, T. Bello-Ochende y J. Meyer, “The Efficiency of an Open-Cavity Tubular Solar Receiver for a Small-Scale Solar Thermal Brayton Cycle”, Energy Conversion and Management, vol. 84, pp. 457-470, 2014. https://doi.org/10.1016/j.enconman.2014.04.048 C. Xu, Z. Wang y F. Sun, “Energy and Exergy Analysis of Solar Power Plants”, Applied Thermal Engineering, vol. 31, pp. 3904 - 3913, 2011. https://doi.org/10.1016/j.applthermaleng.2011.07.038 V. Zare y M. Hasanzadeh, “Energy and Exergy Analysis of Closed Brayton Cycle Combined for Solar Tower Plant”, Energy Conversion and Management, vol. 128, pp. 227 - 237, 2016. https://doi.org/10.1016/j.enconman.2016.09.080 R. Vasquez Padilla, R. Benito y W. Stein, “An Exergy Analysis of Recompression Supercritical CO2 Cycles with Reheating”, Energy Procedia, vol. 69, pp. 1181 - 1191, 2015. https://doi.org/10.1016/j.egypro.2015.03.201 W. Xiaohe, L. Quibin y B. Zhang, “Thermodynamic Analysis of the Cascade Supercritical CO2 Cycle Integrated with Solar and Biomass”, Energy Procedia, vol. 105, pp. 445 - 452, 2017. https://doi.org/10.1016/j.egypro.2017.03.339 National Aeronautics and Space Administration, “NASA,” [En línea]. Available: https://eosweb.larc.nasa.gov/sse/. [Último acceso: 26 11 2017]. J. Cenguel y M. Boles, Termodinámica, Ciudad de México: McGraw Hill, 2011. K. Wark y D. Richards, Termodinámica, Madrid: Mc-Graw Hill, 2001. J. Duffie y W. Beckman, Solar Engineering of Thermal Process, New Jersey: John Wiley and Sons, 2006. N. Jubeh, “Exergy Analysis and Second Law Efficiency of Regenerative Brayton Cycle Isothermal Heat Addition”, Entropy, vol. 3, pp. 172 -187, 2005. https://doi.org/10.3390/e7030172 J. Parrott, “Theoretical Upper Limit to the Conversion Efficiency of Solar Energy”, Solar Energy, vol. 21, pp. 227 - 239, 1978. https://doi.org/10.1016/0038-092X(78)90025-7 Y. Wanxiang, L. Zhengrong y X. Tongbin, “New Descomposition Models to Estimate Hourly Global Solar Radiation from the Daily Value”, Solar Energy, vol. 120, pp. 87 - 99, 2015. https://doi.org/10.1016/j.solener.2015.05.038 R. Mejdoul y M. Taqi, “The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco”, International Journal of Renewable Energy, vol. 2, nº 4, 2012. W. Wan Nik, M. Ibrahim y K. Samo, “Monthly Mean Hourly Global Solar Radiation Estimation”, Solar Energy, vol. 86, pp. 379 - 387, 2012. https://doi.org/10.1016/j.solener.2011.10.008 |
dc.relation.citationendpage.spa.fl_str_mv |
136 |
dc.relation.citationstartpage.spa.fl_str_mv |
126 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1849 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a2a5b9dd-fd0e-4268-b4b5-ae3dedf1441e/download https://repositorio.cuc.edu.co/bitstreams/b9a467b0-347b-4f9e-a2c8-f8bd41109515/download https://repositorio.cuc.edu.co/bitstreams/1cd8fa6f-db72-4f3b-aa87-8a8a390c9193/download https://repositorio.cuc.edu.co/bitstreams/0ac2fe47-4350-4a37-9249-55587e4de9cf/download |
bitstream.checksum.fl_str_mv |
7ef70c8858a10dcf86bd344401e5d66e 8a4605be74aa9ea9d79846c1fba20a33 f3f4d14ba2f4079ce993ce63f164cfd9 a14e9448426244ed4b4c899928999eda |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760767313117184 |
spelling |
Moreno Gamboa, FaustinoNieto Londoño, Cesar2019-02-11T23:17:49Z2019-02-11T23:17:49Z2018-12-18F. Moreno Gamboa y C. Nieto Londoño “Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia”, INGE CUC, vol. 14, no. 2, pp. 126-136 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.12https://hdl.handle.net/11323/2393https://doi.org/10.17981/ingecuc.14.2.2018.1210.17981/ingecuc.14.2.2018.122382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción: Actualmente en Colombia, existe gran interés por la aplicación de energías renovables y la diversificación de la matriz energética. Por lo tanto, en el presente trabajo se muestran los resultados de la simulación de una planta solar térmica hibrida de ciclo Brayton cerrado en Colombia, que recibe calor de un sistema de concentración de torre central y heliostatos. El recurso solar se estima por un modelo horario, adicionalmente cuenta con una cámara de combustión que utiliza gas natural como combustible, la cual garantiza la estabilidad del calor suministrado a la planta. La ubicación de la planta se selecciona en función de la radiación global y difusa media diaria mensual, y adicionalmente, se realiza una simulación de los principales parámetros de operación, optimizando la potencia y el rendimiento global en función de la relación de presión. Por último, se realiza un análisis exergético de la planta, especialmente de los componentes afectados por la variación de la radiación en el día. Objetivo: Evaluar una planta solar térmica de concentración de ciclo Brayton cerrado, desde el punto de vista energético y exegético bajo las condiciones ambientales de Colombia. Metodología: Integrar en lenguaje modélica, por medio de un compilador Dymola un modelo de recurso solar, un modelo energético y un modelo exergético aplicado a las condiciones ambientales de Colombia. Resultados: Se presenta el análisis correspondiente a la evolución de los principales parámetros de operación de la planta a lo largo del día, la variación del rendimiento y la potencia en función de la relación de presiones. Conclusiones: Es viable técnicamente la operación de una planta solar térmica de concentración de ciclo Brayton en algunos lugares de Colombia, dado el recurso solar disponible y el ahorro de combustible que genera a pesar del detrimento del rendimiento energético y exergético.Introduction− Actually in Colombia, there is great inter-est in the application of renewable energy and the diversi-fication of the energy matrix. Therefore, in this work, are presented the results of the simulation of a hybrid solar thermal plant of closed Brayton cycle in Colombia, that re-ceives heat from a concentration system of central tower and heliostats. The solar resource is estimated by a time model validated initially, additionally with a combustion chamber that uses natural gas as fuel, which guarantees the stability of the heat supplied to the plant. The location of the plant is selected based on the global and diffuse average monthly radiation per day, and additionally, a simulation of the main operating parameters is carried out, optimizing the power and overall performance as a function of the pressure ratio. Finally, an exergy analysis of the plant is developed, especially of the components affected by the variation of the radiation during the day.Objective−Evaluate a thermal solar plant of closed Brayton cycle concentration, through an energetic and exegetical analysis under the environmental conditions of Colombia.Methodology−Integrate a model of solar resource, an energetic model and an exergy model applied to the envi-ronmental conditions of Colombia in model language in a Dymola compiler.Results− The evolution of the main operating parameters of the plant throughout the day, the variation of the perfor-mance and the power depending on the pressure ratio are presented and analyzed.Conclusions−It is technically feasible the operation of a solar thermal plant of concentration of Brayton cycle in some places of Colombia, given the available solar resource and the fuel saving that it generates despite the detriment of the energetic and exegetical performance.Moreno Gamboa, Faustino-d9b635bb-28d7-45b8-8222-71d5f60c8897-0Nieto Londoño, Cesar-1c91da12-1e94-4f97-8540-a986a58de619-011 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 14, Núm. 2 (2018)INGE CUCINGE CUCS. Kalogirou, Solar Engineering Processes and Systems, San Diego: Academic Press Elsevier, 2009.REN21, Steering Committee, Renewable Energy Policy Network for the 21st Century, Renewable 2016 energy Status Report, Paris, 2016.Y . Goswami, Principles of Solar Engineering, Boca Raton, USA: CRC Press, 2015.B. Liu y R. Jordan, “The Interrelationship and Characteristic Distribution of Direct, Diffuse ant Total Solar Radiation”, Solar Energy, vol. 4, pp. 1-12, 1960. https://doi.org/10.1016/0038-092X(60)90062-1M. Collares-Pereira y A. Rabl, “Hourly Diffuse Fraction Correlation at a Tropical Location”, Solar Energy, vol. 53, pp. 505-510, 1994. https://doi.org/10.1016/0038-092X(94)90130-TC. Gueymard, “Prediction and Performance Assessment of Mean Hourly Global Radiation”, Solar Energy, vol. 68, pp. 285-303, 2000. https://doi.org/10.1016/S0038-092X(99)00070-5W. Le Roux, T. Bello-Ochende y J. Meyer, “A review on the Thermodynamic Optimization and Modelling of the Solar Thermal Brayton Cycle”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 677-690, 2013. https://doi.org/10.1016/j.rser.2013.08.053CSP Today, Concentrated Solar Power Market Report 2014, Business Intelligence Ltd, London, 2015.C. Ho y B. Iverson, “A Review of High-Temperature Central Receiver Design for Concentrating Solar Power”, Renewable and Sustainable Energy Reviews, vol. 29, pp. 835-846, 2014. https://doi.org/10.1016/j.rser.2013.08.099A. Avila-Martin, J. Fernandez-Reche y F. Tellez, “Evaluation of the Potential of Central Receiver Solar Power Plants”, Applied Energy, vol. 112, pp. 274-288, 2013. https://doi.org/10.1016/j.apenergy.2013.05.049F. Collado y J. Guallar, “A Review of Optimized Design Layouts for Solar Power Tower Plants With Campo Code”, Renewable and Sustainable Energy Reviews, vol. 20, pp. 142-145, 2015. https://doi.org/10.1016/j.rser.2012.11.076Y . Zhang, B. Lin y J. Chen, “Optimum Performance Characteristics of an Irreversible Solar-Driven Brayton Heat Engine at the Maximum Overall Efficiency”, Renewable Energy, vol. 32, pp. 856-867, 2007. https://doi.org/10.1016/j.renene.2006.02.008R. Kehlhofer, F. Hannemann y F. Stirnimann, Combined Cycle Gas and Steam Turbine Power Plants, Tusla. Oklahoma, USA: PennWall Corporation, 2009.L. Wu, G. Lin y J. Chen, “Parametric Optimization of a Solar-driven Braysson Heat Engine with Variable Heat Capacity of the Working Fluid and Radiation Convective Losses,” Renewable Energy, vol. 35, pp. 95-100, 2010. https://doi.org/10.1016/j.renene.2009.07.015S. Sánchez, Modelización, Análisis y Optimización “Termodinámica de Plantas de Potencia Multietapas Tipo Brayton. Aplicación a Centrales Termosolares”, Tesis Doctoral, Universidad de Salamanca, Salamanca, 2012.S. Sanchez, A. Medina y A. Calvo Hernandez, “Thermodynamic Model and Optimization of a Multi-Step Irreversible Brayton Cycle”, Energy Conversion and Management, vol. 51, pp. 2134-2143, 2010. https://doi.org/10.1016/j.enconman.2010.03.006D. Olivenza-Leon, A. Medina y A. Calvo Hernández, “Thermodynamic Modelling of a Hybrid Solar Gas Turbine”, Energy Conversion and Management, vol. 93, pp. 435-447, 2015. https://doi.org/10.1016/j.enconman.2015.01.027M. J. Santos, R. Mechan, A. Medina y A. Calvo Hernandez, “Seasonal Thermodynamic Prediction of the Performance of Hybrid Solar Gas-Turbine”, Energy Conversion and Management, vol. 115, pp. 80-102, 2016. https://doi.org/10.1016/j.enconman.2016.02.019W. LeRoux, T. Bello-Ochende y J. Meyer, “The Efficiency of an Open-Cavity Tubular Solar Receiver for a Small-Scale Solar Thermal Brayton Cycle”, Energy Conversion and Management, vol. 84, pp. 457-470, 2014. https://doi.org/10.1016/j.enconman.2014.04.048C. Xu, Z. Wang y F. Sun, “Energy and Exergy Analysis of Solar Power Plants”, Applied Thermal Engineering, vol. 31, pp. 3904 - 3913, 2011. https://doi.org/10.1016/j.applthermaleng.2011.07.038V. Zare y M. Hasanzadeh, “Energy and Exergy Analysis of Closed Brayton Cycle Combined for Solar Tower Plant”, Energy Conversion and Management, vol. 128, pp. 227 - 237, 2016. https://doi.org/10.1016/j.enconman.2016.09.080R. Vasquez Padilla, R. Benito y W. Stein, “An Exergy Analysis of Recompression Supercritical CO2 Cycles with Reheating”, Energy Procedia, vol. 69, pp. 1181 - 1191, 2015. https://doi.org/10.1016/j.egypro.2015.03.201W. Xiaohe, L. Quibin y B. Zhang, “Thermodynamic Analysis of the Cascade Supercritical CO2 Cycle Integrated with Solar and Biomass”, Energy Procedia, vol. 105, pp. 445 - 452, 2017. https://doi.org/10.1016/j.egypro.2017.03.339National Aeronautics and Space Administration, “NASA,” [En línea]. Available: https://eosweb.larc.nasa.gov/sse/. [Último acceso: 26 11 2017].J. Cenguel y M. Boles, Termodinámica, Ciudad de México: McGraw Hill, 2011.K. Wark y D. Richards, Termodinámica, Madrid: Mc-Graw Hill, 2001.J. Duffie y W. Beckman, Solar Engineering of Thermal Process, New Jersey: John Wiley and Sons, 2006.N. Jubeh, “Exergy Analysis and Second Law Efficiency of Regenerative Brayton Cycle Isothermal Heat Addition”, Entropy, vol. 3, pp. 172 -187, 2005. https://doi.org/10.3390/e7030172J. Parrott, “Theoretical Upper Limit to the Conversion Efficiency of Solar Energy”, Solar Energy, vol. 21, pp. 227 - 239, 1978. https://doi.org/10.1016/0038-092X(78)90025-7Y. Wanxiang, L. Zhengrong y X. Tongbin, “New Descomposition Models to Estimate Hourly Global Solar Radiation from the Daily Value”, Solar Energy, vol. 120, pp. 87 - 99, 2015. https://doi.org/10.1016/j.solener.2015.05.038R. Mejdoul y M. Taqi, “The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco”, International Journal of Renewable Energy, vol. 2, nº 4, 2012.W. Wan Nik, M. Ibrahim y K. Samo, “Monthly Mean Hourly Global Solar Radiation Estimation”, Solar Energy, vol. 86, pp. 379 - 387, 2012. https://doi.org/10.1016/j.solener.2011.10.008136126214INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1849Modelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en ColombiaThermodynamic modeling of a Brayton cycle hybrid solar thermal plant in ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energía solar térmicaConcentración solarCiclo Brayton cerradoRadiación solarDestrucción de exergíaSolar thermal energySolar concentrationClosed Brayton cycleSolar radiationExergy destructionPublicationORIGINALModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia.pdfModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia.pdfapplication/pdf553333https://repositorio.cuc.edu.co/bitstreams/a2a5b9dd-fd0e-4268-b4b5-ae3dedf1441e/download7ef70c8858a10dcf86bd344401e5d66eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/b9a467b0-347b-4f9e-a2c8-f8bd41109515/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia.pdf.jpgModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia.pdf.jpgimage/jpeg60876https://repositorio.cuc.edu.co/bitstreams/1cd8fa6f-db72-4f3b-aa87-8a8a390c9193/downloadf3f4d14ba2f4079ce993ce63f164cfd9MD54TEXTModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia.pdf.txtModelado termodinámico de una planta solar térmica hibrida de ciclo Brayton en Colombia.pdf.txttext/plain50140https://repositorio.cuc.edu.co/bitstreams/0ac2fe47-4350-4a37-9249-55587e4de9cf/downloada14e9448426244ed4b4c899928999edaMD5511323/2393oai:repositorio.cuc.edu.co:11323/23932024-09-17 11:03:25.595open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |