Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)

The Modern electrical power systems are formed with many interconnections to ensure economic and safe operation; however, transmission power lines have technical restrictions that limit electricity transportation making them limited in flexibility due to its little or few possibilities to control fl...

Full description

Autores:
Berdugo Sarmiento, Kelly Margarita
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7155
Acceso en línea:
https://hdl.handle.net/11323/7155
https://repositorio.cuc.edu.co/
Palabra clave:
Flexible alternating current transmission systems
Power system
Flexibility
Constraints
Power system
Sistemas flexibles de transmision en corriente alterna
Sistemas eléctricos de potencia
Flexibilidad
Restricciones
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_394eab34033ac07cfb09ca1d86273ff2
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7155
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
title Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
spellingShingle Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
Flexible alternating current transmission systems
Power system
Flexibility
Constraints
Power system
Sistemas flexibles de transmision en corriente alterna
Sistemas eléctricos de potencia
Flexibilidad
Restricciones
title_short Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
title_full Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
title_fullStr Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
title_full_unstemmed Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
title_sort Mejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)
dc.creator.fl_str_mv Berdugo Sarmiento, Kelly Margarita
dc.contributor.advisor.spa.fl_str_mv Silva Ortega, Jorge Iván
Sousa Santos, Vladimir
dc.contributor.author.spa.fl_str_mv Berdugo Sarmiento, Kelly Margarita
dc.subject.spa.fl_str_mv Flexible alternating current transmission systems
Power system
Flexibility
Constraints
Power system
Sistemas flexibles de transmision en corriente alterna
Sistemas eléctricos de potencia
Flexibilidad
Restricciones
topic Flexible alternating current transmission systems
Power system
Flexibility
Constraints
Power system
Sistemas flexibles de transmision en corriente alterna
Sistemas eléctricos de potencia
Flexibilidad
Restricciones
description The Modern electrical power systems are formed with many interconnections to ensure economic and safe operation; however, transmission power lines have technical restrictions that limit electricity transportation making them limited in flexibility due to its little or few possibilities to control flower flows. The Flexible Systems of Alternating Current are an alternative that allows a dynamic response in the system allowing the control of power flow. This project describes advances and trends in Flexible Alternating Current Transmission Systems (FACTS) technologies and their uses in power systems. it evaluates concepts, properties and applications of power transfer capability during the electrical transportation activity. The review section included a bibliometric analysis using Web of Science (WoS) database considering the techniques used for energy transmission and distribution power system. Otherwise, the paper describes a framework of the different technological variants of FACTS that allows to improve the flexibility conditions in steady state, and to compensate loadability constraints in power lines, considering the potential benefits and other technical-operational aspects. This document evaluates the implementation of FACTS in the Regional Transmission System (STR) of the Department of Atlántico, as a strategy to improve the system's power transfer capacity and the response to the increase in demand projected for the coming years.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-22T16:33:45Z
dc.date.available.none.fl_str_mv 2020-10-22T16:33:45Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Berdugo, K. (2020). Mejoras en la operación del sistema de transmisión regional de energía eléctrica del departamento del atlántico utilizando sistemas flexibles de transmisión de corriente alterna (facts). Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7155
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7155
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Berdugo, K. (2020). Mejoras en la operación del sistema de transmisión regional de energía eléctrica del departamento del atlántico utilizando sistemas flexibles de transmisión de corriente alterna (facts). Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7155
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7155
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ABB. (1997). Electrical Transmission and Distribution Reference Book.
ABB. (1999). FACTS , poderosos sistemas para una transmisión flexible de la energía El rápido proceso de transformación en que se encuentra el mercado de la, 1–2.
Abdelaziz, A. Y., El-Sharkawy, M. A., & Attia, M. A. (2015). Optimal Location of Thyristor- Controlled Series Compensation and Static VAR Compensator to Enhance Steady-state Performance of Power System with Wind Penetration. Electric Power Components and Systems, 43(18), 1999–2009. https://doi.org/10.1080/15325008.2015.1075081
Ac, F., & Systems, T. (2016). Parallel compensation. Energy Management Division, 24.
Adetokun, B. B., Muriithi, C. M., & Ojo, J. O. (2020). Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.105988
Al-Ismail, F. S., Hassan, M. A., & Abido, M. A. (2014). RTDS implementation of STATCOMbased power system stabilizers. Canadian Journal of Electrical and Computer Engineering, 37(1), 48–56. https://doi.org/10.1109/CJECE.2014.2309323
Ali, M. A. S., Mehmood, K. K., & Kim, C.-H. (2017). Power system stability improvement through the coordination of TCPS-based damping controller and power system stabilizer. Advances in Electrical and Computer Engineering, 17(4), 27–36. https://doi.org/10.4316/AECE.2017.04004
Alomari, Majdi; Widyan, M. A.-N. M. G. A. (2017). HOPF Bifurcation Control of Subsynchronous Resonance Utilizing UPFC. Engineering Technology & Apllied Science Research.
Ara, A. Lashkar; Kazemi, A.;Niaki, S. A. N. (2012). Multiobjective Optimal Location of FACTS Shunt-Series Controllers for Power System Operation Planning. IEEE Transactions on Power Delivery, 27 (2):, 481–490. https://doi.org/10.1109/TPWRD.2011.2176559
Babatunde, O. M., Munda, J. L., & Hamam, Y. (2020). Power system flexibility: A review. In Energy Reports (Vol. 6, pp. 101–106). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2019.11.048
Banaei, M. R., & Kami, A. (2011). Interline power flow controller (IPFC) based damping recurrent neural network controllersfor enhancing stability. Energy Conversion and Management, 52(7), 2629–2636. https://doi.org/10.1016/j.enconman.2011.01.024
Barrios-martínez, E., & Ángeles-camacho, C. (2017). Technical comparison of FACTS controllers in parallel connection. Revista Mexicana de Trastornos Alimentarios, 15(1), 36– 44. https://doi.org/10.1016/j.jart.2017.01.001
Boroujeni, Hasan Fayazi; Hemmati, Reza; Boroujeni, S. M. S. (2012). Dynamic stability enhancement of a multimachine electric power system using STATCOM. Turkish Journal of Electrical Engineering and Computer Sciences, 20, 1240–1248. https://doi.org/10.3906/elk-1105-4
Brucoli, M., Rossi, F., Torelli, F., & Trovato, M. (1985). A generalized approach to the analysis of voltage stability in electric power systems. Electric Power Systems Research, 9(1), 49– 62. https://doi.org/10.1016/0378-7796(85)90054-9
Bruno, S., De Carne, G., & La Scala, M. (2016). Transmission Grid Control Through TCSC Dynamic Series Compensation. IEEE Transactions on Power Systems, 31(4), 3202–3211. https://doi.org/10.1109/TPWRS.2015.2479089
Candelo, J. E., Caicedo, N. G., & Castro-Aranda, F. (2006). Proposal for the solution of voltage stability using coordination of facts devices. 2006 IEEE PES Transmission and Distribution Conference and Exposition: Latin America, TDC’06, (September). https://doi.org/10.1109/TDCLA.2006.311366
Chang, Y. C. (2013). Fitness sharing particle swarm optimization approach to FACTS installation for transmission system loadability enhancement. Journal of Electrical Engineering and Technology, 8(1), 31–39. https://doi.org/10.5370/JEET.2013.8.1.031
Chang, Ya Chin, & Chang, R. F. (2013). Maximization of transmission system loadability with optimal FACTS installation strategy. Journal of Electrical Engineering and Technology, 8(5), 991–1001. https://doi.org/10.5370/JEET.2013.8.5.991
Chidambaram, I. A., & Paramasivam, B. (2013). Optimized load-frequency simulation in restructured power system with Redox Flow Batteries and Interline Power Flow Controller. International Journal of Electrical Power and Energy Systems, 50(1), 9–24. https://doi.org/10.1016/j.ijepes.2013.02.004
Choi, J., Mount, T. D., & Thomas, R. J. (2007). Transmission expansion planning using contingency criteria. IEEE Transactions on Power Systems, 22(4), 2249–2261. https://doi.org/10.1109/TPWRS.2007.908478
Coronado, I., Zúñiga, P., & Ramírez, J. M. (2001). FACTS : soluciones modernas para la industria eléctrica. Avance y Perspectiva, 20, 235–244.
Dai LV; Tung DD; Dong TLT; Quyen LC. (2017). Improving Power System Stability with Gramian Matrix-Based Optimal Setting of a Single Series FACTS Device: Feasibility Study in Vietnamese Power System. Hindwawi, 1–4. https://doi.org/10.1155/2017/3014510
Darabian, M., Jalilvand, A., Ashouri, A., & Bagheri, A. (2020). Stability improvement of largescale power systems in the presence of wind farms by employing HVDC and STATCOM based on a non-linear controller. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106021
Devi, S., & Geethanjali, M. (2014). Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization. International Journal of Electrical Power and Energy Systems, 62, 646–653. https://doi.org/10.1016/j.ijepes.2014.05.021
Duarte, S. N., de Almeida, P. M., & Barbosa, P. G. (2019). A novel energizing strategy for a grid-connected modular multilevel converter operating as static synchronous compensator. International Journal of Electrical Power and Energy Systems, 109, 672–684. https://doi.org/10.1016/j.ijepes.2019.02.028
Ebeed, M., Kamel, S., & Jurado, F. (2016). Electrical Power and Energy Systems Determination of IPFC operating constraints in power flow analysis. International Journal of Electrical Power and Energy Systems, 81, 299–307. https://doi.org/10.1016/j.ijepes.2016.02.044
Elserougi, A. A., Massoud, A. M., & Ahmed, S. (2017). A transformerless STATCOM based on a hybrid Boost Modular Multilevel Converter with reduced number of switches. Electric Power Systems Research, 146, 341–348. https://doi.org/10.1016/j.epsr.2017.02.014
Escobar-Alvarez, H. D. (2009). Efectos De Algunos Compensadores De Voltaje En Un Sistema Eléctrico De Potencia. Universidad Nacional de Colombia.
Eslami, Mahdiyeh;Shareef, Hussain; Mohamed, Azah; Khajehzadeh, M. (2012). A Survey on Flexible AC Transmission Systems (FACTS). Przeglad Electrotechniczny, 88, 88.
Francisco D. Pérez A. (2013). Sistemas de transmisión flexible en corriente alterna, 4, 25–28.
Gandoman, F. H., Ahmadi, A., Sharaf, A. M., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. G. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews, 82, 502–514. https://doi.org/10.1016/j.rser.2017.09.062
Gasperic, S., & Mihalic, R. (2019). Estimation of the efficiency of FACTS devices for voltagestability enhancement with PV area criteria. Renewable and Sustainable Energy Reviews, 105, 144–156. https://doi.org/10.1016/j.rser.2019.01.039
Gers, J. M. (2013). Distribution System Analysis and Automation Distribution System Analysis and Automation. London, United Kingdom: The Institution of Engineering and Technology.
Ghorbani, A., Mozafari, B., Soleymani, S., & Ranjbar, A. M. (2016). Impact of STATCOM and SSSC on synchronous generator LOE protection. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2575–2588. https://doi.org/10.3906/elk-1403-13
Glazunova, A. M., & Aksaeva, E. S. (2018). Estimation of Total Transfer Capability in Intersystem Tie Lines of Electric Power Systems. IFAC-PapersOnLine, 51(32), 331–336. https://doi.org/10.1016/j.ifacol.2018.11.405
Grünbaum, R. (2008). FACTS para mejorar la eficicacia y la calidad de los sistemas de transmisiòn de corriente alterna, 83, 525–530.
Guillardi, H., Verri, E., Antenor, J., & Pinhabel, F. (2018). HardwareX General-compensationpurpose Static var Compensator prototype Point of Common Coupling. HardwareX, 5, e00049. https://doi.org/10.1016/j.ohx.2018.e00049
Guo, Z., Bai, X., Chan, K. W., & Xia, S. (2015). Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system. IET Generation, Transmission & Distribution, 9(1), 61–74. https://doi.org/10.1049/iet-gtd.2014.0038
Gupta, A. R., & Kumar, A. (2018). Impact of various load models on D-STATCOM allocation in DNO operated distribution network. In Procedia Computer Science (Vol. 125, pp. 862– 870). Elsevier B.V. https://doi.org/10.1016/j.procs.2017.12.110
Gutiérrez-Alcaraz, G., González-Cabrera, N., & Gil, E. (2020). An efficient method for Contingency-Constrained Transmission Expansion Planning. Electric Power Systems Research, 182, 106208. https://doi.org/10.1016/j.epsr.2020.106208
Hafez, A. A. A. (2017). STATCOM versus SSSC for power system stabilization. IEEJ Transactions on Electrical and Electronic Engineering, 12(4), 474–483. https://doi.org/10.1002/tee.22402
HMV Mejia Villegas S.A. (2003). Subestaciones de Alta y Extra Alta Tensión (Segunda Ed). Medellìn: HMV Ingenierìa.
Jamnani, J. G., & Pandya, M. (2019). Coordination of SVC and TCSC for Management of Power Flow by Particle Swarm Optimization. Energy Procedia, 156, 321–326. https://doi.org/10.1016/j.egypro.2018.11.149
Jensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., … Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044
Karthikeyan, K., & Dhal, P. K. (2018). Optimal Location of STATCOM based Dynamic Stability Analysis tuning of PSS using Particle Swarm Optimization. In Materials Today: Proceedings (Vol. 5, pp. 588–595). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2017.11.122
Kazerooni, A. K., & Mutale, J. (2010). Transmission network planning under security and environmental constraints. IEEE Transactions on Power Systems, 25(2), 1169–1178. https://doi.org/10.1109/TPWRS.2009.2036800
Kirthika, N., & Balamurugan, S. (2016). A new dynamic control strategy for power transmission congestion management using series compensation. International Journal of Electrical Power and Energy Systems, 77, 271–279. https://doi.org/10.1016/j.ijepes.2015.11.031
Kumar, R., Singh, R., & Ashfaq, H. (2020). Stability enhancement of multi-machine power systems using Ant colony optimization-based static Synchronous Compensator. Computers and Electrical Engineering, 83. https://doi.org/10.1016/j.compeleceng.2020.106589
Kundur, P., & Power, R. I. E. (1994). Power system stability and control (Primera Ed). New York: McGraw-Hill. https://doi.org/0-07-035958-X
Li, J., Liu, F., Li, Z., Mei, S., & He, G. (2018). Impacts and benefits of UPFC to wind power integration in unit commitment. Renewable Energy, 116, 570–583. https://doi.org/10.1016/j.renene.2017.09.085
Liu, Y. H., Watson, N. R., Zhou, K. L., & Yang, B. F. (2013). Converter system nonlinear modeling and control for transmission applications-Part I: VSC system. IEEE Transactions on Power Delivery, 28(3), 1381–1390. https://doi.org/10.1109/TPWRD.2013.2240020
Ma, T. T., & Shr, T. H. (2012). Advanced reactive power control schemes using static synchronous compensator and adaptive inverse model theory. International Review of Electrical Engineering, 7(6), 6266–6274.
Maldonado, J. (2014). Planificación de la expansión del sistema de transmisión eléctrico considerando equipos facts. Universidad de Chile. Retrieved from http://repositorio.uchile.cl/bitstream/handle/2250/116482/cfmaldonado_jg.pdf?sequence=1&isAllowed=y
Melin, P. E., Guzman, J. I., Hernandez, F. A., Baier, C. R., Muñoz, J. A., Espinoza, J. R., & Espinosa, E. E. (2020). Analysis and control strategy for a current-source based DSTATCOM towards minimum losses. International Journal of Electrical Power and Energy Systems, 116. https://doi.org/10.1016/j.ijepes.2019.105532
Mezaache, M., Chikhi, K., & Fetha, C. (2016). UPFC device: Optimal location and parameter setting to reduce losses in electric-power systems using a genetic-algorithm method. Transactions on Electrical and Electronic Materials, 17(1), 1–6. https://doi.org/10.4313/TEEM.2016.17.1.1
Noh, H., Cho, H., Lee, S., & Lee, B. (2020). STATCOM with SSR damping controller using geometric extraction on phase space reconstruction method. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106017
Oghorada, O. J. K., & Zhang, L. (2018). Analysis of star and delta connected modular multilevel cascaded converter-based STATCOM for load unbalanced compensation. International Journal of Electrical Power and Energy Systems, 95, 341–352. https://doi.org/10.1016/j.ijepes.2017.08.034
Peng, F. Z. (2017). Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution Systems (RACDS) in Smart Grid. Proceedings of the IEEE, 105(11), 2099–2115. https://doi.org/10.1109/JPROC.2017.2714022
Qader, M. R. (2015). Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality. Energy, 89, 576–592. https://doi.org/10.1016/j.energy.2015.06.012
Ramirez, J. M., Caicedo, G., & Correa, R. E. (2017). FACTS Sistemas de transmisión flexible. Cali, Colombia: Universidad del Valle Programa Editorial.
Rao, V. S., & Rao, R. S. (2017). Optimal Placement of STATCOM using Two Stage Algorithm for Enhancing Power System Static Security. In Energy Procedia (Vol. 117, pp. 575–582). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.05.151
Reyes-Archundia, E., Guardado, J. L., Moreno-Goytia, E. L., Gutierrez-Gnecchi, J. A., & Martinez-Cardenas, F. (2015). Fault Detection and Localization in Transmission Lines with a Static Synchronous Series Compensator. Advances in Electrical and Computer Engineering, 15(3), 17–22. https://doi.org/10.4316/AECE.2015.03003
Sadiq, A. A., Adamu, S. S., & Buhari, M. (2019). Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS. Engineering Science and Technology, an International Journal, 22(1), 33–46. https://doi.org/10.1016/j.jestch.2018.09.013
Sakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362
Sedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058
Shahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002
Shchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013
Sakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362
Sedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058
Shahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002
Shchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013
Shin, H. S., Cho, S. M., Kim, J. S., & Kim, J. C. (2013). Study of optimal location and compensation rate of thyristor- controlled series capacitor considering multi-objective function. Journal of Electrical Engineering and Technology, 8(3), 428–435. https://doi.org/10.5370/JEET.2013.8.3.428
SIEMENS. (2016). Sistemas de Compensación en Redes de Transmisión de Energía - FACTS. Energía En Movimiento, 8, 46–51. Retrieved from https://www.energy.siemens.com/co/pool/co/publicaciones/energia-en-movimiento/febrero- 2016/articulo-8 -facts.pdf
Simpson, R., Plumpton, A., Varley, M., Tonner, C., Taylor, P., & Dai, X. P. (2017). Press-pack IGBTs for HVDC and FACTS. Csee Journal Of Power And Energy Systems, 3(3), 302– 310. https://doi.org/10.17775/Cseejpes.2016.01740
Singh, Bhim, Chandra, A., Al-Haddad, K., Anuradha, & Kothari, D. P. (1998). Reactive power compensation and load balancing in electric power distribution systems. International Journal of Electrical Power and Energy Systems, 20(6), 375–381. https://doi.org/10.1016/s0142-0615(98)00008-8
Singh, Bindeshwar, Payasi, R. P., & Shukla, V. (2017). A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems. Energy Reports, 3, 94–108. https://doi.org/10.1016/j.egyr.2017.07.001
Singh, Bindeshwar, & Singh, S. (2019). GA-based optimization for integration of DGs, STATCOM and PHEVs in distribution systems. Energy Reports, 5, 84–103. https://doi.org/10.1016/j.egyr.2018.09.005
Sreedharan, S., Joseph, T., Joseph, S., Chandran, C. V., J, V., & Das P, V. (2020). Power system loading margin enhancement by optimal STATCOM integration – A case study. Computers and Electrical Engineering, 81. https://doi.org/10.1016/j.compeleceng.2019.106521
Thomas, J. J., & Grijalva, S. (2015). Flexible security-constrained optimal power flow. IEEE Transactions on Power Systems, 30(3), 1195–1202. https://doi.org/10.1109/TPWRS.2014.2345753
Vijay Kumar, B., & Srikanth, N. V. (2015). Optimal location and sizing of Unified Power Flow Controller (UPFC) to improve dynamic stability: A hybrid technique. International Journal of Electrical Power and Energy Systems, 64, 429–438. https://doi.org/10.1016/j.ijepes.2014.07.015
Wang, K., & Crow, M. L. (2013). Modern flexible AC transmission system (FACTS) devices. Electricity Transmission, Distribution and Storage Systems. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097378.2.174
Wang, P., Wang, Y., Jiang, N., & Gu, W. (2020). A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors. International Journal of Electrical Power and Energy Systems, 121. https://doi.org/10.1016/j.ijepes.2020.106091
Xu, X., Bishop, M., Edmonds, M. J. S., & Oikarinen, D. G. (2015). A New Control Strategy for Distributed Static Compensators Considering Transmission Reactive Flow Constraints. IEEE Transactions on Power Delivery, 30(4), 1991–1998. https://doi.org/10.1109/TPWRD.2015.2389621
Yifan, Z., Wei, H., Le, Z., Yong, M., Lei, C., Zongxiang, L., & Ling, D. (2020). Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch. Energy, 190. https://doi.org/10.1016/j.energy.2019.116426
Zheng, J., & Li, J. (2012). Reactive Optimization Control for the Wind Farm with Static Var Compensator ( SVC ). 2012 24th Chinese Control and Decision Conference (CCDC), 2792–2795. https://doi.org/10.1109/CCDC.2012.6244445
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría en Eficiencia Energética y Energías Renovables
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/561125c5-79db-4ef3-84dc-adec83004375/download
https://repositorio.cuc.edu.co/bitstreams/736472cc-c992-4eab-8a09-03b220d6419f/download
https://repositorio.cuc.edu.co/bitstreams/342bc700-771b-4b91-ad69-2dd40c663fd1/download
https://repositorio.cuc.edu.co/bitstreams/e071d0c2-ba5a-4b29-a1a0-2638fd449ebf/download
https://repositorio.cuc.edu.co/bitstreams/6c9ca141-d7a5-4b31-87c7-3368b57a8e3d/download
bitstream.checksum.fl_str_mv 33176bff5149faafc926406113451615
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
f09abb24d8efac9a39899df36950cf69
c2fc2596bb179f75a6936d825024c7bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760744115470336
spelling Silva Ortega, Jorge IvánSousa Santos, VladimirBerdugo Sarmiento, Kelly Margarita2020-10-22T16:33:45Z2020-10-22T16:33:45Z2020Berdugo, K. (2020). Mejoras en la operación del sistema de transmisión regional de energía eléctrica del departamento del atlántico utilizando sistemas flexibles de transmisión de corriente alterna (facts). Trabajo de Maestría. Recuperado de https://hdl.handle.net/11323/7155https://hdl.handle.net/11323/7155Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Modern electrical power systems are formed with many interconnections to ensure economic and safe operation; however, transmission power lines have technical restrictions that limit electricity transportation making them limited in flexibility due to its little or few possibilities to control flower flows. The Flexible Systems of Alternating Current are an alternative that allows a dynamic response in the system allowing the control of power flow. This project describes advances and trends in Flexible Alternating Current Transmission Systems (FACTS) technologies and their uses in power systems. it evaluates concepts, properties and applications of power transfer capability during the electrical transportation activity. The review section included a bibliometric analysis using Web of Science (WoS) database considering the techniques used for energy transmission and distribution power system. Otherwise, the paper describes a framework of the different technological variants of FACTS that allows to improve the flexibility conditions in steady state, and to compensate loadability constraints in power lines, considering the potential benefits and other technical-operational aspects. This document evaluates the implementation of FACTS in the Regional Transmission System (STR) of the Department of Atlántico, as a strategy to improve the system's power transfer capacity and the response to the increase in demand projected for the coming years.Los Sistemas Eléctricos de Potencia modernos están formados por muchas interconexiones para garantizar un funcionamiento económico y seguro; sin embargo, las líneas de energía de transmisión tienen restricciones técnicas que limitan la transmisión de la electricidad, lo que hace que su flexibilidad sea limitada debido a sus pocas o escasas posibilidades de controlar los flujos de potencia. Los Sistemas Flexibles de Corriente Alterna (FACTS) son una alternativa que permite una respuesta dinámica en el sistema permitiendo el control del flujo de energía. En este proyecto se describen los avances y tendencias de las tecnologías de los FACTS y sus usos en los sistemas de energía. Además, se evalúan conceptos, propiedades y aplicaciones de la capacidad de transferencia de energía durante la actividad de transmisión de electricidad. La sección de revisión incluyó un análisis bibliométrico considerando las técnicas utilizadas para la transmisión de energía y el sistema de distribución de energía eléctrica. Por otra parte, el documento describe un marco de las diferentes variantes tecnológicas de FACTS que permite mejorar las condiciones de flexibilidad en estado estacionario y compensar las limitaciones de capacidad de carga en las líneas eléctricas, considerando los beneficios potenciales y otros aspectos técnico-operativos. Este documento evalúa la implementación de FACTS en el Sistema Regional de Transmisión (STR) del Departamento del Atlántico, como estrategia para mejorar la capacidad de transferencia de potencia del sistema y la respuesta al incremento de la demanda proyectada para los próximos años.Berdugo Sarmiento, Kelly MargaritaspaCorporación Universidad de la CostaMaestría en Eficiencia Energética y Energías RenovablesAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Flexible alternating current transmission systemsPower systemFlexibilityConstraintsPower systemSistemas flexibles de transmision en corriente alternaSistemas eléctricos de potenciaFlexibilidadRestriccionesMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS)Trabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionABB. (1997). Electrical Transmission and Distribution Reference Book.ABB. (1999). FACTS , poderosos sistemas para una transmisión flexible de la energía El rápido proceso de transformación en que se encuentra el mercado de la, 1–2.Abdelaziz, A. Y., El-Sharkawy, M. A., & Attia, M. A. (2015). Optimal Location of Thyristor- Controlled Series Compensation and Static VAR Compensator to Enhance Steady-state Performance of Power System with Wind Penetration. Electric Power Components and Systems, 43(18), 1999–2009. https://doi.org/10.1080/15325008.2015.1075081Ac, F., & Systems, T. (2016). Parallel compensation. Energy Management Division, 24.Adetokun, B. B., Muriithi, C. M., & Ojo, J. O. (2020). Voltage stability assessment and enhancement of power grid with increasing wind energy penetration. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.105988Al-Ismail, F. S., Hassan, M. A., & Abido, M. A. (2014). RTDS implementation of STATCOMbased power system stabilizers. Canadian Journal of Electrical and Computer Engineering, 37(1), 48–56. https://doi.org/10.1109/CJECE.2014.2309323Ali, M. A. S., Mehmood, K. K., & Kim, C.-H. (2017). Power system stability improvement through the coordination of TCPS-based damping controller and power system stabilizer. Advances in Electrical and Computer Engineering, 17(4), 27–36. https://doi.org/10.4316/AECE.2017.04004Alomari, Majdi; Widyan, M. A.-N. M. G. A. (2017). HOPF Bifurcation Control of Subsynchronous Resonance Utilizing UPFC. Engineering Technology & Apllied Science Research.Ara, A. Lashkar; Kazemi, A.;Niaki, S. A. N. (2012). Multiobjective Optimal Location of FACTS Shunt-Series Controllers for Power System Operation Planning. IEEE Transactions on Power Delivery, 27 (2):, 481–490. https://doi.org/10.1109/TPWRD.2011.2176559Babatunde, O. M., Munda, J. L., & Hamam, Y. (2020). Power system flexibility: A review. In Energy Reports (Vol. 6, pp. 101–106). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2019.11.048Banaei, M. R., & Kami, A. (2011). Interline power flow controller (IPFC) based damping recurrent neural network controllersfor enhancing stability. Energy Conversion and Management, 52(7), 2629–2636. https://doi.org/10.1016/j.enconman.2011.01.024Barrios-martínez, E., & Ángeles-camacho, C. (2017). Technical comparison of FACTS controllers in parallel connection. Revista Mexicana de Trastornos Alimentarios, 15(1), 36– 44. https://doi.org/10.1016/j.jart.2017.01.001Boroujeni, Hasan Fayazi; Hemmati, Reza; Boroujeni, S. M. S. (2012). Dynamic stability enhancement of a multimachine electric power system using STATCOM. Turkish Journal of Electrical Engineering and Computer Sciences, 20, 1240–1248. https://doi.org/10.3906/elk-1105-4Brucoli, M., Rossi, F., Torelli, F., & Trovato, M. (1985). A generalized approach to the analysis of voltage stability in electric power systems. Electric Power Systems Research, 9(1), 49– 62. https://doi.org/10.1016/0378-7796(85)90054-9Bruno, S., De Carne, G., & La Scala, M. (2016). Transmission Grid Control Through TCSC Dynamic Series Compensation. IEEE Transactions on Power Systems, 31(4), 3202–3211. https://doi.org/10.1109/TPWRS.2015.2479089Candelo, J. E., Caicedo, N. G., & Castro-Aranda, F. (2006). Proposal for the solution of voltage stability using coordination of facts devices. 2006 IEEE PES Transmission and Distribution Conference and Exposition: Latin America, TDC’06, (September). https://doi.org/10.1109/TDCLA.2006.311366Chang, Y. C. (2013). Fitness sharing particle swarm optimization approach to FACTS installation for transmission system loadability enhancement. Journal of Electrical Engineering and Technology, 8(1), 31–39. https://doi.org/10.5370/JEET.2013.8.1.031Chang, Ya Chin, & Chang, R. F. (2013). Maximization of transmission system loadability with optimal FACTS installation strategy. Journal of Electrical Engineering and Technology, 8(5), 991–1001. https://doi.org/10.5370/JEET.2013.8.5.991Chidambaram, I. A., & Paramasivam, B. (2013). Optimized load-frequency simulation in restructured power system with Redox Flow Batteries and Interline Power Flow Controller. International Journal of Electrical Power and Energy Systems, 50(1), 9–24. https://doi.org/10.1016/j.ijepes.2013.02.004Choi, J., Mount, T. D., & Thomas, R. J. (2007). Transmission expansion planning using contingency criteria. IEEE Transactions on Power Systems, 22(4), 2249–2261. https://doi.org/10.1109/TPWRS.2007.908478Coronado, I., Zúñiga, P., & Ramírez, J. M. (2001). FACTS : soluciones modernas para la industria eléctrica. Avance y Perspectiva, 20, 235–244.Dai LV; Tung DD; Dong TLT; Quyen LC. (2017). Improving Power System Stability with Gramian Matrix-Based Optimal Setting of a Single Series FACTS Device: Feasibility Study in Vietnamese Power System. Hindwawi, 1–4. https://doi.org/10.1155/2017/3014510Darabian, M., Jalilvand, A., Ashouri, A., & Bagheri, A. (2020). Stability improvement of largescale power systems in the presence of wind farms by employing HVDC and STATCOM based on a non-linear controller. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106021Devi, S., & Geethanjali, M. (2014). Optimal location and sizing of Distribution Static Synchronous Series Compensator using Particle Swarm Optimization. International Journal of Electrical Power and Energy Systems, 62, 646–653. https://doi.org/10.1016/j.ijepes.2014.05.021Duarte, S. N., de Almeida, P. M., & Barbosa, P. G. (2019). A novel energizing strategy for a grid-connected modular multilevel converter operating as static synchronous compensator. International Journal of Electrical Power and Energy Systems, 109, 672–684. https://doi.org/10.1016/j.ijepes.2019.02.028Ebeed, M., Kamel, S., & Jurado, F. (2016). Electrical Power and Energy Systems Determination of IPFC operating constraints in power flow analysis. International Journal of Electrical Power and Energy Systems, 81, 299–307. https://doi.org/10.1016/j.ijepes.2016.02.044Elserougi, A. A., Massoud, A. M., & Ahmed, S. (2017). A transformerless STATCOM based on a hybrid Boost Modular Multilevel Converter with reduced number of switches. Electric Power Systems Research, 146, 341–348. https://doi.org/10.1016/j.epsr.2017.02.014Escobar-Alvarez, H. D. (2009). Efectos De Algunos Compensadores De Voltaje En Un Sistema Eléctrico De Potencia. Universidad Nacional de Colombia.Eslami, Mahdiyeh;Shareef, Hussain; Mohamed, Azah; Khajehzadeh, M. (2012). A Survey on Flexible AC Transmission Systems (FACTS). Przeglad Electrotechniczny, 88, 88.Francisco D. Pérez A. (2013). Sistemas de transmisión flexible en corriente alterna, 4, 25–28.Gandoman, F. H., Ahmadi, A., Sharaf, A. M., Siano, P., Pou, J., Hredzak, B., & Agelidis, V. G. (2018). Review of FACTS technologies and applications for power quality in smart grids with renewable energy systems. Renewable and Sustainable Energy Reviews, 82, 502–514. https://doi.org/10.1016/j.rser.2017.09.062Gasperic, S., & Mihalic, R. (2019). Estimation of the efficiency of FACTS devices for voltagestability enhancement with PV area criteria. Renewable and Sustainable Energy Reviews, 105, 144–156. https://doi.org/10.1016/j.rser.2019.01.039Gers, J. M. (2013). Distribution System Analysis and Automation Distribution System Analysis and Automation. London, United Kingdom: The Institution of Engineering and Technology.Ghorbani, A., Mozafari, B., Soleymani, S., & Ranjbar, A. M. (2016). Impact of STATCOM and SSSC on synchronous generator LOE protection. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 2575–2588. https://doi.org/10.3906/elk-1403-13Glazunova, A. M., & Aksaeva, E. S. (2018). Estimation of Total Transfer Capability in Intersystem Tie Lines of Electric Power Systems. IFAC-PapersOnLine, 51(32), 331–336. https://doi.org/10.1016/j.ifacol.2018.11.405Grünbaum, R. (2008). FACTS para mejorar la eficicacia y la calidad de los sistemas de transmisiòn de corriente alterna, 83, 525–530.Guillardi, H., Verri, E., Antenor, J., & Pinhabel, F. (2018). HardwareX General-compensationpurpose Static var Compensator prototype Point of Common Coupling. HardwareX, 5, e00049. https://doi.org/10.1016/j.ohx.2018.e00049Guo, Z., Bai, X., Chan, K. W., & Xia, S. (2015). Enhanced particle swarm optimisation applied for transient angle and voltage constrained discrete optimal power flow with flexible AC transmission system. IET Generation, Transmission & Distribution, 9(1), 61–74. https://doi.org/10.1049/iet-gtd.2014.0038Gupta, A. R., & Kumar, A. (2018). Impact of various load models on D-STATCOM allocation in DNO operated distribution network. In Procedia Computer Science (Vol. 125, pp. 862– 870). Elsevier B.V. https://doi.org/10.1016/j.procs.2017.12.110Gutiérrez-Alcaraz, G., González-Cabrera, N., & Gil, E. (2020). An efficient method for Contingency-Constrained Transmission Expansion Planning. Electric Power Systems Research, 182, 106208. https://doi.org/10.1016/j.epsr.2020.106208Hafez, A. A. A. (2017). STATCOM versus SSSC for power system stabilization. IEEJ Transactions on Electrical and Electronic Engineering, 12(4), 474–483. https://doi.org/10.1002/tee.22402HMV Mejia Villegas S.A. (2003). Subestaciones de Alta y Extra Alta Tensión (Segunda Ed). Medellìn: HMV Ingenierìa.Jamnani, J. G., & Pandya, M. (2019). Coordination of SVC and TCSC for Management of Power Flow by Particle Swarm Optimization. Energy Procedia, 156, 321–326. https://doi.org/10.1016/j.egypro.2018.11.149Jensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., … Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044Karthikeyan, K., & Dhal, P. K. (2018). Optimal Location of STATCOM based Dynamic Stability Analysis tuning of PSS using Particle Swarm Optimization. In Materials Today: Proceedings (Vol. 5, pp. 588–595). Elsevier Ltd. https://doi.org/10.1016/j.matpr.2017.11.122Kazerooni, A. K., & Mutale, J. (2010). Transmission network planning under security and environmental constraints. IEEE Transactions on Power Systems, 25(2), 1169–1178. https://doi.org/10.1109/TPWRS.2009.2036800Kirthika, N., & Balamurugan, S. (2016). A new dynamic control strategy for power transmission congestion management using series compensation. International Journal of Electrical Power and Energy Systems, 77, 271–279. https://doi.org/10.1016/j.ijepes.2015.11.031Kumar, R., Singh, R., & Ashfaq, H. (2020). Stability enhancement of multi-machine power systems using Ant colony optimization-based static Synchronous Compensator. Computers and Electrical Engineering, 83. https://doi.org/10.1016/j.compeleceng.2020.106589Kundur, P., & Power, R. I. E. (1994). Power system stability and control (Primera Ed). New York: McGraw-Hill. https://doi.org/0-07-035958-XLi, J., Liu, F., Li, Z., Mei, S., & He, G. (2018). Impacts and benefits of UPFC to wind power integration in unit commitment. Renewable Energy, 116, 570–583. https://doi.org/10.1016/j.renene.2017.09.085Liu, Y. H., Watson, N. R., Zhou, K. L., & Yang, B. F. (2013). Converter system nonlinear modeling and control for transmission applications-Part I: VSC system. IEEE Transactions on Power Delivery, 28(3), 1381–1390. https://doi.org/10.1109/TPWRD.2013.2240020Ma, T. T., & Shr, T. H. (2012). Advanced reactive power control schemes using static synchronous compensator and adaptive inverse model theory. International Review of Electrical Engineering, 7(6), 6266–6274.Maldonado, J. (2014). Planificación de la expansión del sistema de transmisión eléctrico considerando equipos facts. Universidad de Chile. Retrieved from http://repositorio.uchile.cl/bitstream/handle/2250/116482/cfmaldonado_jg.pdf?sequence=1&isAllowed=yMelin, P. E., Guzman, J. I., Hernandez, F. A., Baier, C. R., Muñoz, J. A., Espinoza, J. R., & Espinosa, E. E. (2020). Analysis and control strategy for a current-source based DSTATCOM towards minimum losses. International Journal of Electrical Power and Energy Systems, 116. https://doi.org/10.1016/j.ijepes.2019.105532Mezaache, M., Chikhi, K., & Fetha, C. (2016). UPFC device: Optimal location and parameter setting to reduce losses in electric-power systems using a genetic-algorithm method. Transactions on Electrical and Electronic Materials, 17(1), 1–6. https://doi.org/10.4313/TEEM.2016.17.1.1Noh, H., Cho, H., Lee, S., & Lee, B. (2020). STATCOM with SSR damping controller using geometric extraction on phase space reconstruction method. International Journal of Electrical Power and Energy Systems, 120. https://doi.org/10.1016/j.ijepes.2020.106017Oghorada, O. J. K., & Zhang, L. (2018). Analysis of star and delta connected modular multilevel cascaded converter-based STATCOM for load unbalanced compensation. International Journal of Electrical Power and Energy Systems, 95, 341–352. https://doi.org/10.1016/j.ijepes.2017.08.034Peng, F. Z. (2017). Flexible AC Transmission Systems (FACTS) and Resilient AC Distribution Systems (RACDS) in Smart Grid. Proceedings of the IEEE, 105(11), 2099–2115. https://doi.org/10.1109/JPROC.2017.2714022Qader, M. R. (2015). Design and simulation of a different innovation controller-based UPFC (unified power flow controller) for the enhancement of power quality. Energy, 89, 576–592. https://doi.org/10.1016/j.energy.2015.06.012Ramirez, J. M., Caicedo, G., & Correa, R. E. (2017). FACTS Sistemas de transmisión flexible. Cali, Colombia: Universidad del Valle Programa Editorial.Rao, V. S., & Rao, R. S. (2017). Optimal Placement of STATCOM using Two Stage Algorithm for Enhancing Power System Static Security. In Energy Procedia (Vol. 117, pp. 575–582). Elsevier Ltd. https://doi.org/10.1016/j.egypro.2017.05.151Reyes-Archundia, E., Guardado, J. L., Moreno-Goytia, E. L., Gutierrez-Gnecchi, J. A., & Martinez-Cardenas, F. (2015). Fault Detection and Localization in Transmission Lines with a Static Synchronous Series Compensator. Advances in Electrical and Computer Engineering, 15(3), 17–22. https://doi.org/10.4316/AECE.2015.03003Sadiq, A. A., Adamu, S. S., & Buhari, M. (2019). Optimal distributed generation planning in distribution networks: A comparison of transmission network models with FACTS. Engineering Science and Technology, an International Journal, 22(1), 33–46. https://doi.org/10.1016/j.jestch.2018.09.013Sakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362Sedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058Shahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002Shchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013Sakr, W. S., El-Sehiemy, R. A., & Azmy, A. M. (2016). Optimal allocation of TCSCs by adaptive DE algorithm. IET Generation, Transmission & Distribution, 10(15), 3844–3854. https://doi.org/10.1049/iet-gtd.2016.0362Sedighizadeh, M., Faramarzi, H., Mahmoodi, M. M., & Sarvi, M. (2014). Electrical Power and Energy Systems Hybrid approach to FACTS devices allocation using multi-objective function with NSPSO and NSGA-II algorithms in Fuzzy framework. International Journal of Electrical Power and Energy Systems, 62, 586–598. https://doi.org/10.1016/j.ijepes.2014.04.058Shahgholian, G., & Movahedi, A. (2016). Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system. IET Generation, Transmission & Distribution, 10(8), 1860–1868. https://doi.org/10.1049/ietgtd.2015.1002Shchetinin, D., & Hug, G. (2016). Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices. Electric Power Systems Research, 141, 344– 353. https://doi.org/10.1016/j.epsr.2016.08.013Shin, H. S., Cho, S. M., Kim, J. S., & Kim, J. C. (2013). Study of optimal location and compensation rate of thyristor- controlled series capacitor considering multi-objective function. Journal of Electrical Engineering and Technology, 8(3), 428–435. https://doi.org/10.5370/JEET.2013.8.3.428SIEMENS. (2016). Sistemas de Compensación en Redes de Transmisión de Energía - FACTS. Energía En Movimiento, 8, 46–51. Retrieved from https://www.energy.siemens.com/co/pool/co/publicaciones/energia-en-movimiento/febrero- 2016/articulo-8 -facts.pdfSimpson, R., Plumpton, A., Varley, M., Tonner, C., Taylor, P., & Dai, X. P. (2017). Press-pack IGBTs for HVDC and FACTS. Csee Journal Of Power And Energy Systems, 3(3), 302– 310. https://doi.org/10.17775/Cseejpes.2016.01740Singh, Bhim, Chandra, A., Al-Haddad, K., Anuradha, & Kothari, D. P. (1998). Reactive power compensation and load balancing in electric power distribution systems. International Journal of Electrical Power and Energy Systems, 20(6), 375–381. https://doi.org/10.1016/s0142-0615(98)00008-8Singh, Bindeshwar, Payasi, R. P., & Shukla, V. (2017). A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems. Energy Reports, 3, 94–108. https://doi.org/10.1016/j.egyr.2017.07.001Singh, Bindeshwar, & Singh, S. (2019). GA-based optimization for integration of DGs, STATCOM and PHEVs in distribution systems. Energy Reports, 5, 84–103. https://doi.org/10.1016/j.egyr.2018.09.005Sreedharan, S., Joseph, T., Joseph, S., Chandran, C. V., J, V., & Das P, V. (2020). Power system loading margin enhancement by optimal STATCOM integration – A case study. Computers and Electrical Engineering, 81. https://doi.org/10.1016/j.compeleceng.2019.106521Thomas, J. J., & Grijalva, S. (2015). Flexible security-constrained optimal power flow. IEEE Transactions on Power Systems, 30(3), 1195–1202. https://doi.org/10.1109/TPWRS.2014.2345753Vijay Kumar, B., & Srikanth, N. V. (2015). Optimal location and sizing of Unified Power Flow Controller (UPFC) to improve dynamic stability: A hybrid technique. International Journal of Electrical Power and Energy Systems, 64, 429–438. https://doi.org/10.1016/j.ijepes.2014.07.015Wang, K., & Crow, M. L. (2013). Modern flexible AC transmission system (FACTS) devices. Electricity Transmission, Distribution and Storage Systems. Woodhead Publishing Limited. https://doi.org/10.1533/9780857097378.2.174Wang, P., Wang, Y., Jiang, N., & Gu, W. (2020). A comprehensive improved coordinated control strategy for a STATCOM integrated HVDC system with enhanced steady/transient state behaviors. International Journal of Electrical Power and Energy Systems, 121. https://doi.org/10.1016/j.ijepes.2020.106091Xu, X., Bishop, M., Edmonds, M. J. S., & Oikarinen, D. G. (2015). A New Control Strategy for Distributed Static Compensators Considering Transmission Reactive Flow Constraints. IEEE Transactions on Power Delivery, 30(4), 1991–1998. https://doi.org/10.1109/TPWRD.2015.2389621Yifan, Z., Wei, H., Le, Z., Yong, M., Lei, C., Zongxiang, L., & Ling, D. (2020). Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch. Energy, 190. https://doi.org/10.1016/j.energy.2019.116426Zheng, J., & Li, J. (2012). Reactive Optimization Control for the Wind Farm with Static Var Compensator ( SVC ). 2012 24th Chinese Control and Decision Conference (CCDC), 2792–2795. https://doi.org/10.1109/CCDC.2012.6244445PublicationORIGINALMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS).pdfMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS).pdfapplication/pdf2043343https://repositorio.cuc.edu.co/bitstreams/561125c5-79db-4ef3-84dc-adec83004375/download33176bff5149faafc926406113451615MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/736472cc-c992-4eab-8a09-03b220d6419f/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/342bc700-771b-4b91-ad69-2dd40c663fd1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS).pdf.jpgMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS).pdf.jpgimage/jpeg30454https://repositorio.cuc.edu.co/bitstreams/e071d0c2-ba5a-4b29-a1a0-2638fd449ebf/downloadf09abb24d8efac9a39899df36950cf69MD54TEXTMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS).pdf.txtMejoras en la operación del sistema de transmisión regional de energía eléctrica del Departamento del Atlántico utilizando sistemas flexibles de transmisión de corriente alterna (FACTS).pdf.txttext/plain161785https://repositorio.cuc.edu.co/bitstreams/6c9ca141-d7a5-4b31-87c7-3368b57a8e3d/downloadc2fc2596bb179f75a6936d825024c7bdMD5511323/7155oai:repositorio.cuc.edu.co:11323/71552024-09-17 10:55:59.958http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==