The potential impact of climate change on European renewable energy droughts
The daily, seasonal, and interannual variability of solar and wind resources is well-documented, based on evidence from multi-decadal meteorological time series. However, with the growing share of non-dispatchable renewable-based power sources (e.g., wind and solar power), the stable operation of th...
- Autores:
-
Kapica, Jacek
Jurasz, Jakub
Canales, Fausto
Bloomfield, Hannah
Guezgouz, Mohammed
De Felice, Matteo
Kobus, Zbigniew
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13082
- Acceso en línea:
- https://hdl.handle.net/11323/13082
https://repositorio.cuc.edu.co/
- Palabra clave:
- Resource droughts
Extreme events
Spatial representation
Future scenarios
Europe
Hybridization
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_37f64834857c13ad682ddfe737269f78 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13082 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
The potential impact of climate change on European renewable energy droughts |
title |
The potential impact of climate change on European renewable energy droughts |
spellingShingle |
The potential impact of climate change on European renewable energy droughts Resource droughts Extreme events Spatial representation Future scenarios Europe Hybridization |
title_short |
The potential impact of climate change on European renewable energy droughts |
title_full |
The potential impact of climate change on European renewable energy droughts |
title_fullStr |
The potential impact of climate change on European renewable energy droughts |
title_full_unstemmed |
The potential impact of climate change on European renewable energy droughts |
title_sort |
The potential impact of climate change on European renewable energy droughts |
dc.creator.fl_str_mv |
Kapica, Jacek Jurasz, Jakub Canales, Fausto Bloomfield, Hannah Guezgouz, Mohammed De Felice, Matteo Kobus, Zbigniew |
dc.contributor.author.none.fl_str_mv |
Kapica, Jacek Jurasz, Jakub Canales, Fausto Bloomfield, Hannah Guezgouz, Mohammed De Felice, Matteo Kobus, Zbigniew |
dc.subject.proposal.eng.fl_str_mv |
Resource droughts Extreme events Spatial representation Future scenarios Europe Hybridization |
topic |
Resource droughts Extreme events Spatial representation Future scenarios Europe Hybridization |
description |
The daily, seasonal, and interannual variability of solar and wind resources is well-documented, based on evidence from multi-decadal meteorological time series. However, with the growing share of non-dispatchable renewable-based power sources (e.g., wind and solar power), the stable operation of the power system could be undermined by prolonged periods of low availability of these resources. Consequently, this may result in extremely high prices in the energy market or even a power system blackout. This study analyzes the performance of solar, wind, and solar-wind hybrid systems in Europe based on eight regional climate models, considering two possible climate change projections. The resource availability has been evaluated based on the energy drought concept. The total duration of droughts is calculated using daily capacity factors covering the years 1970–2020 (reference period) and 2048–2098 (future period), considering sub-national regions across the whole of Europe. In general, the chosen climate models show a more significant agreement in the occurrence of energy droughts for northern and southern Europe compared to its central part. Assessing the potential for renewable energy droughts is critical to maintaining secure and reliable power system operation in both the present and future climate. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-26T13:16:17Z |
dc.date.available.none.fl_str_mv |
2024-06-26T13:16:17Z 2026-01 |
dc.date.issued.none.fl_str_mv |
2024-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Jacek Kapica, Jakub Jurasz, Fausto A. Canales, Hannah Bloomfield, Mohammed Guezgouz, Matteo De Felice, Zbigniew Kobus, The potential impact of climate change on European renewable energy droughts, Renewable and Sustainable Energy Reviews, Volume 189, Part A, 2024, 114011, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2023.114011 |
dc.identifier.issn.spa.fl_str_mv |
1364-0321 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13082 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.rser.2023.114011 |
dc.identifier.eissn.spa.fl_str_mv |
1879-0690 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Jacek Kapica, Jakub Jurasz, Fausto A. Canales, Hannah Bloomfield, Mohammed Guezgouz, Matteo De Felice, Zbigniew Kobus, The potential impact of climate change on European renewable energy droughts, Renewable and Sustainable Energy Reviews, Volume 189, Part A, 2024, 114011, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2023.114011 1364-0321 10.1016/j.rser.2023.114011 1879-0690 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13082 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Renewable and Sustainable Energy Reviews |
dc.relation.references.spa.fl_str_mv |
[1] Sims REH. Renewable energy: a response to climate change. Sol Energy 2004;76: 9–17. https://doi.org/10.1016/S0038-092X(03)00101-4. [2] Kapica J, Canales FA, Jurasz J. Global atlas of solar and wind resources temporal complementarity. Energy Convers Manag 2021;246:114692. https://doi.org/ 10.1016/j.enconman.2021.114692. [3] Yoro KO, Daramola MO, Sekoai PT, Wilson UN, Eterigho-Ikelegbe O. Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems. Renew Sustain Energy Rev 2021;150: 111506. https://doi.org/10.1016/j.rser.2021.111506. [4] Nieto KRT, Potes LR. Habitat ´ sostenible: adaptacion ´ y mitigacion ´ frente al cambio clim´ atico. Hacia los territorios resilientes. MODULO ´ ARQUITECTURA CUC 2018; 21:63–96. https://doi.org/10.17981/moducuc.21.1.2018.03. [5] Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR. Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development. Renew Energy 2022;189:853–64. https://doi.org/10.1016/j.renene.2022.03.050. [6] Denholm P, Brinkman G, Mai T. How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Pol 2018;115:249–57. https://doi.org/10.1016/j.enpol.2018.01.023. [7] Canales FA, Jurasz J, Beluco A, Kies A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020;192:116637. https://doi.org/10.1016/j. energy.2019.116637. [8] Sueyoshi T, Mo F, Wang DD. Sustainable development of countries all over the world and the impact of renewable energy. Renew Energy 2022;184:320–31. https://doi.org/10.1016/j.renene.2021.11.015. [9] Jałowiec T, Wojtaszek H. Analysis of the RES potential in accordance with the energy policy of the European union. Energies 2021;14:6030. https://doi.org/ 10.3390/en14196030. [10] Bürgin A. National binding renewable energy targets for 2020, but not for 2030 anymore: why the European Commission developed from a supporter to a brakeman. J Eur Publ Pol 2015;22:690–707. https://doi.org/10.1080/ 13501763.2014.984747. [11] The Royal Society. Large-scale electricity storage. London: The Royal Society; 2023. [12] Brown TW, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen BV. Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewableelectricity systems. Renew Sustain Energy Rev 2018;92:834–47. https://doi.org/ 10.1016/j.rser.2018.04.113. [13] International Renewable Energy Agency. Global renewables outlook energy transformation 2050. Abu Dhabi: IRENA; 2020. [14] Canales FA, Jurasz JK, Guezgouz M, Beluco A. Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustain Energy Technol Assessments 2021;44:101062. https://doi. org/10.1016/j.seta.2021.101062. [15] Perera ATD, Nik VM, Chen D, Scartezzini J-L, Hong T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat Energy 2020;5: 150–9. https://doi.org/10.1038/s41560-020-0558-0. [16] Zhao X, Huang G, Lu C, Zhou X, Li Y. Impacts of climate change on photovoltaic energy potential: a case study of China. Appl Energy 2020;280:115888. https:// doi.org/10.1016/j.apenergy.2020.115888. [17] Moriarty P, Honnery D. The limits of renewable energy. AIMS Energy 2021;9: 812–29. https://doi.org/10.3934/energy.2021037. [18] Jung C, Schindler D. A review of recent studies on wind resource projections under climate change. Renew Sustain Energy Rev 2022;165:112596. https://doi.org/ 10.1016/j.rser.2022.112596. [19] Dutta R, Chanda K, Maity R. Future of solar energy potential in a changing climate across the world: a CMIP6 multi-model ensemble analysis. Renew Energy 2022; 188:819–29. https://doi.org/10.1016/j.renene.2022.02.023. [20] Gernaat DEHJ, de Boer HS, Daioglou V, Yalew SG, Müller C, van Vuuren DP. Climate change impacts on renewable energy supply. Nat Clim Change 2021;11: 119–25. https://doi.org/10.1038/s41558-020-00949-9. [21] Oka K, Mizutani W, Ashina S. Climate change impacts on potential solar energy production: a study case in Fukushima, Japan. Renew Energy 2020;153:249–60. https://doi.org/10.1016/j.renene.2020.01.126. [22] Bloomfield HC, Brayshaw DJ, Deakin M, Greenwood D. Hourly historical and nearfuture weather and climate variables for energy system modelling. Earth Syst Sci Data 2022;14:2749–66. https://doi.org/10.5194/essd-14-2749-2022. [23] Huang J, Jones B, Thatcher M, Landsberg J. Temperature impacts on utility-scale solar photovoltaic and wind power generation output over Australia under RCP 8.5. J Renew Sustain Energy 2020;12:046501. https://doi.org/10.1063/ 5.0012711. [24] Poddar S, Evans JP, Kay M, Prasad A, Bremner S. Estimation of future changes in photovoltaic potential in Australia due to climate change. Environ Res Lett 2021; 16:114034. https://doi.org/10.1088/1748-9326/ac2a64. [25] Yang Y, Javanroodi K, Nik VM. Climate change and renewable energy generation in europe—long-term impact assessment on solar and wind energy using highresolution future climate data and considering climate uncertainties. Energies 2022;15:302. https://doi.org/10.3390/en15010302. [26] Craig MT, Wohland J, Stoop LP, Kies A, Pickering B, Bloomfield HC, et al. Overcoming the disconnect between energy system and climate modeling. Joule 2022;6:1405–17. https://doi.org/10.1016/j.joule.2022.05.010. [27] Tobin I, Vautard R, Balog I, Br´eon F-M, Jerez S, Ruti PM, et al. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change 2015;128:99–112. https://doi.org/10.1007/ s10584-014-1291-0. [28] Jerez S, Tobin I, Turco M, Jim´enez-Guerrero P, Vautard R, Montavez ´ JP. Future changes, or lack thereof, in the temporal variability of the combined wind-plussolar power production in Europe. Renew Energy 2019;139:251–60. https://doi. org/10.1016/j.renene.2019.02.060. [29] Tobin I, Greuell W, Jerez S, Ludwig F, Vautard R, van Vliet MTH, et al. Vulnerabilities and resilience of European power generation to 1.5 ◦C, 2 ◦C and 3 ◦C warming. Environ Res Lett 2018;13:044024. https://doi.org/10.1088/1748- 9326/aab211. [30] Costoya X, deCastro M, Carvalho D, Arguil´e-P´erez B, Gomez-Gesteira ´ M. Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: a case study on the western Iberian Peninsula. Renew Sustain Energy Rev 2022;157:112037. https://doi.org/10.1016/j. rser.2021.112037. [31] Bloomfield HC, Brayshaw DJ, Troccoli A, Goodess CM, De Felice M, Dubus L, et al. Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renew Energy 2021;164:1062–75. https://doi.org/ 10.1016/j.renene.2020.09.125. [32] Wohland J. Process-based climate change assessment for European winds using EURO-CORDEX and global models. Environ Res Lett 2022;17:124047. https://doi. org/10.1088/1748-9326/aca77f. [33] Weiss CVC, Menendez M, Ondiviela B, Guanche R, Losada IJ, Juanes J. Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe. ICES (Int Counc Explor Sea) J Mar Sci 2020;77:3168–82. https://doi.org/10.1093/icesjms/fsaa226. [34] de la Vara A, Guti´errez C, Gonzalez-Alem ´ ´ an JJ, Gaertner MA. ´ Intercomparison study of the impact of climate change on renewable energy indicators on the mediterranean islands. Atmosphere 2020;11:1036. https://doi.org/10.3390/ atmos11101036. [35] Raynaud D, Hingray B, François B, Creutin JD. Energy droughts from variable renewable energy sources in European climates. Renew Energy 2018;125:578–89. https://doi.org/10.1016/j.renene.2018.02.130. [36] Carvalho D, Rocha A, Costoya X, deCastro M, Gomez-Gesteira ´ M. Wind energy resource over Europe under CMIP6 future climate projections: what changes from CMIP5 to CMIP6. Renew Sustain Energy Rev 2021;151:111594. https://doi.org/ 10.1016/j.rser.2021.111594. [37] Costoya X, deCastro M, Carvalho D, Gomez-Gesteira ´ M. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renew Sustain Energy Rev 2023;173:113101. https://doi.org/ 10.1016/j.rser.2022.113101. [38] Ohlendorf N, Schill W-P. Frequency and duration of low-wind-power events in Germany. Environ Res Lett 2020;15:084045. https://doi.org/10.1088/1748-9326/ ab91e9. [39] Doddy Clarke E, Griffin S, McDermott F, Monteiro Correia J, Sweeney C. Which reanalysis dataset should we use for renewable energy analysis in Ireland? Atmosphere 2021;12:624. https://doi.org/10.3390/atmos12050624. [40] Hayes L, Stocks M, Blakers A. Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy 2021;229:120603. https://doi.org/10.1016/j.energy.2021.120603. [41] Vega-Dur´ an J, Escalante-Castro B, Canales FA, Acuna ˜ GJ, Ka´zmierczak B. Evaluation of areal monthly average precipitation estimates from MERRA2 and ERA5 reanalysis in a Colombian caribbean basin. Atmosphere 2021;12:1430. https://doi.org/10.3390/atmos12111430. [42] Yao L, Lu J, Xia X, Jing W, Liu Y. Evaluation of the ERA5 Sea surface temperature around the pacific and the atlantic. IEEE Access 2021;9:12067–73. https://doi.org/ 10.1109/ACCESS.2021.3051642. [43] Brown PT, Farnham DJ, Caldeira K. Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5. SN Appl Sci 2021;3:814. https://doi.org/10.1007/s42452-021-04794-z. [44] Rinaldi KZ, Dowling JA, Ruggles TH, Caldeira K, Lewis NS. Wind and solar resource droughts in California highlight the benefits of long-term storage and integration with the western interconnect. Environ Sci Technol 2021;55:6214–26. https://doi. org/10.1021/acs.est.0c07848. [45] Jurasz J, Mikulik J, Dąbek PB, Guezgouz M, Ka´zmierczak B. Complementarity and ‘resource droughts’ of solar and wind energy in Poland: an ERA5-based analysis. Energies 2021;14:1118. https://doi.org/10.3390/en14041118. [46] Otero N, Martius O, Allen S, Bloomfield H, Schaefli B. A copula-based assessment of renewable energy droughts across Europe. Renew Energy 2022;201:667–77. https://doi.org/10.1016/j.renene.2022.10.091. [47] Allen S, Otero N. Standardised indices to monitor energy droughts. Renew Energy 2023;217:119206. https://doi.org/10.1016/j.renene.2023.119206. [48] Copernicus Climate Change Service (C3S). Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections. 2021. https://cds. climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-projections?tab=over view. [Accessed 6 June 2022]. [49] Dubus L, Saint-Drenan Y-M, Troccoli A, De Felice M, Moreau Y, Ho L, et al. C3S Energy: an operational service to deliver power demand and supply for different electricity sources, time and spatial scales over Europe. Applied Statistics; 2021. https://doi.org/10.31223/X5MM06. [50] Doddy Clarke E, Sweeney C, McDermott F, Griffin S, Correia JM, Nolan P, et al. Climate change impacts on wind energy generation in Ireland. Wind Energy 2022; 25:300–12. https://doi.org/10.1002/we.2673. [51] Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, et al. Rcp 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 2011;109:33. https://doi.org/10.1007/s10584-011-0149-y. [52] Nakicenovic N, Alcamo J, Davis G, Vries B, Fenhann J, Gaffin S, et al. Special report on emissions scenarios. Intergovernmental Panel on Climate Change; 2000. [53] Saint-Drenan Y-M, Wald L, Ranchin T, Dubus L, Troccoli A. An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data. Adv Sci Res 2018;15:51–62. https://doi.org/ 10.5194/asr-15-51-2018. [54] Troccoli A, Sanger L, Goodess C, Ogonji J, Dubus L, Vautard R, et al. Copernicus Climate Change Service (C3S) - technical description of methodologies followed in the development of each product. Reading: European Centre for Medium-Range Weather Forecasts; 2020. [55] AR6 Synthesis Report. Climate change. 2023. https://www.ipcc.ch/report /ar6/syr/. [Accessed 13 September 2023]. [56] Kapica J, Jurasz J, Canales AF, Bloomfield H, Guezgouz M, De Felice M, et al. The potential impact of climate change on European renewable energy droughts. 2023. https://doi.org/10.5281/zenodo.8333762. [57] Solaun K, Cerd´ a E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew Sustain Energy Rev 2019;116. https:// doi.org/10.1016/j.rser.2019.109415. 109415–109415. [58] Weber J, Wohland J, Reyers M, Moemken J, Hoppe C, Pinto JG, et al. Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS One 2018;13:e0201457. https://doi.org/10.1371/journal. pone.0201457. [59] European Commission, Directorate-General for Energy Andrey C, Barberi P, Florez E, Veen W, et al. Offshore renewable energy and grids: an analysis of visions towards 2050 for the Northern seas region and recommendations for upcoming scenario-building exercises. Publications Office of the European Union; 2022. https://doi.org/10.2833/693330. [60] Bloomfield HC, Suitters CC, Drew DR. Meteorological drivers of European power system stress. J. Renewable Energy 2020;2020:1–12. https://doi.org/10.1155/ 2020/5481010. [61] ENTSO-E Transparency Platform n.d. https://transparency.entsoe.eu/(accessed September 13, 2023). [62] Parzen M, Abdel-Khalek H, Fedotova E, Mahmood M, Frysztacki MM, Hampp J, et al. PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa. Appl Energy 2023;341:121096. https://doi.org/10.1016/j. apenergy.2023.121096. |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
189 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Europe |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1364032123008699?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e87b50ac-40c4-4af8-ae41-7326bb637254/download https://repositorio.cuc.edu.co/bitstreams/9e4cf5a0-1cca-4338-aa44-80d410fadb78/download https://repositorio.cuc.edu.co/bitstreams/bee8b70b-f133-40fc-9d9f-e9a8989191a9/download https://repositorio.cuc.edu.co/bitstreams/7b2c7997-554c-4363-b344-a865a24a484c/download |
bitstream.checksum.fl_str_mv |
286326b21dda26c5ec3635c0de29f66e 2f9959eaf5b71fae44bbf9ec84150c7a 7d8dcbb7c241a731bd1c2dc938c40d41 1e0d513f5657ea26f0aa67f5bde3ef51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760780042829824 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfKapica, JacekJurasz, JakubCanales, FaustoBloomfield, HannahGuezgouz, MohammedDe Felice, MatteoKobus, Zbigniew2024-06-26T13:16:17Z2026-012024-06-26T13:16:17Z2024-01Jacek Kapica, Jakub Jurasz, Fausto A. Canales, Hannah Bloomfield, Mohammed Guezgouz, Matteo De Felice, Zbigniew Kobus, The potential impact of climate change on European renewable energy droughts, Renewable and Sustainable Energy Reviews, Volume 189, Part A, 2024, 114011, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2023.1140111364-0321https://hdl.handle.net/11323/1308210.1016/j.rser.2023.1140111879-0690Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The daily, seasonal, and interannual variability of solar and wind resources is well-documented, based on evidence from multi-decadal meteorological time series. However, with the growing share of non-dispatchable renewable-based power sources (e.g., wind and solar power), the stable operation of the power system could be undermined by prolonged periods of low availability of these resources. Consequently, this may result in extremely high prices in the energy market or even a power system blackout. This study analyzes the performance of solar, wind, and solar-wind hybrid systems in Europe based on eight regional climate models, considering two possible climate change projections. The resource availability has been evaluated based on the energy drought concept. The total duration of droughts is calculated using daily capacity factors covering the years 1970–2020 (reference period) and 2048–2098 (future period), considering sub-national regions across the whole of Europe. In general, the chosen climate models show a more significant agreement in the occurrence of energy droughts for northern and southern Europe compared to its central part. Assessing the potential for renewable energy droughts is critical to maintaining secure and reliable power system operation in both the present and future climate.15 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S1364032123008699?via%3DihubThe potential impact of climate change on European renewable energy droughtsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85EuropeRenewable and Sustainable Energy Reviews[1] Sims REH. Renewable energy: a response to climate change. Sol Energy 2004;76: 9–17. https://doi.org/10.1016/S0038-092X(03)00101-4.[2] Kapica J, Canales FA, Jurasz J. Global atlas of solar and wind resources temporal complementarity. Energy Convers Manag 2021;246:114692. https://doi.org/ 10.1016/j.enconman.2021.114692.[3] Yoro KO, Daramola MO, Sekoai PT, Wilson UN, Eterigho-Ikelegbe O. Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems. Renew Sustain Energy Rev 2021;150: 111506. https://doi.org/10.1016/j.rser.2021.111506.[4] Nieto KRT, Potes LR. Habitat ´ sostenible: adaptacion ´ y mitigacion ´ frente al cambio clim´ atico. Hacia los territorios resilientes. MODULO ´ ARQUITECTURA CUC 2018; 21:63–96. https://doi.org/10.17981/moducuc.21.1.2018.03.[5] Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR. Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development. Renew Energy 2022;189:853–64. https://doi.org/10.1016/j.renene.2022.03.050.[6] Denholm P, Brinkman G, Mai T. How low can you go? The importance of quantifying minimum generation levels for renewable integration. Energy Pol 2018;115:249–57. https://doi.org/10.1016/j.enpol.2018.01.023.[7] Canales FA, Jurasz J, Beluco A, Kies A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020;192:116637. https://doi.org/10.1016/j. energy.2019.116637.[8] Sueyoshi T, Mo F, Wang DD. Sustainable development of countries all over the world and the impact of renewable energy. Renew Energy 2022;184:320–31. https://doi.org/10.1016/j.renene.2021.11.015.[9] Jałowiec T, Wojtaszek H. Analysis of the RES potential in accordance with the energy policy of the European union. Energies 2021;14:6030. https://doi.org/ 10.3390/en14196030.[10] Bürgin A. National binding renewable energy targets for 2020, but not for 2030 anymore: why the European Commission developed from a supporter to a brakeman. J Eur Publ Pol 2015;22:690–707. https://doi.org/10.1080/ 13501763.2014.984747.[11] The Royal Society. Large-scale electricity storage. London: The Royal Society; 2023.[12] Brown TW, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen BV. Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewableelectricity systems. Renew Sustain Energy Rev 2018;92:834–47. https://doi.org/ 10.1016/j.rser.2018.04.113.[13] International Renewable Energy Agency. Global renewables outlook energy transformation 2050. Abu Dhabi: IRENA; 2020.[14] Canales FA, Jurasz JK, Guezgouz M, Beluco A. Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustain Energy Technol Assessments 2021;44:101062. https://doi. org/10.1016/j.seta.2021.101062.[15] Perera ATD, Nik VM, Chen D, Scartezzini J-L, Hong T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat Energy 2020;5: 150–9. https://doi.org/10.1038/s41560-020-0558-0.[16] Zhao X, Huang G, Lu C, Zhou X, Li Y. Impacts of climate change on photovoltaic energy potential: a case study of China. Appl Energy 2020;280:115888. https:// doi.org/10.1016/j.apenergy.2020.115888.[17] Moriarty P, Honnery D. The limits of renewable energy. AIMS Energy 2021;9: 812–29. https://doi.org/10.3934/energy.2021037.[18] Jung C, Schindler D. A review of recent studies on wind resource projections under climate change. Renew Sustain Energy Rev 2022;165:112596. https://doi.org/ 10.1016/j.rser.2022.112596.[19] Dutta R, Chanda K, Maity R. Future of solar energy potential in a changing climate across the world: a CMIP6 multi-model ensemble analysis. Renew Energy 2022; 188:819–29. https://doi.org/10.1016/j.renene.2022.02.023.[20] Gernaat DEHJ, de Boer HS, Daioglou V, Yalew SG, Müller C, van Vuuren DP. Climate change impacts on renewable energy supply. Nat Clim Change 2021;11: 119–25. https://doi.org/10.1038/s41558-020-00949-9.[21] Oka K, Mizutani W, Ashina S. Climate change impacts on potential solar energy production: a study case in Fukushima, Japan. Renew Energy 2020;153:249–60. https://doi.org/10.1016/j.renene.2020.01.126.[22] Bloomfield HC, Brayshaw DJ, Deakin M, Greenwood D. Hourly historical and nearfuture weather and climate variables for energy system modelling. Earth Syst Sci Data 2022;14:2749–66. https://doi.org/10.5194/essd-14-2749-2022.[23] Huang J, Jones B, Thatcher M, Landsberg J. Temperature impacts on utility-scale solar photovoltaic and wind power generation output over Australia under RCP 8.5. J Renew Sustain Energy 2020;12:046501. https://doi.org/10.1063/ 5.0012711.[24] Poddar S, Evans JP, Kay M, Prasad A, Bremner S. Estimation of future changes in photovoltaic potential in Australia due to climate change. Environ Res Lett 2021; 16:114034. https://doi.org/10.1088/1748-9326/ac2a64.[25] Yang Y, Javanroodi K, Nik VM. Climate change and renewable energy generation in europe—long-term impact assessment on solar and wind energy using highresolution future climate data and considering climate uncertainties. Energies 2022;15:302. https://doi.org/10.3390/en15010302.[26] Craig MT, Wohland J, Stoop LP, Kies A, Pickering B, Bloomfield HC, et al. Overcoming the disconnect between energy system and climate modeling. Joule 2022;6:1405–17. https://doi.org/10.1016/j.joule.2022.05.010.[27] Tobin I, Vautard R, Balog I, Br´eon F-M, Jerez S, Ruti PM, et al. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change 2015;128:99–112. https://doi.org/10.1007/ s10584-014-1291-0.[28] Jerez S, Tobin I, Turco M, Jim´enez-Guerrero P, Vautard R, Montavez ´ JP. Future changes, or lack thereof, in the temporal variability of the combined wind-plussolar power production in Europe. Renew Energy 2019;139:251–60. https://doi. org/10.1016/j.renene.2019.02.060.[29] Tobin I, Greuell W, Jerez S, Ludwig F, Vautard R, van Vliet MTH, et al. Vulnerabilities and resilience of European power generation to 1.5 ◦C, 2 ◦C and 3 ◦C warming. Environ Res Lett 2018;13:044024. https://doi.org/10.1088/1748- 9326/aab211.[30] Costoya X, deCastro M, Carvalho D, Arguil´e-P´erez B, Gomez-Gesteira ´ M. Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: a case study on the western Iberian Peninsula. Renew Sustain Energy Rev 2022;157:112037. https://doi.org/10.1016/j. rser.2021.112037.[31] Bloomfield HC, Brayshaw DJ, Troccoli A, Goodess CM, De Felice M, Dubus L, et al. Quantifying the sensitivity of european power systems to energy scenarios and climate change projections. Renew Energy 2021;164:1062–75. https://doi.org/ 10.1016/j.renene.2020.09.125.[32] Wohland J. Process-based climate change assessment for European winds using EURO-CORDEX and global models. Environ Res Lett 2022;17:124047. https://doi. org/10.1088/1748-9326/aca77f.[33] Weiss CVC, Menendez M, Ondiviela B, Guanche R, Losada IJ, Juanes J. Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe. ICES (Int Counc Explor Sea) J Mar Sci 2020;77:3168–82. https://doi.org/10.1093/icesjms/fsaa226.[34] de la Vara A, Guti´errez C, Gonzalez-Alem ´ ´ an JJ, Gaertner MA. ´ Intercomparison study of the impact of climate change on renewable energy indicators on the mediterranean islands. Atmosphere 2020;11:1036. https://doi.org/10.3390/ atmos11101036.[35] Raynaud D, Hingray B, François B, Creutin JD. Energy droughts from variable renewable energy sources in European climates. Renew Energy 2018;125:578–89. https://doi.org/10.1016/j.renene.2018.02.130.[36] Carvalho D, Rocha A, Costoya X, deCastro M, Gomez-Gesteira ´ M. Wind energy resource over Europe under CMIP6 future climate projections: what changes from CMIP5 to CMIP6. Renew Sustain Energy Rev 2021;151:111594. https://doi.org/ 10.1016/j.rser.2021.111594.[37] Costoya X, deCastro M, Carvalho D, Gomez-Gesteira ´ M. Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renew Sustain Energy Rev 2023;173:113101. https://doi.org/ 10.1016/j.rser.2022.113101.[38] Ohlendorf N, Schill W-P. Frequency and duration of low-wind-power events in Germany. Environ Res Lett 2020;15:084045. https://doi.org/10.1088/1748-9326/ ab91e9.[39] Doddy Clarke E, Griffin S, McDermott F, Monteiro Correia J, Sweeney C. Which reanalysis dataset should we use for renewable energy analysis in Ireland? Atmosphere 2021;12:624. https://doi.org/10.3390/atmos12050624.[40] Hayes L, Stocks M, Blakers A. Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy 2021;229:120603. https://doi.org/10.1016/j.energy.2021.120603.[41] Vega-Dur´ an J, Escalante-Castro B, Canales FA, Acuna ˜ GJ, Ka´zmierczak B. Evaluation of areal monthly average precipitation estimates from MERRA2 and ERA5 reanalysis in a Colombian caribbean basin. Atmosphere 2021;12:1430. https://doi.org/10.3390/atmos12111430.[42] Yao L, Lu J, Xia X, Jing W, Liu Y. Evaluation of the ERA5 Sea surface temperature around the pacific and the atlantic. IEEE Access 2021;9:12067–73. https://doi.org/ 10.1109/ACCESS.2021.3051642.[43] Brown PT, Farnham DJ, Caldeira K. Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5. SN Appl Sci 2021;3:814. https://doi.org/10.1007/s42452-021-04794-z.[44] Rinaldi KZ, Dowling JA, Ruggles TH, Caldeira K, Lewis NS. Wind and solar resource droughts in California highlight the benefits of long-term storage and integration with the western interconnect. Environ Sci Technol 2021;55:6214–26. https://doi. org/10.1021/acs.est.0c07848.[45] Jurasz J, Mikulik J, Dąbek PB, Guezgouz M, Ka´zmierczak B. Complementarity and ‘resource droughts’ of solar and wind energy in Poland: an ERA5-based analysis. Energies 2021;14:1118. https://doi.org/10.3390/en14041118.[46] Otero N, Martius O, Allen S, Bloomfield H, Schaefli B. A copula-based assessment of renewable energy droughts across Europe. Renew Energy 2022;201:667–77. https://doi.org/10.1016/j.renene.2022.10.091.[47] Allen S, Otero N. Standardised indices to monitor energy droughts. Renew Energy 2023;217:119206. https://doi.org/10.1016/j.renene.2023.119206.[48] Copernicus Climate Change Service (C3S). Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections. 2021. https://cds. climate.copernicus.eu/cdsapp#!/dataset/sis-energy-derived-projections?tab=over view. [Accessed 6 June 2022].[49] Dubus L, Saint-Drenan Y-M, Troccoli A, De Felice M, Moreau Y, Ho L, et al. C3S Energy: an operational service to deliver power demand and supply for different electricity sources, time and spatial scales over Europe. Applied Statistics; 2021. https://doi.org/10.31223/X5MM06.[50] Doddy Clarke E, Sweeney C, McDermott F, Griffin S, Correia JM, Nolan P, et al. Climate change impacts on wind energy generation in Ireland. Wind Energy 2022; 25:300–12. https://doi.org/10.1002/we.2673.[51] Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, et al. Rcp 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 2011;109:33. https://doi.org/10.1007/s10584-011-0149-y.[52] Nakicenovic N, Alcamo J, Davis G, Vries B, Fenhann J, Gaffin S, et al. Special report on emissions scenarios. Intergovernmental Panel on Climate Change; 2000.[53] Saint-Drenan Y-M, Wald L, Ranchin T, Dubus L, Troccoli A. An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data. Adv Sci Res 2018;15:51–62. https://doi.org/ 10.5194/asr-15-51-2018.[54] Troccoli A, Sanger L, Goodess C, Ogonji J, Dubus L, Vautard R, et al. Copernicus Climate Change Service (C3S) - technical description of methodologies followed in the development of each product. Reading: European Centre for Medium-Range Weather Forecasts; 2020.[55] AR6 Synthesis Report. Climate change. 2023. https://www.ipcc.ch/report /ar6/syr/. [Accessed 13 September 2023].[56] Kapica J, Jurasz J, Canales AF, Bloomfield H, Guezgouz M, De Felice M, et al. The potential impact of climate change on European renewable energy droughts. 2023. https://doi.org/10.5281/zenodo.8333762.[57] Solaun K, Cerd´ a E. Climate change impacts on renewable energy generation. A review of quantitative projections. Renew Sustain Energy Rev 2019;116. https:// doi.org/10.1016/j.rser.2019.109415. 109415–109415.[58] Weber J, Wohland J, Reyers M, Moemken J, Hoppe C, Pinto JG, et al. Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS One 2018;13:e0201457. https://doi.org/10.1371/journal. pone.0201457.[59] European Commission, Directorate-General for Energy Andrey C, Barberi P, Florez E, Veen W, et al. Offshore renewable energy and grids: an analysis of visions towards 2050 for the Northern seas region and recommendations for upcoming scenario-building exercises. Publications Office of the European Union; 2022. https://doi.org/10.2833/693330.[60] Bloomfield HC, Suitters CC, Drew DR. Meteorological drivers of European power system stress. J. Renewable Energy 2020;2020:1–12. https://doi.org/10.1155/ 2020/5481010.[61] ENTSO-E Transparency Platform n.d. https://transparency.entsoe.eu/(accessed September 13, 2023).[62] Parzen M, Abdel-Khalek H, Fedotova E, Mahmood M, Frysztacki MM, Hampp J, et al. PyPSA-Earth. A new global open energy system optimization model demonstrated in Africa. Appl Energy 2023;341:121096. https://doi.org/10.1016/j. apenergy.2023.121096.151189Resource droughtsExtreme eventsSpatial representationFuture scenariosEuropeHybridizationPublicationORIGINALThe potential impact of climate change on European renewable energy droughts.pdfThe potential impact of climate change on European renewable energy droughts.pdfArtículoapplication/pdf28595857https://repositorio.cuc.edu.co/bitstreams/e87b50ac-40c4-4af8-ae41-7326bb637254/download286326b21dda26c5ec3635c0de29f66eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/9e4cf5a0-1cca-4338-aa44-80d410fadb78/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTThe potential impact of climate change on European renewable energy droughts.pdf.txtThe potential impact of climate change on European renewable energy droughts.pdf.txtExtracted texttext/plain69689https://repositorio.cuc.edu.co/bitstreams/bee8b70b-f133-40fc-9d9f-e9a8989191a9/download7d8dcbb7c241a731bd1c2dc938c40d41MD53THUMBNAILThe potential impact of climate change on European renewable energy droughts.pdf.jpgThe potential impact of climate change on European renewable energy droughts.pdf.jpgGenerated Thumbnailimage/jpeg14087https://repositorio.cuc.edu.co/bitstreams/7b2c7997-554c-4363-b344-a865a24a484c/download1e0d513f5657ea26f0aa67f5bde3ef51MD5411323/13082oai:repositorio.cuc.edu.co:11323/130822024-09-17 11:06:55.71https://creativecommons.org/licenses/by-nc-nd/4.0/restrictedhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |