Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático
Introducción − Realizar una estimación de esfuerzo lo más precisa y adecuada para proyectos de desarrollo de software, se ha convertido en pieza fundamental para favorecer el éxito y desarrollo de los mismos, sin embargo, aplicar este tipo de estimación en proyectos de desarrollo ágil, en donde los...
- Autores:
-
Piñeros Rodríguez, Camilo Andrés
Sierra Martinez, Luz Marina
Peluffo Ordoñez, Diego Hernán
Timana Peña, Jimena Adriana
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12364
- Palabra clave:
- Effort Estimation
Agile Software Development
Issues and Challenges
Automatic Learning
Performance Metrics
estimación del esfuerzo
desarrollo ágil de software
retos y desafíos
aprendizaje automático
métricas de desempeño
- Rights
- openAccess
- License
- INGE CUC - 2022
id |
RCUC2_37f2278b2fa6d613865db47e97ad35c7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12364 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
dc.title.translated.eng.fl_str_mv |
Effort Estimation in Agile Software Development: A Systematic Map Study |
title |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
spellingShingle |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático Effort Estimation Agile Software Development Issues and Challenges Automatic Learning Performance Metrics estimación del esfuerzo desarrollo ágil de software retos y desafíos aprendizaje automático métricas de desempeño |
title_short |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
title_full |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
title_fullStr |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
title_full_unstemmed |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
title_sort |
Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático |
dc.creator.fl_str_mv |
Piñeros Rodríguez, Camilo Andrés Sierra Martinez, Luz Marina Peluffo Ordoñez, Diego Hernán Timana Peña, Jimena Adriana |
dc.contributor.author.spa.fl_str_mv |
Piñeros Rodríguez, Camilo Andrés Sierra Martinez, Luz Marina Peluffo Ordoñez, Diego Hernán Timana Peña, Jimena Adriana |
dc.subject.eng.fl_str_mv |
Effort Estimation Agile Software Development Issues and Challenges Automatic Learning Performance Metrics |
topic |
Effort Estimation Agile Software Development Issues and Challenges Automatic Learning Performance Metrics estimación del esfuerzo desarrollo ágil de software retos y desafíos aprendizaje automático métricas de desempeño |
dc.subject.spa.fl_str_mv |
estimación del esfuerzo desarrollo ágil de software retos y desafíos aprendizaje automático métricas de desempeño |
description |
Introducción − Realizar una estimación de esfuerzo lo más precisa y adecuada para proyectos de desarrollo de software, se ha convertido en pieza fundamental para favorecer el éxito y desarrollo de los mismos, sin embargo, aplicar este tipo de estimación en proyectos de desarrollo ágil, en donde los cambios son constantes, la convierte en una tarea muy compleja de implementar. Objetivo− El objetivo de este estudio es proveer un estado del arte sobre técnicas de estimación de esfuerzo en desarrollo de software ágil, la evaluación de su desempeño y los inconvenientes que se presentan en su aplicación. Metodología− Se desarrolló un mapeo sistemático que involucró la creación de preguntas de investigación con el fin de proveer una estructura a seguir, análisis de palabras relacionadas con el tema de investigación para la creación e implementación de una cadena de búsqueda para la identificación de estudios relacionados con el tema, aplicación de criterios de exclusión, inclusión y calidad a los artículos encontrados para poder descartar estudios no relevantes y finalmente la organización y extracción de la información necesaria de cada artículo. Resultados− De los 25 estudios seleccionados; los principales hallazgos son: las técnicas de estimación más aplicadas en contextos ágiles son: Estimación por medio de Puntos de Historia (SP) seguidos de Planning Poker (PP) y Juicio de Expertos (EJ). Soluciones soportadas en técnicas computacionales como: Naive Bayes, Algoritmos de Regresión y Sistema Híbridos; también se ha encontrado que la Magnitud Media del Error Relativo (MMRE), la Evaluación de la Predicción (PRED) y Error Absoluto Medio (MAE) son las medidas de evaluación de desempeño más usadas. Adicionalmente, se ha encontrado que parámetros como la viabilidad, la experiencia y la entrega de conocimiento de expertos, así como la constante particularidad y falta de datos en el proceso de creación de modelos para aplicarse a un limitado número de entornos son los desafíos que más se presentan al momento de realizar estimación de software en el desarrollo de software ágil (ASD) Conclusiones− Se ha encontrado que existe un aumento en la cantidad de artículos que abordan la estimación de esfuerzo en el desarrollo ágil, sin embargo, se hace evidente la necesidad de mejorar la precisión de la estimación mediante el uso de técnicas de estimación soportadas en el aprendizaje de máquina que han demostrado que facilita y mejora el desempeño de este. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-10 00:00:00 2024-04-09T20:22:01Z |
dc.date.available.none.fl_str_mv |
2022-11-10 00:00:00 2024-04-09T20:22:01Z |
dc.date.issued.none.fl_str_mv |
2022-11-10 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12364 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.19.1.2023.03 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.19.1.2023.03 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.19.1.2023.03 2382-4700 |
url |
https://hdl.handle.net/11323/12364 https://doi.org/10.17981/ingecuc.19.1.2023.03 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
E. Mendes, Cost estimation techniques for web projects. HYS, PA: IGI Pub, 2007. https://doi.org/10.4018/978-1-59904-135-3 M. Ramessur & S. Nagowah, “A predictive model to estimate effort in a sprint using machine learning techniques,” Int J Comput Sci Inf Technol, vol. 13, no. 7, pp. 1101–1110, Apr. 2021. https://doi.org/10.1007/s41870-021-00669-z R. Britto, E. Mendes & J. Borstler, “An Empirical Investigation on Effort Estimation in Agile Global Software Development,” presented at 10th International Conference on Global Software Engineering Workshops, ICGSEW, CR, ES, 13-16 Jul. 2015. https://doi.org/10.1109/ICGSE.2015.10 S. Bilgaiyan, S. Mishra & M. Das, “A Review of Software Cost Estimation in Agile Software Development Using SoftComputing Techniques,” presented at International Conference on Computational Intelligence and Networks, CINE, BBSR, IN, 11-11 Jan. 2016. https://doi.org/10.1109/CINE.2016.27 IEOM, Annual IEEE Computer Conference, International Conferenceon Industrial Engineering and Operations Management, IEOM, DXB, UAE, 3-5 March 2015. Available: https://ieomsociety.org/ieom/ S. Rc, M. Sánchez-Gordón, R. Colomo-Palacios & M. Kristiansen, “Effort Estimation in Agile Software Development: AExploratory Study of Practitioners’ Perspective,” in LASD 2022: Lean and Agile Software Development, Przybyłek, A.,Jarzębowicz, A., Luković, I., Ng, Y. (Eds)., Cham, CH: Springer, 2022, vol. 428, pp. 136–149. https://doi.org/10.1007/978-3-030-94238-0_8 H. Rastogi, S. Dhankhar & M. Kakkar, “A Survey on Software Effort Estimation Techniques,” presented at 5th International Conference - Confluence The Next Generation Information Technology Summit, Confluence, NOI, IN, 25-26 Sep. 2014. https://doi.org/10.1109/CONFLUENCE.2014.6949367 P. Salvetto, “Modelos automatizables de estimación muy temprana del tiempo y esfuerzo de desarrollo de sistemas de información,” Tesis doctoral, Fac Inform, UPM, MAD, ES, 2004. Recuperado de https://oa.upm.es/367/1/PEDRO_SALVETTO_LEON.pdf E. Dantas, M. Perkusich, E. Dilorenzo, D. Santos, H. Almeida & A. Perkusich, “Effort Estimation in Agile Software Development: An Updated Review,” Int J Softw Eng Knowl Eng, vol. 28, no. 11–12, pp. 1811–1831, Nov. 2018. https://doi.org/10.1142/S0218194018400302 B. Alsaadi & K. Saeedi, “Data-driven effort estimation techniques of agile user stories: a systematic literature review,” Artif Intell Rev, vol. 55, no. 7, pp. 5485–5516, Jan. 2022. https://doi.org/10.1007/s10462-021-10132-x K. Petersen, S. Vakkalanka & L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf Softw Technol, vol. 64, pp. 1–18, Aug. 2015. https://doi.org/10.1016/j.infsof.2015.03.007 M. Fernández-Diego, E. Méndez, F. González-Ladrón-De-Guevara, S. Abrahão & E. Insfran, “An update on effort estimation in agile software development: A systematic literature review,” IEEE Access, vol. 8, pp. 166768–166800, Sep. 2020. https://doi.org/10.1109/ACCESS.2020.3021664 M. Usman, E. Mendes, F. Weidt, & R. Britto, “Effort estimation in Agile Software Development: A systematic literature review,” presented at 10th International Conference on Predictive Models in Software Engineering, PROMISE '14, TO, IT, 17 sep. 2014. https://doi.org/10.1145/2639490.2639503 T. Hacaloglu & O. Demirors, “Challenges of Using Software Size in Agile Software Development: A Systematic Literature Review,” presented at the Academic Papers at IWSM Mensura, IWSM-Mensura, BJ, CN, 19-20 Sep. 2018. Available: https://hdl.handle.net/11147/7045 A. Altaleb & A. Gravell, “Effort Estimation across Mobile App Platforms using Agile Processes: A Systematic Literature Review,” JSW, vol. 13, no. 4, pp. 242–259, Apr. 2018. https://doi.org/10.17706/jsw.13.4.242-259 B. Kitchenham & S. Charters, “Guidelines for Performing Systematic Literature Reviews in Software Engineering Version 2.3,” KUSU and UoD, Staf, UK, EBSE 2007-001 Tech Rep, 2007. Available from https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf B. Kitchenman & D. Budgen, Evidence-Based Software Engineering and Systematic Reviews. BC RTN, FL, USA: CRC Press Taylor & Francis Group, 2015. K. Felizardo, E. Mendes, M. Kalinowski, E. Souza & N. Vijaykumar, “Using Forward Snowballing to update Systematic Reviews in Software Engineering,” presented at 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM '16, BC RTN, FL, USA, 8-9 Sep. 2016. https://doi.org/10.1145/2961111.2962630 B. Kitchenman, O. Brereton, D. Budgen, M. Turner, J. Bailey & S. Linkman, “Systematic literature reviews in software engineering - A systematic literature review,” Inf Softw Technol, vol. 51, no. 1, pp. 7–15, Jan. 2009. https://doi.org/10.1016/j.infsof.2008.09.009 F. Yaghmalef, “Content validity and its estimation,” JME, vol. 3, no. 1, pp. 25–27, Mar. 2003. Available: https://brieflands.com/articles/jme-105015.pdf E. Almanasreh, R. Moles & T. Chen, “Evaluation of methods used for estimating content validity,” Res Social Adm Pharm, vol. 15, no. 2, pp. 214–221, Feb. 2019. https://doi.org/10.1016/j.sapharm.2018.03.066 E. Milian, M. de Spinola & M. de Carvalho, “Fintechs: A literature review and research agenda,” Electron Commer Res Appl, vol. 34, Feb. 2019. https://doi.org/10.1016/j.elerap.2019.100833 M. Hamid, F. Zeshan, A. Ahmad, F. Ahmad, M. Hamza, Z. Khan, S. Munawar & H. Aljuaid, “An Intelligent Recommender and Decision Support System (IRDSS) for Effective Management of Software Projects,” IEEE Access, vol. 8, pp. 140752–140766, Jul. 2020. https://doi.org/10.1109/ACCESS.2020.3010968 M. Choetkiertikul, H. Dam, T. Tran, T. Pham, A. Ghose & T. Menzies, “A Deep Learning Model for Estimating Story Points,” ITSE, vol. 45, no. 7, pp. 637–656, Jan. 2018. https://doi.org/10.1109/TSE.2018.2792473 A. Kaushik, D. Tayal & K. Yadav, “A Comparative Analysis on Effort Estimation for Agile and Non-agile Software Projects Using DBN-ALO,” Arab J Sci Eng, vol. 45, no. 4, pp. 2605–2618, Nov. 2019. https://doi.org/10.1007/s13369-019-04250-6 O. Malgonde & K. Chari, “An ensemble-based model for predicting agile software development effort,” Empir Softw Eng, vol. 24, no. 2, pp. 1017–1055, Apr. 2019. https://doi.org/10.1007/s10664-018-9647-0 S. Bilgaiyan, S. Mishra & M. Das, “Effort estimation in agile software development using experimental validation of neural network models,” Int J Inf Technol, vol. 11, no. 3, pp. 569–573, Abr. 2018. https://doi.org/10.1007/s41870-018-0131-2 S. Butt, S. Misra, J. Diaz-Martinez & F. De la Hoz, “Efficient Approaches to Agile Cost Estimation in Software Industries: A Project-Based Case Study,” presented at Information and Communication Technology and Applications, ICTA 2020, Cham, CH, 24-27 Nov. 2021. https://doi.org/10.1007/978-3-030-69143-1_49 W. Alsaqaf, M. Daneva & R. Wieringa, “Quality requirements challenges in the context of large-scale distributed agile: An empirical study,” Inf Softw Technol, vol. 110, pp. 39–55, Mar. 2018. https://doi.org/10.1016/j.infsof.2019.01.009 M. Gultekin & O. Kalipsiz, “Story Point-Based Effort Estimation Model with Machine Learning Techniques,” IJSEKE, vol. 30, no. 1, pp. 43–66, Jan. 2020. https://doi.org/10.1142/S0218194020500035 M. Alhamed & T. Storer, “Playing Planning Poker in Crowds: Human Computation of Software Effort Estimates,” presented at 43 International Conference on Software Engineering, ICSE, MAD, ES, 22-30 May. 2021. https://doi.org/10.1109/ICSE43902.2021.00014 M. Arora, A. Sharma, S. Katoch, M. Malviya & S. Chopra, “A State of the Art Regressor Model’s comparison for Effort Estimation of Agile software,” presented at 2nd International Conference on Intelligent Engineering and Management, ICIEM, LDN, UK, 28-30 Apr. 2021. https://doi.org/10.1109/ICIEM51511.2021.9445345 A. Sharma & N. Chaudhary, “Linear Regression Model for Agile Software Development Effort Estimation,” presented at 5th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE, JAIP, IN, 1-3 Dec. 2020. https://doi.org/10.1109/ICRAIE51050.2020.9358309 P. Sudarmaningtyas & R. Mohamed, “Extended Planning Poker: A Proposed Model,” presented at 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE, SRG, ID, 24-25 Sep. 2020. https://doi.org/10.1109/ICITACEE50144.2020.9239165 J. Angara, S. Prasad & G. Sridevi, “DevOPs project management tools for sprint planning, estimation and execution maturity,” Cybern Inf Technol, vol. 20, no. 2, pp. 79–92, Mar 2020. https://doi.org/10.2478/cait-2020-0018 H. Sheemar & G. Kour, “Enhancing User-Stories Prioritization Process in Agile Environment,” presented at International Conference on Innovations in Control, Communication and Information Systems, ICICCI, GRT NOI, IN, 12-13 Aug. 2017. https://doi.org/10.1109/ICICCIS.2017.8660760 L. Radu, “Effort prediction in agile software development with Bayesian networks,” presented at 14th International Conference on Software Technologies, ICSOFT, STBL, PT, 26-28 Jul. 2019. https://doi.org/10.5220/0007842802380245 E. Dantas, A. Costa, M. Vinicius, M. Perkusich, H. Almeida & A. Perkusich, “An effort estimation supporttool for agile software development: An empirical evaluation,” presented at 31th International Conference on SoftwareEngineering and Knowledge Engineering, SEKE, LX, PT, 10-12 Jul. 2019. https://doi.org/10.18293/SEKE2019-141 H. Premalatha & C. Srikrishna, “Effort estimation in agile software development using evolutionary cost- sensitive deep Belief Network,” Int J Intell Eng Syst, vol. 12, no. 2, pp. 261–269, Dec. 2018. https://doi.org/10.22266/IJIES2019.0430.25 T. Khuat & M. Le, “A Novel Hybrid ABC-PSO Algorithm for Effort Estimation of Software Projects UsingAgile Methodologies,” JISYST, vol. 27, no. 3, pp. 489–506, Mar. 2017. https://doi.org/10.1515/jisys-2016-0294 E. Scott & D. Pfahl, “Using developers’ features to estimate story points,” presented at InternationalConference on the Software and Systems Process, ICSSP'18, GBG, SE, 26-27 May. 2018. https://doi.org/10.1145/3202710.3203160 P. Ram, P. Rodriguez & M. Oivo, “Software Process Measurement and Related Challenges in Agile SoftwareDevelopment: A Multiple Case Study,” presented at Intetnational Conference Product-Focused Software Process Improvement, PROFES, WOB, DE, 28-30 Nov. 2018. https://doi.org/10.1007/978-3-030-03673-7_20 C. Prasada Rao, P. Siva Kumar, S. Rama Sree & J. Devi, “An agile effort estimation based on story points usingmachine learning techniques,” presented at 2nd International Conference on Computational Intelligence and Informatics, ICAI, HYD, IN, 22-23 Dec. 2018. https://doi.org/10.1007/978-981-10-8228-3_20 A. Kialbekov, “Empirical Study on Commonly Used Combinations of Estimation Techniques in Software Development Planning,” presented at European Symposium on Software Engineering, ESSE '20, ROM, IT, 6-8 Nov. 2020. https://doi.org/10.1145/3393822.3432328 A. Altaleb and A. Gravell, “An Empirical Investigation of Effort Estimation in Mobile Apps Using Agile Development Process,” JSW, vol. 14, no. 8, pp. 356–369, Jul. 2019. https://doi.org/10.17706/jsw.14.8.356-369 |
dc.relation.citationendpage.none.fl_str_mv |
22–36 |
dc.relation.citationstartpage.none.fl_str_mv |
22–36 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
19 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4420/4582 https://revistascientificas.cuc.edu.co/ingecuc/article/download/4420/4806 https://revistascientificas.cuc.edu.co/ingecuc/article/download/4420/4860 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2023 : (Enero - Junio) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2022 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2022 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html text/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/4420 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cace11a8-caf8-415b-8674-77584b9f99fb/download |
bitstream.checksum.fl_str_mv |
e385d73cb8702c8a5f68b5c48cbb147f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166893168492544 |
spelling |
Piñeros Rodríguez, Camilo AndrésSierra Martinez, Luz MarinaPeluffo Ordoñez, Diego HernánTimana Peña, Jimena Adriana2022-11-10 00:00:002024-04-09T20:22:01Z2022-11-10 00:00:002024-04-09T20:22:01Z2022-11-100122-6517https://hdl.handle.net/11323/12364https://doi.org/10.17981/ingecuc.19.1.2023.0310.17981/ingecuc.19.1.2023.032382-4700Introducción − Realizar una estimación de esfuerzo lo más precisa y adecuada para proyectos de desarrollo de software, se ha convertido en pieza fundamental para favorecer el éxito y desarrollo de los mismos, sin embargo, aplicar este tipo de estimación en proyectos de desarrollo ágil, en donde los cambios son constantes, la convierte en una tarea muy compleja de implementar. Objetivo− El objetivo de este estudio es proveer un estado del arte sobre técnicas de estimación de esfuerzo en desarrollo de software ágil, la evaluación de su desempeño y los inconvenientes que se presentan en su aplicación. Metodología− Se desarrolló un mapeo sistemático que involucró la creación de preguntas de investigación con el fin de proveer una estructura a seguir, análisis de palabras relacionadas con el tema de investigación para la creación e implementación de una cadena de búsqueda para la identificación de estudios relacionados con el tema, aplicación de criterios de exclusión, inclusión y calidad a los artículos encontrados para poder descartar estudios no relevantes y finalmente la organización y extracción de la información necesaria de cada artículo. Resultados− De los 25 estudios seleccionados; los principales hallazgos son: las técnicas de estimación más aplicadas en contextos ágiles son: Estimación por medio de Puntos de Historia (SP) seguidos de Planning Poker (PP) y Juicio de Expertos (EJ). Soluciones soportadas en técnicas computacionales como: Naive Bayes, Algoritmos de Regresión y Sistema Híbridos; también se ha encontrado que la Magnitud Media del Error Relativo (MMRE), la Evaluación de la Predicción (PRED) y Error Absoluto Medio (MAE) son las medidas de evaluación de desempeño más usadas. Adicionalmente, se ha encontrado que parámetros como la viabilidad, la experiencia y la entrega de conocimiento de expertos, así como la constante particularidad y falta de datos en el proceso de creación de modelos para aplicarse a un limitado número de entornos son los desafíos que más se presentan al momento de realizar estimación de software en el desarrollo de software ágil (ASD) Conclusiones− Se ha encontrado que existe un aumento en la cantidad de artículos que abordan la estimación de esfuerzo en el desarrollo ágil, sin embargo, se hace evidente la necesidad de mejorar la precisión de la estimación mediante el uso de técnicas de estimación soportadas en el aprendizaje de máquina que han demostrado que facilita y mejora el desempeño de este. Introduction − Making effort estimation as accurate and suitable for software development projects becomes a fundamental stage to favor its success, which is a difficult task, since the application of these techniques in constant changing agile development projects raises the need to evaluate different methods frequently. Objectives− The objective of this study is to provide a state of the art on techniques of effort estimation in agile software development (ASD), performance evaluation and the drawbacks that arise in its application. Method− A systematic mapping was developed involving the creation of research questions to provide a layout of this study, analysis of related words for the implementation of a search query to obtain related studies, application of exclusion, inclusion, and quality criteria to filter nonrelated studies and finally the organization and extraction of the necessary information from each study. Results− 25 studies were selected; the main findings are: the most applied estimation techniques in agile contexts are: Estimation of Story Points (SP) followed by Planning Poker (PP) and Expert Judgment (EJ). The most frequent solutions supported in computational techniques such as: Naive Bayes, Regression Algorithms and Hybrid System; also, the performance evaluation measures Mean Magnitude of Relative Error (MMRE), Prediction Assessment (PRED) and Mean Absolute Error (MAE) have been found to be the most commonly used. Additionally, parameters such as feasibility, experience, and the delivery of expert knowledge, as well as the constant particularity and lack of data in the process of creating models to be applied to a limited number of environments are the challenges that arise the most when estimating software in agile software development (ASD) Conclusions− It has been found there is an increase in the number of articles that address effort estimation in agile development, however, it becomes evident the need to improve the accuracy of the estimation by using estimation techniques supported in machine learning that have been shown to facilitate and improve the performance of this. application/pdftext/htmltext/xmlengUniversidad de la CostaINGE CUC - 2022http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/4420Effort EstimationAgile Software DevelopmentIssues and ChallengesAutomatic LearningPerformance Metricsestimación del esfuerzodesarrollo ágil de softwareretos y desafíosaprendizaje automáticométricas de desempeñoEstimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo SistemáticoEffort Estimation in Agile Software Development: A Systematic Map StudyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc E. Mendes, Cost estimation techniques for web projects. HYS, PA: IGI Pub, 2007. https://doi.org/10.4018/978-1-59904-135-3 M. Ramessur & S. Nagowah, “A predictive model to estimate effort in a sprint using machine learning techniques,” Int J Comput Sci Inf Technol, vol. 13, no. 7, pp. 1101–1110, Apr. 2021. https://doi.org/10.1007/s41870-021-00669-z R. Britto, E. Mendes & J. Borstler, “An Empirical Investigation on Effort Estimation in Agile Global Software Development,” presented at 10th International Conference on Global Software Engineering Workshops, ICGSEW, CR, ES, 13-16 Jul. 2015. https://doi.org/10.1109/ICGSE.2015.10 S. Bilgaiyan, S. Mishra & M. Das, “A Review of Software Cost Estimation in Agile Software Development Using SoftComputing Techniques,” presented at International Conference on Computational Intelligence and Networks, CINE, BBSR, IN, 11-11 Jan. 2016. https://doi.org/10.1109/CINE.2016.27 IEOM, Annual IEEE Computer Conference, International Conferenceon Industrial Engineering and Operations Management, IEOM, DXB, UAE, 3-5 March 2015. Available: https://ieomsociety.org/ieom/ S. Rc, M. Sánchez-Gordón, R. Colomo-Palacios & M. Kristiansen, “Effort Estimation in Agile Software Development: AExploratory Study of Practitioners’ Perspective,” in LASD 2022: Lean and Agile Software Development, Przybyłek, A.,Jarzębowicz, A., Luković, I., Ng, Y. (Eds)., Cham, CH: Springer, 2022, vol. 428, pp. 136–149. https://doi.org/10.1007/978-3-030-94238-0_8 H. Rastogi, S. Dhankhar & M. Kakkar, “A Survey on Software Effort Estimation Techniques,” presented at 5th International Conference - Confluence The Next Generation Information Technology Summit, Confluence, NOI, IN, 25-26 Sep. 2014. https://doi.org/10.1109/CONFLUENCE.2014.6949367 P. Salvetto, “Modelos automatizables de estimación muy temprana del tiempo y esfuerzo de desarrollo de sistemas de información,” Tesis doctoral, Fac Inform, UPM, MAD, ES, 2004. Recuperado de https://oa.upm.es/367/1/PEDRO_SALVETTO_LEON.pdf E. Dantas, M. Perkusich, E. Dilorenzo, D. Santos, H. Almeida & A. Perkusich, “Effort Estimation in Agile Software Development: An Updated Review,” Int J Softw Eng Knowl Eng, vol. 28, no. 11–12, pp. 1811–1831, Nov. 2018. https://doi.org/10.1142/S0218194018400302 B. Alsaadi & K. Saeedi, “Data-driven effort estimation techniques of agile user stories: a systematic literature review,” Artif Intell Rev, vol. 55, no. 7, pp. 5485–5516, Jan. 2022. https://doi.org/10.1007/s10462-021-10132-x K. Petersen, S. Vakkalanka & L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf Softw Technol, vol. 64, pp. 1–18, Aug. 2015. https://doi.org/10.1016/j.infsof.2015.03.007 M. Fernández-Diego, E. Méndez, F. González-Ladrón-De-Guevara, S. Abrahão & E. Insfran, “An update on effort estimation in agile software development: A systematic literature review,” IEEE Access, vol. 8, pp. 166768–166800, Sep. 2020. https://doi.org/10.1109/ACCESS.2020.3021664 M. Usman, E. Mendes, F. Weidt, & R. Britto, “Effort estimation in Agile Software Development: A systematic literature review,” presented at 10th International Conference on Predictive Models in Software Engineering, PROMISE '14, TO, IT, 17 sep. 2014. https://doi.org/10.1145/2639490.2639503 T. Hacaloglu & O. Demirors, “Challenges of Using Software Size in Agile Software Development: A Systematic Literature Review,” presented at the Academic Papers at IWSM Mensura, IWSM-Mensura, BJ, CN, 19-20 Sep. 2018. Available: https://hdl.handle.net/11147/7045 A. Altaleb & A. Gravell, “Effort Estimation across Mobile App Platforms using Agile Processes: A Systematic Literature Review,” JSW, vol. 13, no. 4, pp. 242–259, Apr. 2018. https://doi.org/10.17706/jsw.13.4.242-259 B. Kitchenham & S. Charters, “Guidelines for Performing Systematic Literature Reviews in Software Engineering Version 2.3,” KUSU and UoD, Staf, UK, EBSE 2007-001 Tech Rep, 2007. Available from https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf B. Kitchenman & D. Budgen, Evidence-Based Software Engineering and Systematic Reviews. BC RTN, FL, USA: CRC Press Taylor & Francis Group, 2015. K. Felizardo, E. Mendes, M. Kalinowski, E. Souza & N. Vijaykumar, “Using Forward Snowballing to update Systematic Reviews in Software Engineering,” presented at 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM '16, BC RTN, FL, USA, 8-9 Sep. 2016. https://doi.org/10.1145/2961111.2962630 B. Kitchenman, O. Brereton, D. Budgen, M. Turner, J. Bailey & S. Linkman, “Systematic literature reviews in software engineering - A systematic literature review,” Inf Softw Technol, vol. 51, no. 1, pp. 7–15, Jan. 2009. https://doi.org/10.1016/j.infsof.2008.09.009 F. Yaghmalef, “Content validity and its estimation,” JME, vol. 3, no. 1, pp. 25–27, Mar. 2003. Available: https://brieflands.com/articles/jme-105015.pdf E. Almanasreh, R. Moles & T. Chen, “Evaluation of methods used for estimating content validity,” Res Social Adm Pharm, vol. 15, no. 2, pp. 214–221, Feb. 2019. https://doi.org/10.1016/j.sapharm.2018.03.066 E. Milian, M. de Spinola & M. de Carvalho, “Fintechs: A literature review and research agenda,” Electron Commer Res Appl, vol. 34, Feb. 2019. https://doi.org/10.1016/j.elerap.2019.100833 M. Hamid, F. Zeshan, A. Ahmad, F. Ahmad, M. Hamza, Z. Khan, S. Munawar & H. Aljuaid, “An Intelligent Recommender and Decision Support System (IRDSS) for Effective Management of Software Projects,” IEEE Access, vol. 8, pp. 140752–140766, Jul. 2020. https://doi.org/10.1109/ACCESS.2020.3010968 M. Choetkiertikul, H. Dam, T. Tran, T. Pham, A. Ghose & T. Menzies, “A Deep Learning Model for Estimating Story Points,” ITSE, vol. 45, no. 7, pp. 637–656, Jan. 2018. https://doi.org/10.1109/TSE.2018.2792473 A. Kaushik, D. Tayal & K. Yadav, “A Comparative Analysis on Effort Estimation for Agile and Non-agile Software Projects Using DBN-ALO,” Arab J Sci Eng, vol. 45, no. 4, pp. 2605–2618, Nov. 2019. https://doi.org/10.1007/s13369-019-04250-6 O. Malgonde & K. Chari, “An ensemble-based model for predicting agile software development effort,” Empir Softw Eng, vol. 24, no. 2, pp. 1017–1055, Apr. 2019. https://doi.org/10.1007/s10664-018-9647-0 S. Bilgaiyan, S. Mishra & M. Das, “Effort estimation in agile software development using experimental validation of neural network models,” Int J Inf Technol, vol. 11, no. 3, pp. 569–573, Abr. 2018. https://doi.org/10.1007/s41870-018-0131-2 S. Butt, S. Misra, J. Diaz-Martinez & F. De la Hoz, “Efficient Approaches to Agile Cost Estimation in Software Industries: A Project-Based Case Study,” presented at Information and Communication Technology and Applications, ICTA 2020, Cham, CH, 24-27 Nov. 2021. https://doi.org/10.1007/978-3-030-69143-1_49 W. Alsaqaf, M. Daneva & R. Wieringa, “Quality requirements challenges in the context of large-scale distributed agile: An empirical study,” Inf Softw Technol, vol. 110, pp. 39–55, Mar. 2018. https://doi.org/10.1016/j.infsof.2019.01.009 M. Gultekin & O. Kalipsiz, “Story Point-Based Effort Estimation Model with Machine Learning Techniques,” IJSEKE, vol. 30, no. 1, pp. 43–66, Jan. 2020. https://doi.org/10.1142/S0218194020500035 M. Alhamed & T. Storer, “Playing Planning Poker in Crowds: Human Computation of Software Effort Estimates,” presented at 43 International Conference on Software Engineering, ICSE, MAD, ES, 22-30 May. 2021. https://doi.org/10.1109/ICSE43902.2021.00014 M. Arora, A. Sharma, S. Katoch, M. Malviya & S. Chopra, “A State of the Art Regressor Model’s comparison for Effort Estimation of Agile software,” presented at 2nd International Conference on Intelligent Engineering and Management, ICIEM, LDN, UK, 28-30 Apr. 2021. https://doi.org/10.1109/ICIEM51511.2021.9445345 A. Sharma & N. Chaudhary, “Linear Regression Model for Agile Software Development Effort Estimation,” presented at 5th IEEE International Conference on Recent Advances and Innovations in Engineering, ICRAIE, JAIP, IN, 1-3 Dec. 2020. https://doi.org/10.1109/ICRAIE51050.2020.9358309 P. Sudarmaningtyas & R. Mohamed, “Extended Planning Poker: A Proposed Model,” presented at 7th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE, SRG, ID, 24-25 Sep. 2020. https://doi.org/10.1109/ICITACEE50144.2020.9239165 J. Angara, S. Prasad & G. Sridevi, “DevOPs project management tools for sprint planning, estimation and execution maturity,” Cybern Inf Technol, vol. 20, no. 2, pp. 79–92, Mar 2020. https://doi.org/10.2478/cait-2020-0018 H. Sheemar & G. Kour, “Enhancing User-Stories Prioritization Process in Agile Environment,” presented at International Conference on Innovations in Control, Communication and Information Systems, ICICCI, GRT NOI, IN, 12-13 Aug. 2017. https://doi.org/10.1109/ICICCIS.2017.8660760 L. Radu, “Effort prediction in agile software development with Bayesian networks,” presented at 14th International Conference on Software Technologies, ICSOFT, STBL, PT, 26-28 Jul. 2019. https://doi.org/10.5220/0007842802380245 E. Dantas, A. Costa, M. Vinicius, M. Perkusich, H. Almeida & A. Perkusich, “An effort estimation supporttool for agile software development: An empirical evaluation,” presented at 31th International Conference on SoftwareEngineering and Knowledge Engineering, SEKE, LX, PT, 10-12 Jul. 2019. https://doi.org/10.18293/SEKE2019-141 H. Premalatha & C. Srikrishna, “Effort estimation in agile software development using evolutionary cost- sensitive deep Belief Network,” Int J Intell Eng Syst, vol. 12, no. 2, pp. 261–269, Dec. 2018. https://doi.org/10.22266/IJIES2019.0430.25 T. Khuat & M. Le, “A Novel Hybrid ABC-PSO Algorithm for Effort Estimation of Software Projects UsingAgile Methodologies,” JISYST, vol. 27, no. 3, pp. 489–506, Mar. 2017. https://doi.org/10.1515/jisys-2016-0294 E. Scott & D. Pfahl, “Using developers’ features to estimate story points,” presented at InternationalConference on the Software and Systems Process, ICSSP'18, GBG, SE, 26-27 May. 2018. https://doi.org/10.1145/3202710.3203160 P. Ram, P. Rodriguez & M. Oivo, “Software Process Measurement and Related Challenges in Agile SoftwareDevelopment: A Multiple Case Study,” presented at Intetnational Conference Product-Focused Software Process Improvement, PROFES, WOB, DE, 28-30 Nov. 2018. https://doi.org/10.1007/978-3-030-03673-7_20 C. Prasada Rao, P. Siva Kumar, S. Rama Sree & J. Devi, “An agile effort estimation based on story points usingmachine learning techniques,” presented at 2nd International Conference on Computational Intelligence and Informatics, ICAI, HYD, IN, 22-23 Dec. 2018. https://doi.org/10.1007/978-981-10-8228-3_20A. Kialbekov, “Empirical Study on Commonly Used Combinations of Estimation Techniques in Software Development Planning,” presented at European Symposium on Software Engineering, ESSE '20, ROM, IT, 6-8 Nov. 2020. https://doi.org/10.1145/3393822.3432328A. Altaleb and A. Gravell, “An Empirical Investigation of Effort Estimation in Mobile Apps Using Agile Development Process,” JSW, vol. 14, no. 8, pp. 356–369, Jul. 2019. https://doi.org/10.17706/jsw.14.8.356-36922–3622–36119https://revistascientificas.cuc.edu.co/ingecuc/article/download/4420/4582https://revistascientificas.cuc.edu.co/ingecuc/article/download/4420/4806https://revistascientificas.cuc.edu.co/ingecuc/article/download/4420/4860Núm. 1 , Año 2023 : (Enero - Junio)PublicationOREORE.xmltext/xml2723https://repositorio.cuc.edu.co/bitstreams/cace11a8-caf8-415b-8674-77584b9f99fb/downloade385d73cb8702c8a5f68b5c48cbb147fMD5111323/12364oai:repositorio.cuc.edu.co:11323/123642024-09-17 14:22:59.393http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2022metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |