Estimación del Esfuerzo en el Desarrollo de Software Ágil: Mapeo Sistemático

Introducción − Realizar una estimación de esfuerzo lo más precisa y adecuada para proyectos de desarrollo de software, se ha convertido en pieza fundamental para favorecer el éxito y desarrollo de los mismos, sin embargo, aplicar este tipo de estimación en proyectos de desarrollo ágil, en donde los...

Full description

Autores:
Piñeros Rodríguez, Camilo Andrés
Sierra Martinez, Luz Marina
Peluffo Ordoñez, Diego Hernán
Timana Peña, Jimena Adriana
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12364
Acceso en línea:
https://hdl.handle.net/11323/12364
https://doi.org/10.17981/ingecuc.19.1.2023.03
Palabra clave:
Effort Estimation
Agile Software Development
Issues and Challenges
Automatic Learning
Performance Metrics
estimación del esfuerzo
desarrollo ágil de software
retos y desafíos
aprendizaje automático
métricas de desempeño
Rights
openAccess
License
INGE CUC - 2022
Description
Summary:Introducción − Realizar una estimación de esfuerzo lo más precisa y adecuada para proyectos de desarrollo de software, se ha convertido en pieza fundamental para favorecer el éxito y desarrollo de los mismos, sin embargo, aplicar este tipo de estimación en proyectos de desarrollo ágil, en donde los cambios son constantes, la convierte en una tarea muy compleja de implementar.   Objetivo− El objetivo de este estudio es proveer un estado del arte sobre técnicas de estimación de esfuerzo en desarrollo de software ágil, la evaluación de su desempeño y los inconvenientes que se presentan en su aplicación.   Metodología− Se desarrolló un mapeo sistemático que involucró la creación de preguntas de investigación con el fin de proveer una estructura a seguir, análisis de palabras relacionadas con el tema de investigación para la creación e implementación de una cadena de búsqueda para la identificación de estudios relacionados con el tema, aplicación de criterios de exclusión, inclusión y calidad a los artículos encontrados para poder descartar estudios no relevantes y finalmente la organización y extracción de la información necesaria de cada artículo.    Resultados− De los 25 estudios seleccionados; los principales hallazgos son: las técnicas de estimación más aplicadas en contextos ágiles son: Estimación por medio de Puntos de Historia (SP) seguidos de Planning Poker (PP) y Juicio de Expertos (EJ). Soluciones soportadas en técnicas computacionales como: Naive Bayes, Algoritmos de Regresión y Sistema Híbridos; también se ha encontrado que la Magnitud Media del Error Relativo (MMRE), la Evaluación de la Predicción (PRED) y Error Absoluto Medio (MAE) son las medidas de evaluación de desempeño más usadas. Adicionalmente, se ha encontrado que parámetros como la viabilidad, la experiencia y la entrega de conocimiento de expertos, así como la constante particularidad y falta de datos en el proceso de creación de modelos para aplicarse a un limitado número de entornos son los desafíos que más se presentan al momento de realizar estimación de software en el desarrollo de software ágil (ASD)   Conclusiones− Se ha encontrado que existe un aumento en la cantidad de artículos que abordan la estimación de esfuerzo en el desarrollo ágil, sin embargo, se hace evidente la necesidad de mejorar la precisión de la estimación mediante el uso de técnicas de estimación soportadas en el aprendizaje de máquina que han demostrado que facilita y mejora el desempeño de este.