Frequency response analysis under faults in weak power systems

The renewable energy sources (RESs) projects are solutions with environmental benefits that are changing the traditional power system operation and concept. Transient stability analysis has opened new research trends to guarantee a secure operation high penetration. Problems such as frequency fluctu...

Full description

Autores:
Godoy Enciso, Richard Marino
García Sánchez, Zaid
Hernández Herrera, Hernán
Gonzalez Cueto Cruz, José Antonio
Silva Ortega, Jorge Iván
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9311
Acceso en línea:
https://hdl.handle.net/11323/9311
http://doi.org/10.11591/ijece.v12i2.pp1077-1088
https://repositorio.cuc.edu.co/
Palabra clave:
Frequency fluctuations
Frequency response
Isolate power systems
Renewable energy sources penetration
Weak distribution networks
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
id RCUC2_37d9568cb742749f48b94cc8b6f0037d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9311
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Frequency response analysis under faults in weak power systems
title Frequency response analysis under faults in weak power systems
spellingShingle Frequency response analysis under faults in weak power systems
Frequency fluctuations
Frequency response
Isolate power systems
Renewable energy sources penetration
Weak distribution networks
title_short Frequency response analysis under faults in weak power systems
title_full Frequency response analysis under faults in weak power systems
title_fullStr Frequency response analysis under faults in weak power systems
title_full_unstemmed Frequency response analysis under faults in weak power systems
title_sort Frequency response analysis under faults in weak power systems
dc.creator.fl_str_mv Godoy Enciso, Richard Marino
García Sánchez, Zaid
Hernández Herrera, Hernán
Gonzalez Cueto Cruz, José Antonio
Silva Ortega, Jorge Iván
dc.contributor.author.spa.fl_str_mv Godoy Enciso, Richard Marino
García Sánchez, Zaid
Hernández Herrera, Hernán
Gonzalez Cueto Cruz, José Antonio
Silva Ortega, Jorge Iván
dc.subject.proposal.eng.fl_str_mv Frequency fluctuations
Frequency response
Isolate power systems
Renewable energy sources penetration
Weak distribution networks
topic Frequency fluctuations
Frequency response
Isolate power systems
Renewable energy sources penetration
Weak distribution networks
description The renewable energy sources (RESs) projects are solutions with environmental benefits that are changing the traditional power system operation and concept. Transient stability analysis has opened new research trends to guarantee a secure operation high penetration. Problems such as frequency fluctuations, decoupling between generator angular speed, network frequency fluctuation and kinetic energy storing absence are the main non-conventional RESs penetration in power systems. This paper analyzes short-circuit influence on frequency response, focusing on weak distribution networks and isolated, to demonstrate relevance in frequency stability. A study case considered a generation outage and a load input to analyze frequency response. The paper compares frequency response during a generation outage with a short-circuit occurrence. In addition, modular value and angle generator terminal voltage affectation by electric arc and network ratio R⁄X, failure type influence in power delivered behavior, considering fault location, arc resistance and load. The arc resistance is defined as an added resistance that appears during failure and influences voltage modulus and angle value results showing that intermittent non-conventional RES participation can lead to frequency fluctuations. Results showed that arc resistance, type of failure, location and loadability determine the influence of frequency response factors in weak power systems.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-10
dc.date.accessioned.none.fl_str_mv 2022-06-29T12:39:51Z
dc.date.available.none.fl_str_mv 2022-06-29T12:39:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Arcia, M.G., Sanchez, Z.G., Hernandez Herrera, H., Cueto Cruz, J.A.G., Silva Ortega, J.I., Sánchez, G.C., 2022. Frequency response analysis under faults in weak power systems. International Journal of Electrical and Computer Engineering (IJECE) 12, 1077.. doi:10.11591/ijece.v12i2.pp1077-1088
dc.identifier.issn.spa.fl_str_mv 2088-8708
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9311
dc.identifier.url.spa.fl_str_mv http://doi.org/10.11591/ijece.v12i2.pp1077-1088
dc.identifier.doi.spa.fl_str_mv 10.11591/ijece.v12i2.pp1077-1088
dc.identifier.eissn.spa.fl_str_mv 2722-2578
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Arcia, M.G., Sanchez, Z.G., Hernandez Herrera, H., Cueto Cruz, J.A.G., Silva Ortega, J.I., Sánchez, G.C., 2022. Frequency response analysis under faults in weak power systems. International Journal of Electrical and Computer Engineering (IJECE) 12, 1077.. doi:10.11591/ijece.v12i2.pp1077-1088
2088-8708
10.11591/ijece.v12i2.pp1077-1088
2722-2578
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9311
http://doi.org/10.11591/ijece.v12i2.pp1077-1088
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Electrical and Computer Engineering
dc.relation.references.spa.fl_str_mv [1] D. I. Stroe, V. Knap, M. Swierczynski, A. I. Stroe, and R. Teodorescu, “Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective,” IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 430–438, Jan. 2017, doi: 10.1109/TIA.2016.2616319.
[2] V. Knap, S. K. Chaudhary, D. I. Stroe, M. Swierczynski, B. I. Craciun, and R. Teodorescu, “Sizing of an energy storage system for grid inertial response and primary frequency reserve,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3447–3456, Sep. 2016, doi: 10.1109/TPWRS.2015.2503565.
[3] A. Benali, M. Khiat, and M. Denai, “Voltage profile and power quality improvement in photovoltaic farms integrated medium voltage grid using dynamic voltage restorer,” International Journal of Power Electronics and Drive Systems, vol. 11, no. 3, pp. 1481–1490, Sep. 2020, doi: 10.11591/ijpeds.v11.i3.pp1481-1490.
[4] K. H. Chalok, M. F. N. Tajuddin, T. Sudhakar Babu, S. Md Ayob, and T. Sutikno, “Optimal extraction of photovoltaic energy using fuzzy logic control for maximum power point tracking technique,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 3, Sep. 2020, Art. no. 1628, doi: 10.11591/ijpeds.v11.i3.pp1628-1639.
[5] L. Bougouffa and A. Chaghi, “Effect of renewable energy sources integration on the optimal coordination of directional overcurrent relays in distribution system,” International Journal of Applied Power Engineering (IJAPE), vol. 9, no. 3, Dec. 2020, Art. no. 250, doi: 10.11591/ijape.v9.i3.pp250-255.
[6] M. Dris and B. Djilani, “Hybrid system power generation’wind-photovoltaic’ connected to the electrical network 220 kV,” International Journal of Applied Power Engineering (IJAPE), vol. 7, no. 1, Apr. 2018, Art. no. 10, doi: 10.11591/ijape.v7.i1.pp10-17.
[7] H. Pandzic, Y. Wang, T. Qiu, Y. Dvorkin, and D. S. Kirschen, “Near-optimal method for siting and sizing of distributed storage in a transmission network,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2288–2300, Sep. 2015, doi: 10.1109/TPWRS.2014.2364257.
[8] V. Knap, R. Sinha, M. Swierczynski, D. I. Stroe, and S. Chaudhary, “Grid inertial response with Lithium-ion battery energy storage systems,” in IEEE International Symposium on Industrial Electronics, Jun. 2014, pp. 1817–1822, doi: 10.1109/ISIE.2014.6864891.
[9] V. Sousa, H. Hernández, E. C. Quispe, J. R. Gómez, and P. R. Viego, “Analysis of harmonic distortion generated by PWM motor drives,” 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), May 2017, pp. 1-6, doi: 10.1109/PEPQA.2017.7981644.
[10] S. A. Saleh, R. J. Meng, Z. G. Sanchez, O. A. Betancourt, and E. Ozkop, “The Selection of locations and sizes of battery storage systems using the principle component analysis and center-of-inertia,” 2019 IEEE Industry Applications Society Annual Meeting, 2019, pp. 1-10, doi: 10.1109/IAS.2019.8911980.
[11] S. A. Saleh, E. Ozkop, R. J. Meng, Z. G. Sanchez, and O. A. A. Betancourt, “Selecting locations and sizes of battery storage systems based on the frequency of the center of inertia and principle component analysis,” IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1040–1051, Mar. 2020, doi: 10.1109/TIA.2019.2960003.
[12] N. A. Shalash and Y. N. Lafta, “PSS/E based placement wind/PV hybrid system to improve stability of Iraqi grid,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 91–104, Feb. 2020, doi: 10.11591/ijece.v10i1.pp91-104.
[13] Y. M. Zhu, Y. Gong, and Z. G. Yang, “Failure analysis on over-temperature combustion of transformers in 4 MW offshore wind turbines,” Engineering Failure Analysis, vol. 96, pp. 211–222, Feb. 2019, doi: 10.1016/j.engfailanal.2018.10.005.
[14] W. Strielkowski, D. Streimikiene, A. Fomina, and E. Semenova, “Internet of energy (IoE) and high-renewables electricity system market design,” Energies, vol. 12, no. 24, Dec. 2019, Art. no. 4790, doi: 10.3390/en12244790.
[15] L. A. Trujillo Guajardo, A. Conde Enríquez, and Z. Leonowicz, “Error compensation in distance relays caused by wind power plants in the power grid,” Electric Power Systems Research, vol. 106, pp. 109–119, Jan. 2014, doi: 10.1016/j.epsr.2013.08.009.
[16] V. N. Coelho, M. Weiss Cohen, I. M. Coelho, N. Liu, and F. G. Guimarães, “Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids,” Applied Energy, vol. 187, pp. 820–832, Feb. 2017, doi: 10.1016/j.apenergy.2016.10.056.
[17] R. Ramakumar and P. Chiradeja, “Distributed generation and renewable energy systems,” in Proceedings of the Intersociety Energy Conversion Engineering Conference, 2002, pp. 716–724, doi: 10.1109/iecec.2002.1392136.
[18] Q. Zhao, Y. Shen, and M. Li, “Control and Bidding Strategy for virtual power plants with renewable generation and inelastic demand in electricity markets,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 562–575, Apr. 2016, doi: 10.1109/TSTE.2015.2504561.
[19] P. Mercier, R. Cherkaoui, and A. Oudalov, “Optimizing a battery energy storage system for frequency control application in an isolated power system,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1469–1477, Aug. 2009, doi: 10.1109/TPWRS.2009.2022997.
[20] G. Delille, B. François, and G. Malarange, “Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia,” IEEE Transactions on Sustainable Energy, vol. 3, no. 4, pp. 931–939, Oct. 2012, doi: 10.1109/TSTE.2012.2205025.
[21] X. Chen, W. Du, and H. F. Wang, “Power system angular stability as affected by the reduced inertia due to wind displacing synchronous generators,” in 2017 2nd International Conference on Power and Renewable Energy, ICPRE 2017, Sep. 2018, pp. 402–406, doi: 10.1109/ICPRE.2017.8390567.
[22] I. Egido et al., “Energy storage systems for frequency stability enhancement in small-isolated power systems,” Renewable Energy and Power Quality Journal, vol. 1, no. 13, pp. 820–825, Apr. 2015, doi: 10.24084/repqj13.002.
[23] J. Baba, “Stabilizing small island power system with renewables by use of power conditioning systems - Japanese island system case-,” in 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, May 2014, pp. 1849–1854, doi: 10.1109/IPEC.2014.6869836.
[24] H. T. Nguyen, G. Yang, A. H. Nielsen, and P. H. Jensen, “Frequency stability enhancement for low inertia systems using synthetic inertia of wind power,” in IEEE Power and Energy Society General Meeting, Jul. 2018, vol. 2018-January, pp. 1–5, doi: 10.1109/PESGM.2017.8274566.
[25] Z. G. Sanchez, J. A. G. C. Cruz, G. C. Sanchez, H. H. Herrera, and J. I. S. Ortega, “Voltage collapse point evaluation considering the load dependence in a power system stability problem,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 61–71, Feb. 2020, doi: 10.11591/ijece.v10i1.pp61-71.
[26] R. M. Larik, M. W. Mustafa, and M. K. Panjwani, “A statistical jacobian application for power system optimization of voltage stability,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 1, pp. 331–338, Jan. 2019, doi: 10.11591/ijeecs.v13.i1.pp331-338.
[27] J. P. Sridhar and R. Prakash, “Multi-objective whale optimization based minimization of loss, maximization of voltage stability considering cost of DG for optimal sizing and placement of DG,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 2, p. 835, Apr. 2019, doi: 10.11591/ijece.v9i2.pp835-839.
[28] P. Kundur et al., “Definition and classification of power system stability,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387–1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981.
[29] IRENA, "Transforming small-island power systems: Technical planning studies for the integration of variable renewables," Abu Dhabi: International Renewable Energy Agency (IRENA), 2018.
[30] L. Sigrist, E. Lobato, F. M. Echavarren, I. Egido, and L. Rouco, "Island power systems," CRC Press, 2016
dc.relation.citationendpage.spa.fl_str_mv 1088
dc.relation.citationstartpage.spa.fl_str_mv 1077
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 12
dc.rights.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
https://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute of Advanced Engineering and Science (IAES)
dc.publisher.place.spa.fl_str_mv Indonesia
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijece.iaescore.com/index.php/IJECE/article/view/24300
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d96e00db-6000-42af-96f0-74812a0ccaec/download
https://repositorio.cuc.edu.co/bitstreams/904e4326-5faf-4488-9e07-37e5b5998847/download
https://repositorio.cuc.edu.co/bitstreams/0e258bba-45f4-449c-a5b3-46b6e577808a/download
https://repositorio.cuc.edu.co/bitstreams/a9e6b2e8-d810-40f2-b090-26d067a541f7/download
bitstream.checksum.fl_str_mv 75b1ac684c6b4a418586a2534c375f05
e30e9215131d99561d40d6b0abbe9bad
3e212282d5a701cb3460737b28a986d3
42cc6381f47a5acc883d4e56bb9d886e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760701341958144
spelling Godoy Enciso, Richard MarinoGarcía Sánchez, ZaidHernández Herrera, HernánGonzalez Cueto Cruz, José AntonioSilva Ortega, Jorge Iván2022-06-29T12:39:51Z2022-06-29T12:39:51Z2021-11-10Arcia, M.G., Sanchez, Z.G., Hernandez Herrera, H., Cueto Cruz, J.A.G., Silva Ortega, J.I., Sánchez, G.C., 2022. Frequency response analysis under faults in weak power systems. International Journal of Electrical and Computer Engineering (IJECE) 12, 1077.. doi:10.11591/ijece.v12i2.pp1077-10882088-8708https://hdl.handle.net/11323/9311http://doi.org/10.11591/ijece.v12i2.pp1077-108810.11591/ijece.v12i2.pp1077-10882722-2578Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The renewable energy sources (RESs) projects are solutions with environmental benefits that are changing the traditional power system operation and concept. Transient stability analysis has opened new research trends to guarantee a secure operation high penetration. Problems such as frequency fluctuations, decoupling between generator angular speed, network frequency fluctuation and kinetic energy storing absence are the main non-conventional RESs penetration in power systems. This paper analyzes short-circuit influence on frequency response, focusing on weak distribution networks and isolated, to demonstrate relevance in frequency stability. A study case considered a generation outage and a load input to analyze frequency response. The paper compares frequency response during a generation outage with a short-circuit occurrence. In addition, modular value and angle generator terminal voltage affectation by electric arc and network ratio R⁄X, failure type influence in power delivered behavior, considering fault location, arc resistance and load. The arc resistance is defined as an added resistance that appears during failure and influences voltage modulus and angle value results showing that intermittent non-conventional RES participation can lead to frequency fluctuations. Results showed that arc resistance, type of failure, location and loadability determine the influence of frequency response factors in weak power systems.12 páginasapplication/pdfengInstitute of Advanced Engineering and Science (IAES)IndonesiaAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Frequency response analysis under faults in weak power systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://ijece.iaescore.com/index.php/IJECE/article/view/24300International Journal of Electrical and Computer Engineering[1] D. I. Stroe, V. Knap, M. Swierczynski, A. I. Stroe, and R. Teodorescu, “Operation of a grid-connected lithium-ion battery energy storage system for primary frequency regulation: A battery lifetime perspective,” IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 430–438, Jan. 2017, doi: 10.1109/TIA.2016.2616319.[2] V. Knap, S. K. Chaudhary, D. I. Stroe, M. Swierczynski, B. I. Craciun, and R. Teodorescu, “Sizing of an energy storage system for grid inertial response and primary frequency reserve,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3447–3456, Sep. 2016, doi: 10.1109/TPWRS.2015.2503565.[3] A. Benali, M. Khiat, and M. Denai, “Voltage profile and power quality improvement in photovoltaic farms integrated medium voltage grid using dynamic voltage restorer,” International Journal of Power Electronics and Drive Systems, vol. 11, no. 3, pp. 1481–1490, Sep. 2020, doi: 10.11591/ijpeds.v11.i3.pp1481-1490.[4] K. H. Chalok, M. F. N. Tajuddin, T. Sudhakar Babu, S. Md Ayob, and T. Sutikno, “Optimal extraction of photovoltaic energy using fuzzy logic control for maximum power point tracking technique,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 3, Sep. 2020, Art. no. 1628, doi: 10.11591/ijpeds.v11.i3.pp1628-1639.[5] L. Bougouffa and A. Chaghi, “Effect of renewable energy sources integration on the optimal coordination of directional overcurrent relays in distribution system,” International Journal of Applied Power Engineering (IJAPE), vol. 9, no. 3, Dec. 2020, Art. no. 250, doi: 10.11591/ijape.v9.i3.pp250-255.[6] M. Dris and B. Djilani, “Hybrid system power generation’wind-photovoltaic’ connected to the electrical network 220 kV,” International Journal of Applied Power Engineering (IJAPE), vol. 7, no. 1, Apr. 2018, Art. no. 10, doi: 10.11591/ijape.v7.i1.pp10-17.[7] H. Pandzic, Y. Wang, T. Qiu, Y. Dvorkin, and D. S. Kirschen, “Near-optimal method for siting and sizing of distributed storage in a transmission network,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2288–2300, Sep. 2015, doi: 10.1109/TPWRS.2014.2364257.[8] V. Knap, R. Sinha, M. Swierczynski, D. I. Stroe, and S. Chaudhary, “Grid inertial response with Lithium-ion battery energy storage systems,” in IEEE International Symposium on Industrial Electronics, Jun. 2014, pp. 1817–1822, doi: 10.1109/ISIE.2014.6864891.[9] V. Sousa, H. Hernández, E. C. Quispe, J. R. Gómez, and P. R. Viego, “Analysis of harmonic distortion generated by PWM motor drives,” 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), May 2017, pp. 1-6, doi: 10.1109/PEPQA.2017.7981644.[10] S. A. Saleh, R. J. Meng, Z. G. Sanchez, O. A. Betancourt, and E. Ozkop, “The Selection of locations and sizes of battery storage systems using the principle component analysis and center-of-inertia,” 2019 IEEE Industry Applications Society Annual Meeting, 2019, pp. 1-10, doi: 10.1109/IAS.2019.8911980.[11] S. A. Saleh, E. Ozkop, R. J. Meng, Z. G. Sanchez, and O. A. A. Betancourt, “Selecting locations and sizes of battery storage systems based on the frequency of the center of inertia and principle component analysis,” IEEE Transactions on Industry Applications, vol. 56, no. 2, pp. 1040–1051, Mar. 2020, doi: 10.1109/TIA.2019.2960003.[12] N. A. Shalash and Y. N. Lafta, “PSS/E based placement wind/PV hybrid system to improve stability of Iraqi grid,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 91–104, Feb. 2020, doi: 10.11591/ijece.v10i1.pp91-104.[13] Y. M. Zhu, Y. Gong, and Z. G. Yang, “Failure analysis on over-temperature combustion of transformers in 4 MW offshore wind turbines,” Engineering Failure Analysis, vol. 96, pp. 211–222, Feb. 2019, doi: 10.1016/j.engfailanal.2018.10.005.[14] W. Strielkowski, D. Streimikiene, A. Fomina, and E. Semenova, “Internet of energy (IoE) and high-renewables electricity system market design,” Energies, vol. 12, no. 24, Dec. 2019, Art. no. 4790, doi: 10.3390/en12244790.[15] L. A. Trujillo Guajardo, A. Conde Enríquez, and Z. Leonowicz, “Error compensation in distance relays caused by wind power plants in the power grid,” Electric Power Systems Research, vol. 106, pp. 109–119, Jan. 2014, doi: 10.1016/j.epsr.2013.08.009.[16] V. N. Coelho, M. Weiss Cohen, I. M. Coelho, N. Liu, and F. G. Guimarães, “Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids,” Applied Energy, vol. 187, pp. 820–832, Feb. 2017, doi: 10.1016/j.apenergy.2016.10.056.[17] R. Ramakumar and P. Chiradeja, “Distributed generation and renewable energy systems,” in Proceedings of the Intersociety Energy Conversion Engineering Conference, 2002, pp. 716–724, doi: 10.1109/iecec.2002.1392136.[18] Q. Zhao, Y. Shen, and M. Li, “Control and Bidding Strategy for virtual power plants with renewable generation and inelastic demand in electricity markets,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 562–575, Apr. 2016, doi: 10.1109/TSTE.2015.2504561.[19] P. Mercier, R. Cherkaoui, and A. Oudalov, “Optimizing a battery energy storage system for frequency control application in an isolated power system,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1469–1477, Aug. 2009, doi: 10.1109/TPWRS.2009.2022997.[20] G. Delille, B. François, and G. Malarange, “Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia,” IEEE Transactions on Sustainable Energy, vol. 3, no. 4, pp. 931–939, Oct. 2012, doi: 10.1109/TSTE.2012.2205025.[21] X. Chen, W. Du, and H. F. Wang, “Power system angular stability as affected by the reduced inertia due to wind displacing synchronous generators,” in 2017 2nd International Conference on Power and Renewable Energy, ICPRE 2017, Sep. 2018, pp. 402–406, doi: 10.1109/ICPRE.2017.8390567.[22] I. Egido et al., “Energy storage systems for frequency stability enhancement in small-isolated power systems,” Renewable Energy and Power Quality Journal, vol. 1, no. 13, pp. 820–825, Apr. 2015, doi: 10.24084/repqj13.002.[23] J. Baba, “Stabilizing small island power system with renewables by use of power conditioning systems - Japanese island system case-,” in 2014 International Power Electronics Conference, IPEC-Hiroshima - ECCE Asia 2014, May 2014, pp. 1849–1854, doi: 10.1109/IPEC.2014.6869836.[24] H. T. Nguyen, G. Yang, A. H. Nielsen, and P. H. Jensen, “Frequency stability enhancement for low inertia systems using synthetic inertia of wind power,” in IEEE Power and Energy Society General Meeting, Jul. 2018, vol. 2018-January, pp. 1–5, doi: 10.1109/PESGM.2017.8274566.[25] Z. G. Sanchez, J. A. G. C. Cruz, G. C. Sanchez, H. H. Herrera, and J. I. S. Ortega, “Voltage collapse point evaluation considering the load dependence in a power system stability problem,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 61–71, Feb. 2020, doi: 10.11591/ijece.v10i1.pp61-71.[26] R. M. Larik, M. W. Mustafa, and M. K. Panjwani, “A statistical jacobian application for power system optimization of voltage stability,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 1, pp. 331–338, Jan. 2019, doi: 10.11591/ijeecs.v13.i1.pp331-338.[27] J. P. Sridhar and R. Prakash, “Multi-objective whale optimization based minimization of loss, maximization of voltage stability considering cost of DG for optimal sizing and placement of DG,” International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 2, p. 835, Apr. 2019, doi: 10.11591/ijece.v9i2.pp835-839.[28] P. Kundur et al., “Definition and classification of power system stability,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387–1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981.[29] IRENA, "Transforming small-island power systems: Technical planning studies for the integration of variable renewables," Abu Dhabi: International Renewable Energy Agency (IRENA), 2018.[30] L. Sigrist, E. Lobato, F. M. Echavarren, I. Egido, and L. Rouco, "Island power systems," CRC Press, 201610881077212Frequency fluctuationsFrequency responseIsolate power systemsRenewable energy sources penetrationWeak distribution networksPublicationORIGINALFrequency response analysis under faults in weak power.pdfFrequency response analysis under faults in weak power.pdfapplication/pdf749418https://repositorio.cuc.edu.co/bitstreams/d96e00db-6000-42af-96f0-74812a0ccaec/download75b1ac684c6b4a418586a2534c375f05MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/904e4326-5faf-4488-9e07-37e5b5998847/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTFrequency response analysis under faults in weak power.pdf.txtFrequency response analysis under faults in weak power.pdf.txttext/plain40939https://repositorio.cuc.edu.co/bitstreams/0e258bba-45f4-449c-a5b3-46b6e577808a/download3e212282d5a701cb3460737b28a986d3MD53THUMBNAILFrequency response analysis under faults in weak power.pdf.jpgFrequency response analysis under faults in weak power.pdf.jpgimage/jpeg13564https://repositorio.cuc.edu.co/bitstreams/a9e6b2e8-d810-40f2-b090-26d067a541f7/download42cc6381f47a5acc883d4e56bb9d886eMD5411323/9311oai:repositorio.cuc.edu.co:11323/93112024-09-17 10:18:03.409https://creativecommons.org/licenses/by-sa/4.0/Atribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==