Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots

Extreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cort...

Full description

Autores:
Hormeño-Holgadoa, Alberto J.
Clemente Suárez, Vicente Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4788
Acceso en línea:
https://hdl.handle.net/11323/4788
https://repositorio.cuc.edu.co/
Palabra clave:
Autonomic modulation
Cortical arousal
Fighter aircraft
Anxiety
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_37326ef712424d5503878b00eb8f5777
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4788
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
title Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
spellingShingle Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
Autonomic modulation
Cortical arousal
Fighter aircraft
Anxiety
title_short Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
title_full Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
title_fullStr Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
title_full_unstemmed Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
title_sort Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
dc.creator.fl_str_mv Hormeño-Holgadoa, Alberto J.
Clemente Suárez, Vicente Javier
dc.contributor.author.spa.fl_str_mv Hormeño-Holgadoa, Alberto J.
Clemente Suárez, Vicente Javier
dc.subject.spa.fl_str_mv Autonomic modulation
Cortical arousal
Fighter aircraft
Anxiety
topic Autonomic modulation
Cortical arousal
Fighter aircraft
Anxiety
description Extreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cortical activation, memory and psychological variables. The defensive manoeuvre produced a significative decrease in forced vital capacity from spirometry and USG post flight, a moderate effect in the decrease in cognitive anxiety and an increase in leg strength. A significant increase in mean HR and an increase with a large effect size was reported for Stress Subjective Perception and Rating of Perceived Exertion in both manoeuvres. With this data we can conclude that high level of physical fitness and specific training programs should be applied to fighter pilots.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-05T13:12:05Z
dc.date.available.none.fl_str_mv 2019-06-05T13:12:05Z
dc.date.issued.none.fl_str_mv 2019-05-23
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4788
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/4788
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.1016/j.physbeh.2019.112559
dc.relation.references.spa.fl_str_mv [1] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of parachute jump in the psychophysiological response of soldiers in urban combat, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0749-9. [2] V.J. Clemente-Suárez, J.J. Robles-Pérez, Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat, J. Strength Cond. Res. 27 (2013) 2420–2426. [3] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Assessment of psychophysiological response and specific fine motor skills in combat units, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0922-9. [4] M.W. Linakis, K.M. Job, X. Liu, et al., Riding (high) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces, Expert Opin. Drug Metab. Toxicol. 13 (2017) 925–934, https://doi.org/10.1080/17425255.2017.1360867. [5] C. Lundby, J.A.L. Calbet, M. Sander, et al., Exercise economy does not change after acclimatization to moderate to very high altitude, Scand. J. Med. Sci. Sports 17 (2007) 281–291, https://doi.org/10.1111/j.1600-0838.2006.00530.x. [6] International Civil Aviation Organization I, Manual of Civil Aviation Medicine, (2012). [7] F.A. Petrassi, P.D. Hodkinson, P.L. Walters, S.J. Gaydos, Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Sp Environ. Med. 83 (2012) 975–984, https://doi.org/10.3357/ASEM.3315.2012. [8] C. Neuhaus, J. Hinkelbein, Cognitive responses to hypobaric hypoxia: implications for aviation training, Psychol. Res. Behav. Manag. 7 (2014) 297–302, https://doi. org/10.2147/PRBM.S51844. [9] C.A. Rickards, D.G. Newman, G-induced visual and cognitive disturbances in a survey of 65 operational fighter pilots, Aviat. Sp. Environ. Med. 76 (2005) 496–500. [10] S. Guardiera, O. Bock, H. Pongratz, W. Krause, Acceleration effects on manual performance with isometric and displacement joysticks, Aviat. Sp Environ. Med. 78 (2007) 990–994, https://doi.org/10.3357/ASEM.2054.2007. [11] N.D.C. Green, L. Brown, Head positioning and neck muscle activation during air combat, Aviat. Sp Environ. Med. 75 (2004) 676–680. [12] E.M. Chumbley, A. Stolfi, J.C. McEachen, Risk factors for cervical pain in F-15C pilots, Aerosp. Med. Hum. Perform. 88 (2017) 1000–1007, https://doi.org/10. 3357/AMHP.4848.2017. [13] T. Honkanen, J. Oksa, M.J. Mäntysaari, et al., Neck and shoulder muscle activation among experienced and inexperienced pilots in +Gz exposure, Aerosp. Med. Hum. Perform. 88 (2017) 90–95, https://doi.org/10.3357/AMHP.4659.2017. [14] W.A. Bateman, I. Jacobs, F. Buick, Physical conditioning to enhance +Gz tolerance: issues and current understanding, Aviat. Sp. Environ. Med. 77 (2006) 573–580. [15] E. Slungaard, J. McLeod, N.D.C. Green, et al., Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal air Force, Aerosp. Med. Hum. Perform. 88 (2017) 550–555, https://doi.org/10.3357/AMHP.4752.2017. [16] M. Murray, B. Lange, B.R. Nørnberg, et al., Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol, BMC Musculoskelet. Disord. 16 (2015) 1–11, https://doi.org/10.1186/s12891-015-0655-6. [17] M. Alricsson, K. Harms-Ringdahl, K. Schüldt, et al., Mobility, muscular strength and endurance in the cervical spine in Swedish air force pilots, Aviat. Sp Environ. Med. 72 (2001) 336–342. [18] V.J. Clemente-Suárez, R. Delgado-Moreno, B. González, et al., Amateur endurance triathletes' performance is improved independently of volume or intensity based training, Physiol. Behav. (2018), https://doi.org/10.1016/j.physbeh.2018.04.014. [19] L. Armstrong, J. Soto, F.J. Hacker, et al., Urinary indices during dehydration, exercise and rehydration, Occup. Heal. Ind. Med. 8 (1998) 345–355. [20] P. Belinchon-deMiguel, V.J. Clemente-Suárez, Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an Ultraendurance Mountain race, J. Med. Syst. 42 (2018), https://doi.org/10.1007/ s10916-017-0889-y. [21] R.H. Cox, M.P. Martens, W.D. Russell, Measuring anxiety in athletics: the revised competitive state anxiety inventory–2, J. Sport. Exerc. Psychol. 25 (2003) 519–533, https://doi.org/10.1123/jsep.25.4.519. [22] R. Delgado-Moreno, J.J. Robles-Pérez, V.J. Clemente-Suárez, Combat stress decreases memory of Warfighters in action, J. Med. Syst. 41 (2017) 1–7, https://doi. org/10.1007/s10916-017-0772-x. [23] J.W. Newcomer, S. Craft, T. Hershey, et al., Glucocorticoid-induced impairment in declarative memory performance in adult humans, J. Neurosci. 14 (1994) 2047–2053, https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994. [24] V.J. Clemente-Suárez, R.J. Fernandes, J.J. Arroyo-Toledo, et al., Autonomic adaptation after traditional and reverse swimming training periodizations, Acta Physiol. Hung. 102 (2015) 105–113, https://doi.org/10.1556/APhysiol.102.2015.1.11. [25] A. Bustamante-Sánchez, V.M. Loarte-Herradón, J.F. Gallego-Saiz, et al., Psychophysiological response of fighter aircraft pilots in normobaric hypoxia training, Arch. Med. Del. Deport. 35 (2018) 99–102, https://doi.org/10.1080/ 00140139.2018.1510541. [26] O. Truszczyński, M. Wojtkowiak, M. Biernacki, K. Kowalczuk, The effect of hypoxia on the critical flicker fusion threshold in pilots, Int. J. Occup. Med. Environ. Health 22 (2009) 13–18, https://doi.org/10.2478/v10001-009-0002-y. [27] D.E. Vigo, S. Pérez Lloret, A.J. Videla, et al., Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude, Wilderness Environ Med. 21 (2010) 4–10, https://doi.org/10.1016/j.wem.2009.12.022. [28] V.J.C. Suárez, J.J.R. Pérez, Análisis de los marcadores fisiológicos, activación cortical y manifestaciones de la fuerza en una situación simulada de combate, Arch. Med. Del. Deport. 29 (2012) 680–686. [29] V.J. Clemente-Suarez, J.J. Robles-Perez, Psycho-physiological response of soldiers in urban combat, An Psicol. 29 (2013) 598–603, https://doi.org/10.6018/analesps. 29.2.150691. [30] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of combat stress in the psychophysiological response of elite and non-elite soldiers, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0748-x. [31] V.J. Clemente-Suárez, Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event, Appl. Physiol. Nutr. Metab. 40 (2015) 269–273, https://doi.org/10.1139/apnm-2014-0263. [32] Y. Barak, D. David, S. Akselrod, Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate, Comput. Cardiol. 26 (1999) 627–630, https://doi.org/10.1109/CIC. 1999.826049 Cat No99CH37004. [33] B. Sandín, El estrés : un análisis basado en el papel de los factores sociales, IJCHP 3 (2003) 141–157. [34] M. Diaz-Manzano, J.J. Robles-Pérez, K. Herrera-Mendoza, et al., Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0945-2. [35] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Use of psychophysiological portable devices to analyse stress response in different experienced soldiers, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0929-2. [36] V.J. Clemente-Suárez, R. de la Vega, J.J. Robles-Pérez, et al., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump, Int. J. Psychophysiol. 110 (2016) 212–216, https://doi.org/10. 1016/j.ijpsycho.2016.07.502. [37] V.J. Clemente-Suárez, J.J. Robles-Pérez, J. Fernández-Lucas, Psychophysiological response in parachute jumps, the effect of experience and type of jump, Physiol. Behav. 179 (2017) 178–183, https://doi.org/10.1016/j.physbeh.2017.06.006.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/94d47944-0ec1-4cd2-9feb-3c7c51f7f8ce/download
https://repositorio.cuc.edu.co/bitstreams/9a31ef75-2ffd-4241-8cf4-7557d0dfaf1d/download
https://repositorio.cuc.edu.co/bitstreams/f147079d-d070-42f0-bf6c-a979ea9e6f04/download
https://repositorio.cuc.edu.co/bitstreams/86964e03-0342-4562-a9ef-503049af4cde/download
https://repositorio.cuc.edu.co/bitstreams/e758fb7e-d4c1-42d3-8658-96b24f102689/download
bitstream.checksum.fl_str_mv 747633678d893102eac72877306b8d26
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
d2a01a2aa7b32359584924e29512e73f
f168023ad03d44440ca4ec87ffcade95
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760824254988288
spelling Hormeño-Holgadoa, Alberto J.Clemente Suárez, Vicente Javier2019-06-05T13:12:05Z2019-06-05T13:12:05Z2019-05-23https://hdl.handle.net/11323/4788Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Extreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cortical activation, memory and psychological variables. The defensive manoeuvre produced a significative decrease in forced vital capacity from spirometry and USG post flight, a moderate effect in the decrease in cognitive anxiety and an increase in leg strength. A significant increase in mean HR and an increase with a large effect size was reported for Stress Subjective Perception and Rating of Perceived Exertion in both manoeuvres. With this data we can conclude that high level of physical fitness and specific training programs should be applied to fighter pilots.Hormeño-Holgadoa, Alberto J.-8e64216e-117c-46b2-b7cf-0429f4059d84-0Clemente Suárez, Vicente Javier-0000-0002-2397-2801-600engUniversidad de la Costahttps://doi.org/10.1016/j.physbeh.2019.112559[1] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of parachute jump in the psychophysiological response of soldiers in urban combat, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0749-9. [2] V.J. Clemente-Suárez, J.J. Robles-Pérez, Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat, J. Strength Cond. Res. 27 (2013) 2420–2426. [3] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Assessment of psychophysiological response and specific fine motor skills in combat units, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0922-9. [4] M.W. Linakis, K.M. Job, X. Liu, et al., Riding (high) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces, Expert Opin. Drug Metab. Toxicol. 13 (2017) 925–934, https://doi.org/10.1080/17425255.2017.1360867. [5] C. Lundby, J.A.L. Calbet, M. Sander, et al., Exercise economy does not change after acclimatization to moderate to very high altitude, Scand. J. Med. Sci. Sports 17 (2007) 281–291, https://doi.org/10.1111/j.1600-0838.2006.00530.x. [6] International Civil Aviation Organization I, Manual of Civil Aviation Medicine, (2012). [7] F.A. Petrassi, P.D. Hodkinson, P.L. Walters, S.J. Gaydos, Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Sp Environ. Med. 83 (2012) 975–984, https://doi.org/10.3357/ASEM.3315.2012. [8] C. Neuhaus, J. Hinkelbein, Cognitive responses to hypobaric hypoxia: implications for aviation training, Psychol. Res. Behav. Manag. 7 (2014) 297–302, https://doi. org/10.2147/PRBM.S51844. [9] C.A. Rickards, D.G. Newman, G-induced visual and cognitive disturbances in a survey of 65 operational fighter pilots, Aviat. Sp. Environ. Med. 76 (2005) 496–500. [10] S. Guardiera, O. Bock, H. Pongratz, W. Krause, Acceleration effects on manual performance with isometric and displacement joysticks, Aviat. Sp Environ. Med. 78 (2007) 990–994, https://doi.org/10.3357/ASEM.2054.2007. [11] N.D.C. Green, L. Brown, Head positioning and neck muscle activation during air combat, Aviat. Sp Environ. Med. 75 (2004) 676–680. [12] E.M. Chumbley, A. Stolfi, J.C. McEachen, Risk factors for cervical pain in F-15C pilots, Aerosp. Med. Hum. Perform. 88 (2017) 1000–1007, https://doi.org/10. 3357/AMHP.4848.2017. [13] T. Honkanen, J. Oksa, M.J. Mäntysaari, et al., Neck and shoulder muscle activation among experienced and inexperienced pilots in +Gz exposure, Aerosp. Med. Hum. Perform. 88 (2017) 90–95, https://doi.org/10.3357/AMHP.4659.2017. [14] W.A. Bateman, I. Jacobs, F. Buick, Physical conditioning to enhance +Gz tolerance: issues and current understanding, Aviat. Sp. Environ. Med. 77 (2006) 573–580. [15] E. Slungaard, J. McLeod, N.D.C. Green, et al., Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal air Force, Aerosp. Med. Hum. Perform. 88 (2017) 550–555, https://doi.org/10.3357/AMHP.4752.2017. [16] M. Murray, B. Lange, B.R. Nørnberg, et al., Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol, BMC Musculoskelet. Disord. 16 (2015) 1–11, https://doi.org/10.1186/s12891-015-0655-6. [17] M. Alricsson, K. Harms-Ringdahl, K. Schüldt, et al., Mobility, muscular strength and endurance in the cervical spine in Swedish air force pilots, Aviat. Sp Environ. Med. 72 (2001) 336–342. [18] V.J. Clemente-Suárez, R. Delgado-Moreno, B. González, et al., Amateur endurance triathletes' performance is improved independently of volume or intensity based training, Physiol. Behav. (2018), https://doi.org/10.1016/j.physbeh.2018.04.014. [19] L. Armstrong, J. Soto, F.J. Hacker, et al., Urinary indices during dehydration, exercise and rehydration, Occup. Heal. Ind. Med. 8 (1998) 345–355. [20] P. Belinchon-deMiguel, V.J. Clemente-Suárez, Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an Ultraendurance Mountain race, J. Med. Syst. 42 (2018), https://doi.org/10.1007/ s10916-017-0889-y. [21] R.H. Cox, M.P. Martens, W.D. Russell, Measuring anxiety in athletics: the revised competitive state anxiety inventory–2, J. Sport. Exerc. Psychol. 25 (2003) 519–533, https://doi.org/10.1123/jsep.25.4.519. [22] R. Delgado-Moreno, J.J. Robles-Pérez, V.J. Clemente-Suárez, Combat stress decreases memory of Warfighters in action, J. Med. Syst. 41 (2017) 1–7, https://doi. org/10.1007/s10916-017-0772-x. [23] J.W. Newcomer, S. Craft, T. Hershey, et al., Glucocorticoid-induced impairment in declarative memory performance in adult humans, J. Neurosci. 14 (1994) 2047–2053, https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994. [24] V.J. Clemente-Suárez, R.J. Fernandes, J.J. Arroyo-Toledo, et al., Autonomic adaptation after traditional and reverse swimming training periodizations, Acta Physiol. Hung. 102 (2015) 105–113, https://doi.org/10.1556/APhysiol.102.2015.1.11. [25] A. Bustamante-Sánchez, V.M. Loarte-Herradón, J.F. Gallego-Saiz, et al., Psychophysiological response of fighter aircraft pilots in normobaric hypoxia training, Arch. Med. Del. Deport. 35 (2018) 99–102, https://doi.org/10.1080/ 00140139.2018.1510541. [26] O. Truszczyński, M. Wojtkowiak, M. Biernacki, K. Kowalczuk, The effect of hypoxia on the critical flicker fusion threshold in pilots, Int. J. Occup. Med. Environ. Health 22 (2009) 13–18, https://doi.org/10.2478/v10001-009-0002-y. [27] D.E. Vigo, S. Pérez Lloret, A.J. Videla, et al., Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude, Wilderness Environ Med. 21 (2010) 4–10, https://doi.org/10.1016/j.wem.2009.12.022. [28] V.J.C. Suárez, J.J.R. Pérez, Análisis de los marcadores fisiológicos, activación cortical y manifestaciones de la fuerza en una situación simulada de combate, Arch. Med. Del. Deport. 29 (2012) 680–686. [29] V.J. Clemente-Suarez, J.J. Robles-Perez, Psycho-physiological response of soldiers in urban combat, An Psicol. 29 (2013) 598–603, https://doi.org/10.6018/analesps. 29.2.150691. [30] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of combat stress in the psychophysiological response of elite and non-elite soldiers, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0748-x. [31] V.J. Clemente-Suárez, Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event, Appl. Physiol. Nutr. Metab. 40 (2015) 269–273, https://doi.org/10.1139/apnm-2014-0263. [32] Y. Barak, D. David, S. Akselrod, Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate, Comput. Cardiol. 26 (1999) 627–630, https://doi.org/10.1109/CIC. 1999.826049 Cat No99CH37004. [33] B. Sandín, El estrés : un análisis basado en el papel de los factores sociales, IJCHP 3 (2003) 141–157. [34] M. Diaz-Manzano, J.J. Robles-Pérez, K. Herrera-Mendoza, et al., Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0945-2. [35] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Use of psychophysiological portable devices to analyse stress response in different experienced soldiers, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0929-2. [36] V.J. Clemente-Suárez, R. de la Vega, J.J. Robles-Pérez, et al., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump, Int. J. Psychophysiol. 110 (2016) 212–216, https://doi.org/10. 1016/j.ijpsycho.2016.07.502. [37] V.J. Clemente-Suárez, J.J. Robles-Pérez, J. Fernández-Lucas, Psychophysiological response in parachute jumps, the effect of experience and type of jump, Physiol. Behav. 179 (2017) 178–183, https://doi.org/10.1016/j.physbeh.2017.06.006.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Autonomic modulationCortical arousalFighter aircraftAnxietyEffect of different combat jet manoeuvres in the psychophysiological response of professional pilotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdfEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdfapplication/pdf5839https://repositorio.cuc.edu.co/bitstreams/94d47944-0ec1-4cd2-9feb-3c7c51f7f8ce/download747633678d893102eac72877306b8d26MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9a31ef75-2ffd-4241-8cf4-7557d0dfaf1d/download42fd4ad1e89814f5e4a476b409eb708cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f147079d-d070-42f0-bf6c-a979ea9e6f04/download8a4605be74aa9ea9d79846c1fba20a33MD56THUMBNAILEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.jpgEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.jpgimage/jpeg36134https://repositorio.cuc.edu.co/bitstreams/86964e03-0342-4562-a9ef-503049af4cde/downloadd2a01a2aa7b32359584924e29512e73fMD58TEXTEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.txtEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.txttext/plain1141https://repositorio.cuc.edu.co/bitstreams/e758fb7e-d4c1-42d3-8658-96b24f102689/downloadf168023ad03d44440ca4ec87ffcade95MD5911323/4788oai:repositorio.cuc.edu.co:11323/47882024-09-17 14:05:40.314http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=