Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots
Extreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cort...
- Autores:
-
Hormeño-Holgadoa, Alberto J.
Clemente Suárez, Vicente Javier
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4788
- Acceso en línea:
- https://hdl.handle.net/11323/4788
https://repositorio.cuc.edu.co/
- Palabra clave:
- Autonomic modulation
Cortical arousal
Fighter aircraft
Anxiety
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_37326ef712424d5503878b00eb8f5777 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4788 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
title |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
spellingShingle |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots Autonomic modulation Cortical arousal Fighter aircraft Anxiety |
title_short |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
title_full |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
title_fullStr |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
title_full_unstemmed |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
title_sort |
Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots |
dc.creator.fl_str_mv |
Hormeño-Holgadoa, Alberto J. Clemente Suárez, Vicente Javier |
dc.contributor.author.spa.fl_str_mv |
Hormeño-Holgadoa, Alberto J. Clemente Suárez, Vicente Javier |
dc.subject.spa.fl_str_mv |
Autonomic modulation Cortical arousal Fighter aircraft Anxiety |
topic |
Autonomic modulation Cortical arousal Fighter aircraft Anxiety |
description |
Extreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cortical activation, memory and psychological variables. The defensive manoeuvre produced a significative decrease in forced vital capacity from spirometry and USG post flight, a moderate effect in the decrease in cognitive anxiety and an increase in leg strength. A significant increase in mean HR and an increase with a large effect size was reported for Stress Subjective Perception and Rating of Perceived Exertion in both manoeuvres. With this data we can conclude that high level of physical fitness and specific training programs should be applied to fighter pilots. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-06-05T13:12:05Z |
dc.date.available.none.fl_str_mv |
2019-06-05T13:12:05Z |
dc.date.issued.none.fl_str_mv |
2019-05-23 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4788 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/4788 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1016/j.physbeh.2019.112559 |
dc.relation.references.spa.fl_str_mv |
[1] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of parachute jump in the psychophysiological response of soldiers in urban combat, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0749-9. [2] V.J. Clemente-Suárez, J.J. Robles-Pérez, Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat, J. Strength Cond. Res. 27 (2013) 2420–2426. [3] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Assessment of psychophysiological response and specific fine motor skills in combat units, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0922-9. [4] M.W. Linakis, K.M. Job, X. Liu, et al., Riding (high) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces, Expert Opin. Drug Metab. Toxicol. 13 (2017) 925–934, https://doi.org/10.1080/17425255.2017.1360867. [5] C. Lundby, J.A.L. Calbet, M. Sander, et al., Exercise economy does not change after acclimatization to moderate to very high altitude, Scand. J. Med. Sci. Sports 17 (2007) 281–291, https://doi.org/10.1111/j.1600-0838.2006.00530.x. [6] International Civil Aviation Organization I, Manual of Civil Aviation Medicine, (2012). [7] F.A. Petrassi, P.D. Hodkinson, P.L. Walters, S.J. Gaydos, Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Sp Environ. Med. 83 (2012) 975–984, https://doi.org/10.3357/ASEM.3315.2012. [8] C. Neuhaus, J. Hinkelbein, Cognitive responses to hypobaric hypoxia: implications for aviation training, Psychol. Res. Behav. Manag. 7 (2014) 297–302, https://doi. org/10.2147/PRBM.S51844. [9] C.A. Rickards, D.G. Newman, G-induced visual and cognitive disturbances in a survey of 65 operational fighter pilots, Aviat. Sp. Environ. Med. 76 (2005) 496–500. [10] S. Guardiera, O. Bock, H. Pongratz, W. Krause, Acceleration effects on manual performance with isometric and displacement joysticks, Aviat. Sp Environ. Med. 78 (2007) 990–994, https://doi.org/10.3357/ASEM.2054.2007. [11] N.D.C. Green, L. Brown, Head positioning and neck muscle activation during air combat, Aviat. Sp Environ. Med. 75 (2004) 676–680. [12] E.M. Chumbley, A. Stolfi, J.C. McEachen, Risk factors for cervical pain in F-15C pilots, Aerosp. Med. Hum. Perform. 88 (2017) 1000–1007, https://doi.org/10. 3357/AMHP.4848.2017. [13] T. Honkanen, J. Oksa, M.J. Mäntysaari, et al., Neck and shoulder muscle activation among experienced and inexperienced pilots in +Gz exposure, Aerosp. Med. Hum. Perform. 88 (2017) 90–95, https://doi.org/10.3357/AMHP.4659.2017. [14] W.A. Bateman, I. Jacobs, F. Buick, Physical conditioning to enhance +Gz tolerance: issues and current understanding, Aviat. Sp. Environ. Med. 77 (2006) 573–580. [15] E. Slungaard, J. McLeod, N.D.C. Green, et al., Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal air Force, Aerosp. Med. Hum. Perform. 88 (2017) 550–555, https://doi.org/10.3357/AMHP.4752.2017. [16] M. Murray, B. Lange, B.R. Nørnberg, et al., Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol, BMC Musculoskelet. Disord. 16 (2015) 1–11, https://doi.org/10.1186/s12891-015-0655-6. [17] M. Alricsson, K. Harms-Ringdahl, K. Schüldt, et al., Mobility, muscular strength and endurance in the cervical spine in Swedish air force pilots, Aviat. Sp Environ. Med. 72 (2001) 336–342. [18] V.J. Clemente-Suárez, R. Delgado-Moreno, B. González, et al., Amateur endurance triathletes' performance is improved independently of volume or intensity based training, Physiol. Behav. (2018), https://doi.org/10.1016/j.physbeh.2018.04.014. [19] L. Armstrong, J. Soto, F.J. Hacker, et al., Urinary indices during dehydration, exercise and rehydration, Occup. Heal. Ind. Med. 8 (1998) 345–355. [20] P. Belinchon-deMiguel, V.J. Clemente-Suárez, Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an Ultraendurance Mountain race, J. Med. Syst. 42 (2018), https://doi.org/10.1007/ s10916-017-0889-y. [21] R.H. Cox, M.P. Martens, W.D. Russell, Measuring anxiety in athletics: the revised competitive state anxiety inventory–2, J. Sport. Exerc. Psychol. 25 (2003) 519–533, https://doi.org/10.1123/jsep.25.4.519. [22] R. Delgado-Moreno, J.J. Robles-Pérez, V.J. Clemente-Suárez, Combat stress decreases memory of Warfighters in action, J. Med. Syst. 41 (2017) 1–7, https://doi. org/10.1007/s10916-017-0772-x. [23] J.W. Newcomer, S. Craft, T. Hershey, et al., Glucocorticoid-induced impairment in declarative memory performance in adult humans, J. Neurosci. 14 (1994) 2047–2053, https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994. [24] V.J. Clemente-Suárez, R.J. Fernandes, J.J. Arroyo-Toledo, et al., Autonomic adaptation after traditional and reverse swimming training periodizations, Acta Physiol. Hung. 102 (2015) 105–113, https://doi.org/10.1556/APhysiol.102.2015.1.11. [25] A. Bustamante-Sánchez, V.M. Loarte-Herradón, J.F. Gallego-Saiz, et al., Psychophysiological response of fighter aircraft pilots in normobaric hypoxia training, Arch. Med. Del. Deport. 35 (2018) 99–102, https://doi.org/10.1080/ 00140139.2018.1510541. [26] O. Truszczyński, M. Wojtkowiak, M. Biernacki, K. Kowalczuk, The effect of hypoxia on the critical flicker fusion threshold in pilots, Int. J. Occup. Med. Environ. Health 22 (2009) 13–18, https://doi.org/10.2478/v10001-009-0002-y. [27] D.E. Vigo, S. Pérez Lloret, A.J. Videla, et al., Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude, Wilderness Environ Med. 21 (2010) 4–10, https://doi.org/10.1016/j.wem.2009.12.022. [28] V.J.C. Suárez, J.J.R. Pérez, Análisis de los marcadores fisiológicos, activación cortical y manifestaciones de la fuerza en una situación simulada de combate, Arch. Med. Del. Deport. 29 (2012) 680–686. [29] V.J. Clemente-Suarez, J.J. Robles-Perez, Psycho-physiological response of soldiers in urban combat, An Psicol. 29 (2013) 598–603, https://doi.org/10.6018/analesps. 29.2.150691. [30] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of combat stress in the psychophysiological response of elite and non-elite soldiers, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0748-x. [31] V.J. Clemente-Suárez, Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event, Appl. Physiol. Nutr. Metab. 40 (2015) 269–273, https://doi.org/10.1139/apnm-2014-0263. [32] Y. Barak, D. David, S. Akselrod, Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate, Comput. Cardiol. 26 (1999) 627–630, https://doi.org/10.1109/CIC. 1999.826049 Cat No99CH37004. [33] B. Sandín, El estrés : un análisis basado en el papel de los factores sociales, IJCHP 3 (2003) 141–157. [34] M. Diaz-Manzano, J.J. Robles-Pérez, K. Herrera-Mendoza, et al., Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0945-2. [35] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Use of psychophysiological portable devices to analyse stress response in different experienced soldiers, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0929-2. [36] V.J. Clemente-Suárez, R. de la Vega, J.J. Robles-Pérez, et al., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump, Int. J. Psychophysiol. 110 (2016) 212–216, https://doi.org/10. 1016/j.ijpsycho.2016.07.502. [37] V.J. Clemente-Suárez, J.J. Robles-Pérez, J. Fernández-Lucas, Psychophysiological response in parachute jumps, the effect of experience and type of jump, Physiol. Behav. 179 (2017) 178–183, https://doi.org/10.1016/j.physbeh.2017.06.006. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/94d47944-0ec1-4cd2-9feb-3c7c51f7f8ce/download https://repositorio.cuc.edu.co/bitstreams/9a31ef75-2ffd-4241-8cf4-7557d0dfaf1d/download https://repositorio.cuc.edu.co/bitstreams/f147079d-d070-42f0-bf6c-a979ea9e6f04/download https://repositorio.cuc.edu.co/bitstreams/86964e03-0342-4562-a9ef-503049af4cde/download https://repositorio.cuc.edu.co/bitstreams/e758fb7e-d4c1-42d3-8658-96b24f102689/download |
bitstream.checksum.fl_str_mv |
747633678d893102eac72877306b8d26 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 d2a01a2aa7b32359584924e29512e73f f168023ad03d44440ca4ec87ffcade95 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760824254988288 |
spelling |
Hormeño-Holgadoa, Alberto J.Clemente Suárez, Vicente Javier2019-06-05T13:12:05Z2019-06-05T13:12:05Z2019-05-23https://hdl.handle.net/11323/4788Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Extreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cortical activation, memory and psychological variables. The defensive manoeuvre produced a significative decrease in forced vital capacity from spirometry and USG post flight, a moderate effect in the decrease in cognitive anxiety and an increase in leg strength. A significant increase in mean HR and an increase with a large effect size was reported for Stress Subjective Perception and Rating of Perceived Exertion in both manoeuvres. With this data we can conclude that high level of physical fitness and specific training programs should be applied to fighter pilots.Hormeño-Holgadoa, Alberto J.-8e64216e-117c-46b2-b7cf-0429f4059d84-0Clemente Suárez, Vicente Javier-0000-0002-2397-2801-600engUniversidad de la Costahttps://doi.org/10.1016/j.physbeh.2019.112559[1] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of parachute jump in the psychophysiological response of soldiers in urban combat, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0749-9. [2] V.J. Clemente-Suárez, J.J. Robles-Pérez, Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat, J. Strength Cond. Res. 27 (2013) 2420–2426. [3] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Assessment of psychophysiological response and specific fine motor skills in combat units, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0922-9. [4] M.W. Linakis, K.M. Job, X. Liu, et al., Riding (high) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces, Expert Opin. Drug Metab. Toxicol. 13 (2017) 925–934, https://doi.org/10.1080/17425255.2017.1360867. [5] C. Lundby, J.A.L. Calbet, M. Sander, et al., Exercise economy does not change after acclimatization to moderate to very high altitude, Scand. J. Med. Sci. Sports 17 (2007) 281–291, https://doi.org/10.1111/j.1600-0838.2006.00530.x. [6] International Civil Aviation Organization I, Manual of Civil Aviation Medicine, (2012). [7] F.A. Petrassi, P.D. Hodkinson, P.L. Walters, S.J. Gaydos, Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Sp Environ. Med. 83 (2012) 975–984, https://doi.org/10.3357/ASEM.3315.2012. [8] C. Neuhaus, J. Hinkelbein, Cognitive responses to hypobaric hypoxia: implications for aviation training, Psychol. Res. Behav. Manag. 7 (2014) 297–302, https://doi. org/10.2147/PRBM.S51844. [9] C.A. Rickards, D.G. Newman, G-induced visual and cognitive disturbances in a survey of 65 operational fighter pilots, Aviat. Sp. Environ. Med. 76 (2005) 496–500. [10] S. Guardiera, O. Bock, H. Pongratz, W. Krause, Acceleration effects on manual performance with isometric and displacement joysticks, Aviat. Sp Environ. Med. 78 (2007) 990–994, https://doi.org/10.3357/ASEM.2054.2007. [11] N.D.C. Green, L. Brown, Head positioning and neck muscle activation during air combat, Aviat. Sp Environ. Med. 75 (2004) 676–680. [12] E.M. Chumbley, A. Stolfi, J.C. McEachen, Risk factors for cervical pain in F-15C pilots, Aerosp. Med. Hum. Perform. 88 (2017) 1000–1007, https://doi.org/10. 3357/AMHP.4848.2017. [13] T. Honkanen, J. Oksa, M.J. Mäntysaari, et al., Neck and shoulder muscle activation among experienced and inexperienced pilots in +Gz exposure, Aerosp. Med. Hum. Perform. 88 (2017) 90–95, https://doi.org/10.3357/AMHP.4659.2017. [14] W.A. Bateman, I. Jacobs, F. Buick, Physical conditioning to enhance +Gz tolerance: issues and current understanding, Aviat. Sp. Environ. Med. 77 (2006) 573–580. [15] E. Slungaard, J. McLeod, N.D.C. Green, et al., Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal air Force, Aerosp. Med. Hum. Perform. 88 (2017) 550–555, https://doi.org/10.3357/AMHP.4752.2017. [16] M. Murray, B. Lange, B.R. Nørnberg, et al., Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol, BMC Musculoskelet. Disord. 16 (2015) 1–11, https://doi.org/10.1186/s12891-015-0655-6. [17] M. Alricsson, K. Harms-Ringdahl, K. Schüldt, et al., Mobility, muscular strength and endurance in the cervical spine in Swedish air force pilots, Aviat. Sp Environ. Med. 72 (2001) 336–342. [18] V.J. Clemente-Suárez, R. Delgado-Moreno, B. González, et al., Amateur endurance triathletes' performance is improved independently of volume or intensity based training, Physiol. Behav. (2018), https://doi.org/10.1016/j.physbeh.2018.04.014. [19] L. Armstrong, J. Soto, F.J. Hacker, et al., Urinary indices during dehydration, exercise and rehydration, Occup. Heal. Ind. Med. 8 (1998) 345–355. [20] P. Belinchon-deMiguel, V.J. Clemente-Suárez, Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an Ultraendurance Mountain race, J. Med. Syst. 42 (2018), https://doi.org/10.1007/ s10916-017-0889-y. [21] R.H. Cox, M.P. Martens, W.D. Russell, Measuring anxiety in athletics: the revised competitive state anxiety inventory–2, J. Sport. Exerc. Psychol. 25 (2003) 519–533, https://doi.org/10.1123/jsep.25.4.519. [22] R. Delgado-Moreno, J.J. Robles-Pérez, V.J. Clemente-Suárez, Combat stress decreases memory of Warfighters in action, J. Med. Syst. 41 (2017) 1–7, https://doi. org/10.1007/s10916-017-0772-x. [23] J.W. Newcomer, S. Craft, T. Hershey, et al., Glucocorticoid-induced impairment in declarative memory performance in adult humans, J. Neurosci. 14 (1994) 2047–2053, https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994. [24] V.J. Clemente-Suárez, R.J. Fernandes, J.J. Arroyo-Toledo, et al., Autonomic adaptation after traditional and reverse swimming training periodizations, Acta Physiol. Hung. 102 (2015) 105–113, https://doi.org/10.1556/APhysiol.102.2015.1.11. [25] A. Bustamante-Sánchez, V.M. Loarte-Herradón, J.F. Gallego-Saiz, et al., Psychophysiological response of fighter aircraft pilots in normobaric hypoxia training, Arch. Med. Del. Deport. 35 (2018) 99–102, https://doi.org/10.1080/ 00140139.2018.1510541. [26] O. Truszczyński, M. Wojtkowiak, M. Biernacki, K. Kowalczuk, The effect of hypoxia on the critical flicker fusion threshold in pilots, Int. J. Occup. Med. Environ. Health 22 (2009) 13–18, https://doi.org/10.2478/v10001-009-0002-y. [27] D.E. Vigo, S. Pérez Lloret, A.J. Videla, et al., Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude, Wilderness Environ Med. 21 (2010) 4–10, https://doi.org/10.1016/j.wem.2009.12.022. [28] V.J.C. Suárez, J.J.R. Pérez, Análisis de los marcadores fisiológicos, activación cortical y manifestaciones de la fuerza en una situación simulada de combate, Arch. Med. Del. Deport. 29 (2012) 680–686. [29] V.J. Clemente-Suarez, J.J. Robles-Perez, Psycho-physiological response of soldiers in urban combat, An Psicol. 29 (2013) 598–603, https://doi.org/10.6018/analesps. 29.2.150691. [30] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of combat stress in the psychophysiological response of elite and non-elite soldiers, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0748-x. [31] V.J. Clemente-Suárez, Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event, Appl. Physiol. Nutr. Metab. 40 (2015) 269–273, https://doi.org/10.1139/apnm-2014-0263. [32] Y. Barak, D. David, S. Akselrod, Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate, Comput. Cardiol. 26 (1999) 627–630, https://doi.org/10.1109/CIC. 1999.826049 Cat No99CH37004. [33] B. Sandín, El estrés : un análisis basado en el papel de los factores sociales, IJCHP 3 (2003) 141–157. [34] M. Diaz-Manzano, J.J. Robles-Pérez, K. Herrera-Mendoza, et al., Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0945-2. [35] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Use of psychophysiological portable devices to analyse stress response in different experienced soldiers, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0929-2. [36] V.J. Clemente-Suárez, R. de la Vega, J.J. Robles-Pérez, et al., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump, Int. J. Psychophysiol. 110 (2016) 212–216, https://doi.org/10. 1016/j.ijpsycho.2016.07.502. [37] V.J. Clemente-Suárez, J.J. Robles-Pérez, J. Fernández-Lucas, Psychophysiological response in parachute jumps, the effect of experience and type of jump, Physiol. Behav. 179 (2017) 178–183, https://doi.org/10.1016/j.physbeh.2017.06.006.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Autonomic modulationCortical arousalFighter aircraftAnxietyEffect of different combat jet manoeuvres in the psychophysiological response of professional pilotsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdfEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdfapplication/pdf5839https://repositorio.cuc.edu.co/bitstreams/94d47944-0ec1-4cd2-9feb-3c7c51f7f8ce/download747633678d893102eac72877306b8d26MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9a31ef75-2ffd-4241-8cf4-7557d0dfaf1d/download42fd4ad1e89814f5e4a476b409eb708cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f147079d-d070-42f0-bf6c-a979ea9e6f04/download8a4605be74aa9ea9d79846c1fba20a33MD56THUMBNAILEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.jpgEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.jpgimage/jpeg36134https://repositorio.cuc.edu.co/bitstreams/86964e03-0342-4562-a9ef-503049af4cde/downloadd2a01a2aa7b32359584924e29512e73fMD58TEXTEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.txtEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots.pdf.txttext/plain1141https://repositorio.cuc.edu.co/bitstreams/e758fb7e-d4c1-42d3-8658-96b24f102689/downloadf168023ad03d44440ca4ec87ffcade95MD5911323/4788oai:repositorio.cuc.edu.co:11323/47882024-09-17 14:05:40.314http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |