Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid

The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating param...

Full description

Autores:
Mendoza Castellanos, Luis Sebastian
Galindo Noguera, Ana Lisbeth
Carrillo Caballero, Gaylord Enrique
De Souza, André Leandro
Cobas, V. R. M.
Silva Lora, Electo Eduardo
Venturini, Osvaldo José
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4585
Acceso en línea:
https://hdl.handle.net/11323/4585
https://repositorio.cuc.edu.co/
Palabra clave:
Solar energy
Solar concentrator
Stirling engine
Numerical validation
Energy conversion
Thermal analysis
Energía solar
Motor stirling
Validacion numerica
Conversión de energía
Análisis térmico
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id RCUC2_370a40591ae09346e2dd27b53c133d8f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4585
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
dc.title.translated.spa.fl_str_mv Análisis experimental y validación numérica del sistema solar Dish / Stirling conectado a la red eléctrica.
title Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
spellingShingle Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
Solar energy
Solar concentrator
Stirling engine
Numerical validation
Energy conversion
Thermal analysis
Energía solar
Motor stirling
Validacion numerica
Conversión de energía
Análisis térmico
title_short Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
title_full Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
title_fullStr Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
title_full_unstemmed Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
title_sort Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
dc.creator.fl_str_mv Mendoza Castellanos, Luis Sebastian
Galindo Noguera, Ana Lisbeth
Carrillo Caballero, Gaylord Enrique
De Souza, André Leandro
Cobas, V. R. M.
Silva Lora, Electo Eduardo
Venturini, Osvaldo José
dc.contributor.author.spa.fl_str_mv Mendoza Castellanos, Luis Sebastian
Galindo Noguera, Ana Lisbeth
Carrillo Caballero, Gaylord Enrique
De Souza, André Leandro
Cobas, V. R. M.
Silva Lora, Electo Eduardo
Venturini, Osvaldo José
dc.subject.spa.fl_str_mv Solar energy
Solar concentrator
Stirling engine
Numerical validation
Energy conversion
Thermal analysis
Energía solar
Motor stirling
Validacion numerica
Conversión de energía
Análisis térmico
topic Solar energy
Solar concentrator
Stirling engine
Numerical validation
Energy conversion
Thermal analysis
Energía solar
Motor stirling
Validacion numerica
Conversión de energía
Análisis térmico
description The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajub a-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%e12%.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-11-29
dc.date.accessioned.none.fl_str_mv 2019-05-21T12:31:48Z
dc.date.available.none.fl_str_mv 2019-05-21T12:31:48Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 09601481
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4585
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 09601481
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4585
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv A.O. Pereira, R. Cunha Da Costa, C.D.V. Costa, J.D.M. Marreco, E.L. La Rovere, Perspectives for the expansion of new renewable energy sources in Brazil, Renew. Sustain. Energy Rev. 23 (2013) 49e59. V. Ruffato-Ferreira, et al., A foundation for the strategic long-term planning of the renewable energy sector in Brazil: hydroelectricity and wind energy in the face of climate change scenarios, Renew. Sustain. Energy Rev. 72 (May 2017) 1124e1137. October 2015. EPE, Resenha Energetica Brasileira, 2017, p. 296 . C.A. De Melo, G.D.M. Jannuzzi, S.V. Bajay, Nonconventional renewable energy governance in Brazil: lessons to learn from the German experience, Renew. Sustain. Energy Rev. 61 (2016) 222e234. S.A. Kalogirou, Solar Energy Engineering, Processes and Systems, Elsevier Inc, San Diego, California, 2009. K. Sookramoon, P. Bunyawanichakul, B. Kongtragool, Experimental study of a 2-stage parabolic dish-stirling engine in Thailand, Walailak 13 (8) (2016) 579e594. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manag. 126 (Oct. 2016) 60e75. S. Pavlovic, A.M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, R.K. Al-Dadah, Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver, J. Clean. Prod. 150 (May 2017) 75e92. M. Uzair, T.N. Anderson, R.J. Nates, The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver, Sol. Energy 151 (Jul. 2017) 95e101. G. Xiao, T. Yang, D. Ni, K. Cen, M. Ni, A model-based approach for optical performance assessment and optimization of a solar dish, Renew. Energy 100 (Jan. 2017) 103e113. K. Bataineh, Y. Taamneh, Performance analysis of stand-alone solar dish Stirling system for electricity generation, Int. J. Heat Technol. 35 (3) (Sep. 2017) 498e508. G.E. Carrillo, et al., Optimization of a Dish Stirling system working with DIRtype receiver using multi-objective techniques, Appl. Energy 204 (Oct. 2017) 271e286. L.S. Mendoza, G.E. Carrillo Caballero, V.R. Melian Cobas, E.E. Silva Lora, A.M. Martinez Reyes, Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation, Renew. Energy 107 (Jul. 2017) 23e35. Innova Energy Solution, Solar Dish System Cogenerative e Thermal Modules, ” Pescara-Italia, 2014. S. Mata, A. Parella, Technical Assessment and Viability Study of Scale-down Dish Stirling ( DS ) Technology for Power Generation in the Mediterranean Regions, 2015. B. Kongtragool, S. Wongwises, Optimum absorber temperature of a oncereflecting full conical concentrator of a low temperature differential Stirling engine, Renew. Energy 30 (11) (2005) 1671e1687. R. Beltr an Chacon, D. Leal Chavez, D. Sauceda, M. Pellegrini Cervantes, M. Borunda, Design and analysis of a dead volume control for a sola
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f2db6701-4125-43e6-99fa-576954a1cdbb/download
https://repositorio.cuc.edu.co/bitstreams/6f5bd3af-b3de-492b-b1b7-8897a8de283a/download
https://repositorio.cuc.edu.co/bitstreams/f85d426c-3ef9-42fc-8b5f-38ec92cb2e33/download
https://repositorio.cuc.edu.co/bitstreams/cdf9c9e7-3dae-4cc2-a2f6-7c56b0bba38c/download
https://repositorio.cuc.edu.co/bitstreams/da1f724c-2835-4255-a34a-0bcca9e1d257/download
bitstream.checksum.fl_str_mv 43ff00bbbbb0cca5627489f9315f84e6
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
bbfea066535cfdd03b11788791aca5c6
ed7015bcba28980f52e6dc4a9a5336b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760719846178816
spelling Mendoza Castellanos, Luis SebastianGalindo Noguera, Ana LisbethCarrillo Caballero, Gaylord EnriqueDe Souza, André LeandroCobas, V. R. M.Silva Lora, Electo EduardoVenturini, Osvaldo José2019-05-21T12:31:48Z2019-05-21T12:31:48Z2018-11-2909601481https://hdl.handle.net/11323/4585Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajub a-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%e12%.El uso de motores Stirling con energía solar para convertir la energía térmica en electricidad es una solución tecnológica prometedora y renovable que puede contribuir a reducir la dependencia de los combustibles fósiles para la generación de electricidad. Desafortunadamente, la falta de datos experimentales de rendimiento y parámetros operativos para este tipo de tecnología limita su caracterización detallada, dificulta su modelado y diseño y, por consiguiente, su utilización. Este documento tiene como objetivo validar el modelo matemático del sistema Dish / Stirling previamente publicado por Mendoza et al. (2017) con el sistema TRINUM, instalado en la Universidad Federal de Itajub a-Brazil. Para condiciones nominales, el sistema Dish / Stirling genera una potencia eléctrica de 1.00 kW a una irradiación solar de 725 W / m2 con una eficiencia general del sistema del 17.6%. Los resultados muestran que para valores de irradiación solar entre 520 y 950 W / m2, las pruebas experimentales y los resultados del modelado matemático no presentan diferencias considerables, obteniendo una potencia eléctrica de 1089 kWe y una eficiencia del 17,98%, lo que representa desviaciones en el Rango de 2% e12%.Mendoza Castellanos, Luis Sebastian-e749d146-cd25-42af-8c64-c9d620fb5ed2-0Galindo Noguera, Ana Lisbeth-b3b4310a-07e3-467d-8160-a14114a82e60-0Carrillo Caballero, Gaylord Enrique-b1cc32a5-2f0a-45b8-bcac-f4dee7b42405-0De Souza, André Leandro-42e2fdd7-66cb-4d71-8f1e-7e21eed91425-0Cobas, V. R. M.-d70fd1d9-332a-408c-8bfe-868870928ef5-0Silva Lora, Electo Eduardo-8eae3748-4c6c-49fe-bc9d-5f8270d12d5b-0Venturini, Osvaldo José-da61028d-ac83-487d-aee9-2ccbd9068848-0engUniversidad de la Costahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Solar energySolar concentratorStirling engineNumerical validationEnergy conversionThermal analysisEnergía solarMotor stirlingValidacion numericaConversión de energíaAnálisis térmicoExperimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric gridAnálisis experimental y validación numérica del sistema solar Dish / Stirling conectado a la red eléctrica.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionA.O. Pereira, R. Cunha Da Costa, C.D.V. Costa, J.D.M. Marreco, E.L. La Rovere, Perspectives for the expansion of new renewable energy sources in Brazil, Renew. Sustain. Energy Rev. 23 (2013) 49e59. V. Ruffato-Ferreira, et al., A foundation for the strategic long-term planning of the renewable energy sector in Brazil: hydroelectricity and wind energy in the face of climate change scenarios, Renew. Sustain. Energy Rev. 72 (May 2017) 1124e1137. October 2015. EPE, Resenha Energetica Brasileira, 2017, p. 296 . C.A. De Melo, G.D.M. Jannuzzi, S.V. Bajay, Nonconventional renewable energy governance in Brazil: lessons to learn from the German experience, Renew. Sustain. Energy Rev. 61 (2016) 222e234. S.A. Kalogirou, Solar Energy Engineering, Processes and Systems, Elsevier Inc, San Diego, California, 2009. K. Sookramoon, P. Bunyawanichakul, B. Kongtragool, Experimental study of a 2-stage parabolic dish-stirling engine in Thailand, Walailak 13 (8) (2016) 579e594. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manag. 126 (Oct. 2016) 60e75. S. Pavlovic, A.M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, R.K. Al-Dadah, Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver, J. Clean. Prod. 150 (May 2017) 75e92. M. Uzair, T.N. Anderson, R.J. Nates, The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver, Sol. Energy 151 (Jul. 2017) 95e101. G. Xiao, T. Yang, D. Ni, K. Cen, M. Ni, A model-based approach for optical performance assessment and optimization of a solar dish, Renew. Energy 100 (Jan. 2017) 103e113. K. Bataineh, Y. Taamneh, Performance analysis of stand-alone solar dish Stirling system for electricity generation, Int. J. Heat Technol. 35 (3) (Sep. 2017) 498e508. G.E. Carrillo, et al., Optimization of a Dish Stirling system working with DIRtype receiver using multi-objective techniques, Appl. Energy 204 (Oct. 2017) 271e286. L.S. Mendoza, G.E. Carrillo Caballero, V.R. Melian Cobas, E.E. Silva Lora, A.M. Martinez Reyes, Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation, Renew. Energy 107 (Jul. 2017) 23e35. Innova Energy Solution, Solar Dish System Cogenerative e Thermal Modules, ” Pescara-Italia, 2014. S. Mata, A. Parella, Technical Assessment and Viability Study of Scale-down Dish Stirling ( DS ) Technology for Power Generation in the Mediterranean Regions, 2015. B. Kongtragool, S. Wongwises, Optimum absorber temperature of a oncereflecting full conical concentrator of a low temperature differential Stirling engine, Renew. Energy 30 (11) (2005) 1671e1687. R. Beltr an Chacon, D. Leal Chavez, D. Sauceda, M. Pellegrini Cervantes, M. Borunda, Design and analysis of a dead volume control for a solaPublicationORIGINALEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdfEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdfapplication/pdf6818https://repositorio.cuc.edu.co/bitstreams/f2db6701-4125-43e6-99fa-576954a1cdbb/download43ff00bbbbb0cca5627489f9315f84e6MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/6f5bd3af-b3de-492b-b1b7-8897a8de283a/download934f4ca17e109e0a05eaeaba504d7ce4MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f85d426c-3ef9-42fc-8b5f-38ec92cb2e33/download8a4605be74aa9ea9d79846c1fba20a33MD57THUMBNAILEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.jpgEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.jpgimage/jpeg50284https://repositorio.cuc.edu.co/bitstreams/cdf9c9e7-3dae-4cc2-a2f6-7c56b0bba38c/downloadbbfea066535cfdd03b11788791aca5c6MD59TEXTEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.txtEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.txttext/plain1584https://repositorio.cuc.edu.co/bitstreams/da1f724c-2835-4255-a34a-0bcca9e1d257/downloaded7015bcba28980f52e6dc4a9a5336b2MD51011323/4585oai:repositorio.cuc.edu.co:11323/45852024-09-17 10:47:36.76http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=