Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid
The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating param...
- Autores:
-
Mendoza Castellanos, Luis Sebastian
Galindo Noguera, Ana Lisbeth
Carrillo Caballero, Gaylord Enrique
De Souza, André Leandro
Cobas, V. R. M.
Silva Lora, Electo Eduardo
Venturini, Osvaldo José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4585
- Acceso en línea:
- https://hdl.handle.net/11323/4585
https://repositorio.cuc.edu.co/
- Palabra clave:
- Solar energy
Solar concentrator
Stirling engine
Numerical validation
Energy conversion
Thermal analysis
Energía solar
Motor stirling
Validacion numerica
Conversión de energía
Análisis térmico
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
RCUC2_370a40591ae09346e2dd27b53c133d8f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4585 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
dc.title.translated.spa.fl_str_mv |
Análisis experimental y validación numérica del sistema solar Dish / Stirling conectado a la red eléctrica. |
title |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
spellingShingle |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid Solar energy Solar concentrator Stirling engine Numerical validation Energy conversion Thermal analysis Energía solar Motor stirling Validacion numerica Conversión de energía Análisis térmico |
title_short |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
title_full |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
title_fullStr |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
title_full_unstemmed |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
title_sort |
Experimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric grid |
dc.creator.fl_str_mv |
Mendoza Castellanos, Luis Sebastian Galindo Noguera, Ana Lisbeth Carrillo Caballero, Gaylord Enrique De Souza, André Leandro Cobas, V. R. M. Silva Lora, Electo Eduardo Venturini, Osvaldo José |
dc.contributor.author.spa.fl_str_mv |
Mendoza Castellanos, Luis Sebastian Galindo Noguera, Ana Lisbeth Carrillo Caballero, Gaylord Enrique De Souza, André Leandro Cobas, V. R. M. Silva Lora, Electo Eduardo Venturini, Osvaldo José |
dc.subject.spa.fl_str_mv |
Solar energy Solar concentrator Stirling engine Numerical validation Energy conversion Thermal analysis Energía solar Motor stirling Validacion numerica Conversión de energía Análisis térmico |
topic |
Solar energy Solar concentrator Stirling engine Numerical validation Energy conversion Thermal analysis Energía solar Motor stirling Validacion numerica Conversión de energía Análisis térmico |
description |
The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajub a-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%e12%. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-11-29 |
dc.date.accessioned.none.fl_str_mv |
2019-05-21T12:31:48Z |
dc.date.available.none.fl_str_mv |
2019-05-21T12:31:48Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
09601481 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4585 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
09601481 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4585 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
A.O. Pereira, R. Cunha Da Costa, C.D.V. Costa, J.D.M. Marreco, E.L. La Rovere, Perspectives for the expansion of new renewable energy sources in Brazil, Renew. Sustain. Energy Rev. 23 (2013) 49e59. V. Ruffato-Ferreira, et al., A foundation for the strategic long-term planning of the renewable energy sector in Brazil: hydroelectricity and wind energy in the face of climate change scenarios, Renew. Sustain. Energy Rev. 72 (May 2017) 1124e1137. October 2015. EPE, Resenha Energetica Brasileira, 2017, p. 296 . C.A. De Melo, G.D.M. Jannuzzi, S.V. Bajay, Nonconventional renewable energy governance in Brazil: lessons to learn from the German experience, Renew. Sustain. Energy Rev. 61 (2016) 222e234. S.A. Kalogirou, Solar Energy Engineering, Processes and Systems, Elsevier Inc, San Diego, California, 2009. K. Sookramoon, P. Bunyawanichakul, B. Kongtragool, Experimental study of a 2-stage parabolic dish-stirling engine in Thailand, Walailak 13 (8) (2016) 579e594. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manag. 126 (Oct. 2016) 60e75. S. Pavlovic, A.M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, R.K. Al-Dadah, Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver, J. Clean. Prod. 150 (May 2017) 75e92. M. Uzair, T.N. Anderson, R.J. Nates, The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver, Sol. Energy 151 (Jul. 2017) 95e101. G. Xiao, T. Yang, D. Ni, K. Cen, M. Ni, A model-based approach for optical performance assessment and optimization of a solar dish, Renew. Energy 100 (Jan. 2017) 103e113. K. Bataineh, Y. Taamneh, Performance analysis of stand-alone solar dish Stirling system for electricity generation, Int. J. Heat Technol. 35 (3) (Sep. 2017) 498e508. G.E. Carrillo, et al., Optimization of a Dish Stirling system working with DIRtype receiver using multi-objective techniques, Appl. Energy 204 (Oct. 2017) 271e286. L.S. Mendoza, G.E. Carrillo Caballero, V.R. Melian Cobas, E.E. Silva Lora, A.M. Martinez Reyes, Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation, Renew. Energy 107 (Jul. 2017) 23e35. Innova Energy Solution, Solar Dish System Cogenerative e Thermal Modules, ” Pescara-Italia, 2014. S. Mata, A. Parella, Technical Assessment and Viability Study of Scale-down Dish Stirling ( DS ) Technology for Power Generation in the Mediterranean Regions, 2015. B. Kongtragool, S. Wongwises, Optimum absorber temperature of a oncereflecting full conical concentrator of a low temperature differential Stirling engine, Renew. Energy 30 (11) (2005) 1671e1687. R. Beltr an Chacon, D. Leal Chavez, D. Sauceda, M. Pellegrini Cervantes, M. Borunda, Design and analysis of a dead volume control for a sola |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f2db6701-4125-43e6-99fa-576954a1cdbb/download https://repositorio.cuc.edu.co/bitstreams/6f5bd3af-b3de-492b-b1b7-8897a8de283a/download https://repositorio.cuc.edu.co/bitstreams/f85d426c-3ef9-42fc-8b5f-38ec92cb2e33/download https://repositorio.cuc.edu.co/bitstreams/cdf9c9e7-3dae-4cc2-a2f6-7c56b0bba38c/download https://repositorio.cuc.edu.co/bitstreams/da1f724c-2835-4255-a34a-0bcca9e1d257/download |
bitstream.checksum.fl_str_mv |
43ff00bbbbb0cca5627489f9315f84e6 934f4ca17e109e0a05eaeaba504d7ce4 8a4605be74aa9ea9d79846c1fba20a33 bbfea066535cfdd03b11788791aca5c6 ed7015bcba28980f52e6dc4a9a5336b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760719846178816 |
spelling |
Mendoza Castellanos, Luis SebastianGalindo Noguera, Ana LisbethCarrillo Caballero, Gaylord EnriqueDe Souza, André LeandroCobas, V. R. M.Silva Lora, Electo EduardoVenturini, Osvaldo José2019-05-21T12:31:48Z2019-05-21T12:31:48Z2018-11-2909601481https://hdl.handle.net/11323/4585Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The use of solar-powered Stirling engines to convert thermal energy into electricity is a promising and renewable technological solution that can contribute to reducing dependence on fossil fuels for electricity generation. Unfortunately, the lack of experimental performance data and operating parameters for this type of technology limits its detailed characterization, difficult its modeling and design and consequently its utilization. This paper aims to validate the mathematical model of the Dish/Stirling system previously published by Mendoza et al. (2017) with the TRINUM system, installed at the Federal University of Itajub a-Brazil. For nominal conditions, the Dish/Stirling system generates an electric power of 1.00 kW at a solar irradiation of 725 W/m2 with a system overall efficiency of 17.6%. The results show that for solar irradiance values between 520 and 950 W/m2 the experimental tests and the results of the mathematical modeling do not present considerable differences, obtaining an electric power of 1089 kWe and an efficiency of 17.98%, which represents deviations in the range of 2%e12%.El uso de motores Stirling con energía solar para convertir la energía térmica en electricidad es una solución tecnológica prometedora y renovable que puede contribuir a reducir la dependencia de los combustibles fósiles para la generación de electricidad. Desafortunadamente, la falta de datos experimentales de rendimiento y parámetros operativos para este tipo de tecnología limita su caracterización detallada, dificulta su modelado y diseño y, por consiguiente, su utilización. Este documento tiene como objetivo validar el modelo matemático del sistema Dish / Stirling previamente publicado por Mendoza et al. (2017) con el sistema TRINUM, instalado en la Universidad Federal de Itajub a-Brazil. Para condiciones nominales, el sistema Dish / Stirling genera una potencia eléctrica de 1.00 kW a una irradiación solar de 725 W / m2 con una eficiencia general del sistema del 17.6%. Los resultados muestran que para valores de irradiación solar entre 520 y 950 W / m2, las pruebas experimentales y los resultados del modelado matemático no presentan diferencias considerables, obteniendo una potencia eléctrica de 1089 kWe y una eficiencia del 17,98%, lo que representa desviaciones en el Rango de 2% e12%.Mendoza Castellanos, Luis Sebastian-e749d146-cd25-42af-8c64-c9d620fb5ed2-0Galindo Noguera, Ana Lisbeth-b3b4310a-07e3-467d-8160-a14114a82e60-0Carrillo Caballero, Gaylord Enrique-b1cc32a5-2f0a-45b8-bcac-f4dee7b42405-0De Souza, André Leandro-42e2fdd7-66cb-4d71-8f1e-7e21eed91425-0Cobas, V. R. M.-d70fd1d9-332a-408c-8bfe-868870928ef5-0Silva Lora, Electo Eduardo-8eae3748-4c6c-49fe-bc9d-5f8270d12d5b-0Venturini, Osvaldo José-da61028d-ac83-487d-aee9-2ccbd9068848-0engUniversidad de la Costahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Solar energySolar concentratorStirling engineNumerical validationEnergy conversionThermal analysisEnergía solarMotor stirlingValidacion numericaConversión de energíaAnálisis térmicoExperimental analysis and numerical validation of the solar Dish/Stirling system connected to the electric gridAnálisis experimental y validación numérica del sistema solar Dish / Stirling conectado a la red eléctrica.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionA.O. Pereira, R. Cunha Da Costa, C.D.V. Costa, J.D.M. Marreco, E.L. La Rovere, Perspectives for the expansion of new renewable energy sources in Brazil, Renew. Sustain. Energy Rev. 23 (2013) 49e59. V. Ruffato-Ferreira, et al., A foundation for the strategic long-term planning of the renewable energy sector in Brazil: hydroelectricity and wind energy in the face of climate change scenarios, Renew. Sustain. Energy Rev. 72 (May 2017) 1124e1137. October 2015. EPE, Resenha Energetica Brasileira, 2017, p. 296 . C.A. De Melo, G.D.M. Jannuzzi, S.V. Bajay, Nonconventional renewable energy governance in Brazil: lessons to learn from the German experience, Renew. Sustain. Energy Rev. 61 (2016) 222e234. S.A. Kalogirou, Solar Energy Engineering, Processes and Systems, Elsevier Inc, San Diego, California, 2009. K. Sookramoon, P. Bunyawanichakul, B. Kongtragool, Experimental study of a 2-stage parabolic dish-stirling engine in Thailand, Walailak 13 (8) (2016) 579e594. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manag. 126 (Oct. 2016) 60e75. S. Pavlovic, A.M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, R.K. Al-Dadah, Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver, J. Clean. Prod. 150 (May 2017) 75e92. M. Uzair, T.N. Anderson, R.J. Nates, The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver, Sol. Energy 151 (Jul. 2017) 95e101. G. Xiao, T. Yang, D. Ni, K. Cen, M. Ni, A model-based approach for optical performance assessment and optimization of a solar dish, Renew. Energy 100 (Jan. 2017) 103e113. K. Bataineh, Y. Taamneh, Performance analysis of stand-alone solar dish Stirling system for electricity generation, Int. J. Heat Technol. 35 (3) (Sep. 2017) 498e508. G.E. Carrillo, et al., Optimization of a Dish Stirling system working with DIRtype receiver using multi-objective techniques, Appl. Energy 204 (Oct. 2017) 271e286. L.S. Mendoza, G.E. Carrillo Caballero, V.R. Melian Cobas, E.E. Silva Lora, A.M. Martinez Reyes, Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation, Renew. Energy 107 (Jul. 2017) 23e35. Innova Energy Solution, Solar Dish System Cogenerative e Thermal Modules, ” Pescara-Italia, 2014. S. Mata, A. Parella, Technical Assessment and Viability Study of Scale-down Dish Stirling ( DS ) Technology for Power Generation in the Mediterranean Regions, 2015. B. Kongtragool, S. Wongwises, Optimum absorber temperature of a oncereflecting full conical concentrator of a low temperature differential Stirling engine, Renew. Energy 30 (11) (2005) 1671e1687. R. Beltr an Chacon, D. Leal Chavez, D. Sauceda, M. Pellegrini Cervantes, M. Borunda, Design and analysis of a dead volume control for a solaPublicationORIGINALEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdfEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdfapplication/pdf6818https://repositorio.cuc.edu.co/bitstreams/f2db6701-4125-43e6-99fa-576954a1cdbb/download43ff00bbbbb0cca5627489f9315f84e6MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/6f5bd3af-b3de-492b-b1b7-8897a8de283a/download934f4ca17e109e0a05eaeaba504d7ce4MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f85d426c-3ef9-42fc-8b5f-38ec92cb2e33/download8a4605be74aa9ea9d79846c1fba20a33MD57THUMBNAILEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.jpgEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.jpgimage/jpeg50284https://repositorio.cuc.edu.co/bitstreams/cdf9c9e7-3dae-4cc2-a2f6-7c56b0bba38c/downloadbbfea066535cfdd03b11788791aca5c6MD59TEXTEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.txtEXPERIMENTAL ANALYSIS AND NUMERICAL VALIDATION OF THE SOLAR DISH.pdf.txttext/plain1584https://repositorio.cuc.edu.co/bitstreams/da1f724c-2835-4255-a34a-0bcca9e1d257/downloaded7015bcba28980f52e6dc4a9a5336b2MD51011323/4585oai:repositorio.cuc.edu.co:11323/45852024-09-17 10:47:36.76http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |