On minimal λco-open sets

We introduce and discuss the notions of minimal λco-open sets in topological spaces. We establish some of it basic fundamental properties of minimal λco-open. We show that the notions of minimal open sets and minimal λco-open are independent and finally we obtain some application of a minimal λco-op...

Full description

Autores:
ROSAS, ENNIS
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7815
Acceso en línea:
https://hdl.handle.net/11323/7815
https://doi.org/10.22199/issn.0717-6279-2020-02-0026
https://repositorio.cuc.edu.co/
Palabra clave:
On minimal λco-open sets
λco-locally finite space
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_36f03f0d3ac583e4345050f1f8d5573b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7815
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv On minimal λco-open sets
title On minimal λco-open sets
spellingShingle On minimal λco-open sets
On minimal λco-open sets
λco-locally finite space
title_short On minimal λco-open sets
title_full On minimal λco-open sets
title_fullStr On minimal λco-open sets
title_full_unstemmed On minimal λco-open sets
title_sort On minimal λco-open sets
dc.creator.fl_str_mv ROSAS, ENNIS
dc.contributor.author.spa.fl_str_mv ROSAS, ENNIS
dc.subject.spa.fl_str_mv On minimal λco-open sets
λco-locally finite space
topic On minimal λco-open sets
λco-locally finite space
description We introduce and discuss the notions of minimal λco-open sets in topological spaces. We establish some of it basic fundamental properties of minimal λco-open. We show that the notions of minimal open sets and minimal λco-open are independent and finally we obtain some application of a minimal λco-open sets.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-02T22:13:08Z
dc.date.available.none.fl_str_mv 2021-02-02T22:13:08Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7815
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.22199/issn.0717-6279-2020-02-0026
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7815
https://doi.org/10.22199/issn.0717-6279-2020-02-0026
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv B. Ahmad and S. Hussain. “Properties of γ-operations on topological spaces”, Aligarh bulletin of mathematics, vol. 22, no. 1, pp. 45-51, 2003
C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, “Minimal open sets on generalized topological space”, Proyecciones (Antofagasta. On line), vol. 36, no. 4, pp. 739–751, Dec. 2017, doi: 10.4067/S0716-09172017000400739.
S. Hussain and B. Ahmad, “On minimal γ-open sets”, European journal of pure applied mathematics, vol. 2, no. 3, pp. 338-351, 2009. [On line]. Available: https://bit.ly/2YaO0S5
S. Kasahara, “Operation-compact spaces”, Mathematica japonica, vol. 24, no. 1, pp. 97-105, 1979.
A. B. Khalaf and S. F. Namiq, "New types of continuity and separation axiom based operation in topological spaces", MSc Thesis, University of Sulaimani, 2011.
A. B. Khalaf and S. F. Namiq, “Generalized λ-closed sets and (λ, γ)∗-continuous functions”, International journal of scientific engineering research, vol. 3, no. 12, Dec. 2012. [On line]. Available: https://bit.ly/2zHdtsh
A. B. Khalaf and S. F. Namiq, “λ-open sets and λ-separation axioms in topological spaces”, Journal of advanced studies in topology, vol. 4, no. 1, pp. 150-158, 2013, doi: 10.20454/jast.2013.528
A. B. Khalaf and S. F. Namiq, “Generalized λ-closed sets and (λ, γ)∗-continuous function”, Journal of Garmyan University, vol. 4, pp. 1-17, Jul. 2017, doi: 10.24271/garmian.121 .
A. B. Khalaf and S. F. Namiq, “λβc-connected spaces and λβc components”, Journal of Garmyan University, vol. 4, pp. 73–85, Jul. 2017, doi: 10.24271/garmian.126.
A. B. Khalaf, H. M. Darwesh, and S. F. Namiq, “λc-connected spaces via λc -open sets”, Journal of Garmyan University, vol. 1, no. 12, pp. 15–29, Mar. 2017, doi: 10.24271/garmian.112.3.
S. F. Namiq, “ON Minimal λ∗-open sets”, International journal of scientific engineering research, vol. 5, no. 10, pp. 487-491, Oct. 2014. [On line]. Available: https://bit.ly/2VJsG4j
N. Levine, “Semi-open sets and semi-continuity in topological spaces”, The american mathematical monthly, vol. 70, no. 1, pp. 36–41, Jan. 1963, doi: 10.1080/00029890.1963.11990039.
F. Nakaoka and N. Oda, “Some applications of minimal open sets”, International journal of mathematics and mathematical sciences, vol. 27, no. 8, pp. 471–476, 2001, doi: 10.1155/S0161171201006482.
S. F. Namiq, “λ∗ − R0 and λ∗ − R1 spaces”, Journal of Garmyan University, vol. 4, no. 3, 2014.
S. F. Namiq, “λβc-open sets and topological properties”, Journal of Garmyan University, vol. 4, pp. 18-42, Jul. 2017, doi: 10.24271/garmian.122.
S. Namiq, “Contra (λ, γ)*-continuous functions”, Journal of Garmian University, vol. 4, pp. 86–103, Jul. 2017, doi: 10.24271/garmian.127.
S. F. Namiq, “Generalized λc-open set”, International journal of scientific engineering research, vol. 8, no. 6, pp. 2161-2174, Jun. 2017. [On line]. Available: https://bit.ly/3cWYlVI
S. F. Namiq, “λsc-open sets and topological properties”, Journal of Garmyan University, 2014. [On line]. Available: https://bit.ly/2SgIOZ7
S. F. Namiq, “λc-separation axioms via λc-open sets”, International journal of scientific engineering research, vol. 8, no. 5, pp. 17-33, May 2017. [On line]. Available: https://bit.ly/35k6e55
S. F. Namiq, “λsc-connected spaces via λsc-open sets”, Journal of Garmyan University, vol. 4, no. 1, pp. 1- 14, Jan. 2017, doi: 10.24271/garmian.112.2
H. M. Darwesh, S. F. Namiq, and W. K. Kadir, “Maximal λc open sets,” in ICNS 2016, 2016, pp. 3–8. [On line]. Available: https://bit.ly/3d7KEnh
S. F. Namiq, “λ-Connected Spaces Via λ-Open Sets”, Journal of Garmyan University, vol. 7, pp. 165-178, 2015.
S. F. Namiq, “On minimal λαc-open sets”, submit
S. F. Namiq, “λco-open sets and topological properties”, submit.
S. F. Namiq, “λrc-open sets and topological properties”, submit.
H. Ogata, “Operations on topological spaces and associated topology”, Mathematica japonica, vol. 36, no. 1, pp. 175-184, 1991.
E. Rosas and S. F. Namiq, “On minimal λrc-open sets”, Italian journal of pure and applied mathematics, no. 43, pp. 868-877, 2020. [On line]. Available https://bit.ly/3bP82pk
J. N. Sharma and J. P. Chauhan, Topology (General and algebraic). Krishna Prakashan Media, 2011.
M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Transactions of the American Mathematical Society, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937-1501905-7.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Sarhad Namiq
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.revistaproyecciones.cl/article/view/3538
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/91759775-5cb3-49ad-9a3b-f65563e892c7/download
https://repositorio.cuc.edu.co/bitstreams/f11addcf-ad62-4938-9c1c-230f7c473880/download
https://repositorio.cuc.edu.co/bitstreams/c2e53547-5239-48e0-ae1a-e3698e657eb4/download
https://repositorio.cuc.edu.co/bitstreams/c0dfd273-3b89-4cfd-ad9d-6d1288851277/download
https://repositorio.cuc.edu.co/bitstreams/e7371cfd-2a19-4ab5-905f-a94f950ef0fa/download
bitstream.checksum.fl_str_mv 3fffbc36bf4770c75e72fef1eb42e723
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
ba5799c291d504051790011146c0bbe2
c0767dca2d25f5f6a068fff13438d697
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760751325478912
spelling ROSAS, ENNIS2021-02-02T22:13:08Z2021-02-02T22:13:08Z2020https://hdl.handle.net/11323/7815https://doi.org/10.22199/issn.0717-6279-2020-02-0026Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/We introduce and discuss the notions of minimal λco-open sets in topological spaces. We establish some of it basic fundamental properties of minimal λco-open. We show that the notions of minimal open sets and minimal λco-open are independent and finally we obtain some application of a minimal λco-open sets.ROSAS, ENNIS-will be generated-orcid-0000-0001-8123-9344-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarhad Namiqhttps://www.revistaproyecciones.cl/article/view/3538On minimal λco-open setsλco-locally finite spaceOn minimal λco-open setsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionB. Ahmad and S. Hussain. “Properties of γ-operations on topological spaces”, Aligarh bulletin of mathematics, vol. 22, no. 1, pp. 45-51, 2003C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, “Minimal open sets on generalized topological space”, Proyecciones (Antofagasta. On line), vol. 36, no. 4, pp. 739–751, Dec. 2017, doi: 10.4067/S0716-09172017000400739.S. Hussain and B. Ahmad, “On minimal γ-open sets”, European journal of pure applied mathematics, vol. 2, no. 3, pp. 338-351, 2009. [On line]. Available: https://bit.ly/2YaO0S5S. Kasahara, “Operation-compact spaces”, Mathematica japonica, vol. 24, no. 1, pp. 97-105, 1979.A. B. Khalaf and S. F. Namiq, "New types of continuity and separation axiom based operation in topological spaces", MSc Thesis, University of Sulaimani, 2011.A. B. Khalaf and S. F. Namiq, “Generalized λ-closed sets and (λ, γ)∗-continuous functions”, International journal of scientific engineering research, vol. 3, no. 12, Dec. 2012. [On line]. Available: https://bit.ly/2zHdtshA. B. Khalaf and S. F. Namiq, “λ-open sets and λ-separation axioms in topological spaces”, Journal of advanced studies in topology, vol. 4, no. 1, pp. 150-158, 2013, doi: 10.20454/jast.2013.528A. B. Khalaf and S. F. Namiq, “Generalized λ-closed sets and (λ, γ)∗-continuous function”, Journal of Garmyan University, vol. 4, pp. 1-17, Jul. 2017, doi: 10.24271/garmian.121 .A. B. Khalaf and S. F. Namiq, “λβc-connected spaces and λβc components”, Journal of Garmyan University, vol. 4, pp. 73–85, Jul. 2017, doi: 10.24271/garmian.126.A. B. Khalaf, H. M. Darwesh, and S. F. Namiq, “λc-connected spaces via λc -open sets”, Journal of Garmyan University, vol. 1, no. 12, pp. 15–29, Mar. 2017, doi: 10.24271/garmian.112.3.S. F. Namiq, “ON Minimal λ∗-open sets”, International journal of scientific engineering research, vol. 5, no. 10, pp. 487-491, Oct. 2014. [On line]. Available: https://bit.ly/2VJsG4jN. Levine, “Semi-open sets and semi-continuity in topological spaces”, The american mathematical monthly, vol. 70, no. 1, pp. 36–41, Jan. 1963, doi: 10.1080/00029890.1963.11990039.F. Nakaoka and N. Oda, “Some applications of minimal open sets”, International journal of mathematics and mathematical sciences, vol. 27, no. 8, pp. 471–476, 2001, doi: 10.1155/S0161171201006482.S. F. Namiq, “λ∗ − R0 and λ∗ − R1 spaces”, Journal of Garmyan University, vol. 4, no. 3, 2014.S. F. Namiq, “λβc-open sets and topological properties”, Journal of Garmyan University, vol. 4, pp. 18-42, Jul. 2017, doi: 10.24271/garmian.122.S. Namiq, “Contra (λ, γ)*-continuous functions”, Journal of Garmian University, vol. 4, pp. 86–103, Jul. 2017, doi: 10.24271/garmian.127.S. F. Namiq, “Generalized λc-open set”, International journal of scientific engineering research, vol. 8, no. 6, pp. 2161-2174, Jun. 2017. [On line]. Available: https://bit.ly/3cWYlVIS. F. Namiq, “λsc-open sets and topological properties”, Journal of Garmyan University, 2014. [On line]. Available: https://bit.ly/2SgIOZ7S. F. Namiq, “λc-separation axioms via λc-open sets”, International journal of scientific engineering research, vol. 8, no. 5, pp. 17-33, May 2017. [On line]. Available: https://bit.ly/35k6e55S. F. Namiq, “λsc-connected spaces via λsc-open sets”, Journal of Garmyan University, vol. 4, no. 1, pp. 1- 14, Jan. 2017, doi: 10.24271/garmian.112.2H. M. Darwesh, S. F. Namiq, and W. K. Kadir, “Maximal λc open sets,” in ICNS 2016, 2016, pp. 3–8. [On line]. Available: https://bit.ly/3d7KEnhS. F. Namiq, “λ-Connected Spaces Via λ-Open Sets”, Journal of Garmyan University, vol. 7, pp. 165-178, 2015.S. F. Namiq, “On minimal λαc-open sets”, submitS. F. Namiq, “λco-open sets and topological properties”, submit.S. F. Namiq, “λrc-open sets and topological properties”, submit.H. Ogata, “Operations on topological spaces and associated topology”, Mathematica japonica, vol. 36, no. 1, pp. 175-184, 1991.E. Rosas and S. F. Namiq, “On minimal λrc-open sets”, Italian journal of pure and applied mathematics, no. 43, pp. 868-877, 2020. [On line]. Available https://bit.ly/3bP82pkJ. N. Sharma and J. P. Chauhan, Topology (General and algebraic). Krishna Prakashan Media, 2011.M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Transactions of the American Mathematical Society, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937-1501905-7.PublicationORIGINALOn minimal λco-open sets.pdfOn minimal λco-open sets.pdfapplication/pdf242074https://repositorio.cuc.edu.co/bitstreams/91759775-5cb3-49ad-9a3b-f65563e892c7/download3fffbc36bf4770c75e72fef1eb42e723MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/f11addcf-ad62-4938-9c1c-230f7c473880/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c2e53547-5239-48e0-ae1a-e3698e657eb4/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILOn minimal λco-open sets.pdf.jpgOn minimal λco-open sets.pdf.jpgimage/jpeg21252https://repositorio.cuc.edu.co/bitstreams/c0dfd273-3b89-4cfd-ad9d-6d1288851277/downloadba5799c291d504051790011146c0bbe2MD54TEXTOn minimal λco-open sets.pdf.txtOn minimal λco-open sets.pdf.txttext/plain471https://repositorio.cuc.edu.co/bitstreams/e7371cfd-2a19-4ab5-905f-a94f950ef0fa/downloadc0767dca2d25f5f6a068fff13438d697MD5511323/7815oai:repositorio.cuc.edu.co:11323/78152024-09-17 10:58:29.626http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==