Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment
The influence of the addition of cations on the adsorption of [Fe(CN)6] 3− on granular activated carbon (GAC) was evaluated. The tests were performed at three pH values (3, 8.2, and 13) to determine the repulsion or electrostatic affinity between the adsorbent and adsorbate. Afterward, the cations (...
- Autores:
-
González-Ipia, Nicolás
Bolaños-Chamorro, Kevin Camilo
Acuña-Bedoya, Jawer David
Machuca-Martínez, Fiderman
Castilla-Acevedo, Samir
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7074
- Acceso en línea:
- https://hdl.handle.net/11323/7074
https://doi.org/10.1016/j.jece.2020.104336
https://repositorio.cuc.edu.co/
- Palabra clave:
- Gold mining
Wastewater treatment
Cations
Adsorption
Ion-pair mechanism
GAC
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_36dcb8930f68aece23dc8491e119a6f0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7074 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
title |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
spellingShingle |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment Gold mining Wastewater treatment Cations Adsorption Ion-pair mechanism GAC |
title_short |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
title_full |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
title_fullStr |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
title_full_unstemmed |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
title_sort |
Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment |
dc.creator.fl_str_mv |
González-Ipia, Nicolás Bolaños-Chamorro, Kevin Camilo Acuña-Bedoya, Jawer David Machuca-Martínez, Fiderman Castilla-Acevedo, Samir |
dc.contributor.author.spa.fl_str_mv |
González-Ipia, Nicolás Bolaños-Chamorro, Kevin Camilo Acuña-Bedoya, Jawer David Machuca-Martínez, Fiderman Castilla-Acevedo, Samir |
dc.subject.spa.fl_str_mv |
Gold mining Wastewater treatment Cations Adsorption Ion-pair mechanism GAC |
topic |
Gold mining Wastewater treatment Cations Adsorption Ion-pair mechanism GAC |
description |
The influence of the addition of cations on the adsorption of [Fe(CN)6] 3− on granular activated carbon (GAC) was evaluated. The tests were performed at three pH values (3, 8.2, and 13) to determine the repulsion or electrostatic affinity between the adsorbent and adsorbate. Afterward, the cations (K+, Ca2+, and Al3+) at three pollutant-cation molar ratios (1:1, 1:10, and 1:50) were added to the system, and the influence of those was identified by the changes in the adsorption efficiency. The results show that the higher removal (%) was obtained at pH 13 without neither the presence of iron precipitates nor the liberation of HCN. The adsorption of [Fe(CN)6] 3- was enhanced by the addition of K + at 1:10 and 1:50 mol ratio since higher removals were achieved (75.27 % and 76.81 % respectively) than those obtained in the absence of cations (64.18 %) or in the presence of Ca2+ (67.58 %) and Al3+ (65.13 %) at a 1:10 mol ratio. The behavior in adsorption in the presence of cations shows that the ion-pair adsorption mechanism can describe the physical phenomenon, showing an increase in the fraction removed and the rate of adsorption with increasing cation charge. The adsorption kinetics using K+ with a 1:10 pollutant-cation molar ratio was fitted to the Lagergren pseudo-first-order model. The GAC adsorption capacity describes the pollutant adsorption rate with the predominance of physical interactions. The experimental data were fitted by the Langmuir and Freundlich isotherms, indicating a monolayer adsorption phenomenon consistent with the previously proposed ion-pair adsorption mechanism. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-07T19:15:45Z |
dc.date.available.none.fl_str_mv |
2020-09-07T19:15:45Z |
dc.date.issued.none.fl_str_mv |
2020-07-27 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7074 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2020.104336 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7074 https://doi.org/10.1016/j.jece.2020.104336 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Presidencia de la República El Dane reveló que en el segundo trimestre de 2019, el PIB de Colombia creció al 3%, la cifra más alta desde 2015 (2019) M. Ericsson, O. Löf Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6 M.J. Logsdon, K. Hagelstein, C.I. Terry Mudder El Manejo del cianuro en la extracción de oro (2001) C.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye Cyanide speciation at four gold leach operations undergoing remediation Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334n Samir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes J. Hazard. Mater., 392 (2020), 10.1016/j.jhazmat.2020.122389 NA M.J. López-Muñoz, J. Aguado, R. van Grieken, J. Marugán Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions Appl. Catal. B Environ., 86 (2009), pp. 53-62, 10.1016/j.apcatb.2008.07.022 E.E. Little, R.D. Calfee, P. Theodorakos, Z.A. Brown, C.A. Johnson Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance Environ. Sci. Pollut. Res., 14 (2007), pp. 333-337, 10.1065/espr2007.03.400 C.A. Johnson The fate of cyanide in leach wastes at gold mines: an environmental perspective Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023 A. Ramírez Cyanide toxicity. Bibliography research of its effects in animals and man An Fac Med., 71 (2010), pp. 54-61 A. Smith, T. Mudder The Chemistry and Treatment of Cyanidation Wastes London (1991) E. Gail, S. Gos, R. Kulzer, J. Lorösch, A. Rubo, M. Sauer, R. Kellens, J. Reddy, N. Steier, W. Hasenpusch Cyano Compounds, Inorganic, Ullmanns Encycl. Ind. Chem. (2012), pp. 673-710., 10.1002/14356007.a08 Ministerio de la protección social Ministerio de ambiente vivienda y desarrollo territorial, Resolución Numero 2115, Minambiente (2017), pp. 1-23, 10.1017/CBO9781107415324.004 Ministerio de ambiente y desarrollo sostenible Resolución número, 631 (2015), pp. 1-62 A. Gaviria, L. Meza Analysis of Alternatives for the Degradation of the Cyanide in Liquids and Solids Efluentes of the County of Segovia, Antioquia and in the Ore Dressing Mill of the Mineros Nacionales, County of Marmato, Caldas Rev. Dyna. (2006), pp. 31-44 C. Young, T. Jordan Cyanide remediation: current and past technologies Proc. 10th Annu. Conf. (1995), pp. 104-129 L. Giraldo, G. Juan, C. Moreno Determinación de la entalpía de inmersión y la capacidad de adsorción de un carbón activado en soluciones acuosas de plomo Rev. Colomb. Química., 33 (2004), pp. 87-97 M. Tomaszewska, S. Mozia Removal of organic matter from water by PAC/UF system Water Res., 36 (2002), pp. 4137-4143, 10.1016/S0043-1354(02)00122-7 C.A. Basar, A. Karagunduz, A. Cakici, B. Keskinler Removal of surfactants by powdered activated carbon and microfiltration Water Res., 38 (2004), pp. 2117-2124, 10.1016/j.watres.2004.02.001 C. Johnson, D. Grimes, R. Rye Fate of process solution cyanide and nitrate at three Nevada gold mines inferred from stable carbon and nitrogen isotope measurements Miner. Process. Extr. Metall., 109 (2000), pp. 68-78, 10.1179/mpm.2000.109.2.68 K. Anoop Krishnan, K.G. Sreejalekshmi, R.S. Baiju Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith Bioresour. Technol., 102 (2011), pp. 10239-10247, 10.1016/j.biortech.2011.08.069 P. Navarro, C. Vargas Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro Rev. Metal., 46 (2010), pp. 227-239, 10.3989/revmetalm.0929 Z. Aksu, A. Çalik Adsorption of iron(III)-cyanide complex ions to granular activated carbon J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 34 (1999), pp. 2087-2103, 10.1080/10934529909376949 I. Saito The removal of hexacyanoferrate(II) and (III) ions in dilute aqueous solution by activated carbon Water Res., 18 (1984), pp. 319-323, 10.1016/0043-1354(84)90106-4 C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes Diam. Relat. Mater., 93 (2019), pp. 193-199, 10.1016/j.diamond.2019.02.018 H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror Effect of ozone treatment on surface properties of activated carbon Langmuir, 18 (2002), pp. 2111-2116, 10.1021/la010920a Y.S. Ho, G. McKay The kinetics of sorption of divalent metal ions onto sphagnum moss peat Water Res., 34 (2000), pp. 735-742, 10.1016/S0043-1354(99)00232-8 A.G. Ritchie Alternative to the Elovich equation for the kinetics of adsorption of gases on solids J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 73 (1977), pp. 1650-1653, 10.1039/F19777301650 D.L. Sparks Sorption phenomena on soils Environ. Soil Chem. (second) (2003), pp. 133-186 D.G. Kinniburgh General purpose adsorption isotherms Environ. Sci. Technol., 20 (1986), pp. 895-904, 10.1021/es00151a008 J.C. Lazo, A.E. Navarro, M.R. Sun-Kou, N.P. Llanos Síntesis Y Caracterización De Arcillas Organofílicas Y Su Aplicación Como Adsorbentes Del Fenol Rev. La Soc. Química Del Perú., 74 (2008), pp. 3-19 C.F. Rivas, O. Núñez, F. Longoria, L. González Isoterma De Langmuir Y Freundlich Como Modelos Para La Adsorción De Componentes De Ácido Nuclaico Sobre WO3 Saber [Online], 26 (2014), pp. 43-49 I.M. Kolthoff Properties of active charcoal reactivated in oxygen at 400° J. Am. Chem. Soc., 54 (1932), pp. 4473-4480, 10.1021/ja01351a001 The Chemistry of the Ferrocyanides, vol. VII, American Cyanamid Co, New York (1953) T.C. Eisele, K.L. Gabby Review of reductive leaching of iron by anaerobic bacteria Miner. Process. Extr. Metall. Rev., 35 (2014), pp. 75-105, 10.1080/08827508.2012.703627 X. Dai, A. Simons, P. Breuer A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores Miner. Eng., 25 (2012), pp. 1-13, 10.1016/j.mineng.2011.10.002 N. Kuyucak, A. Akcil Cyanide and removal options from effluents in gold mining and metallurgical processes Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027 N. Takeno Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases Natl. Inst. Adv. Ind. Sci. Technol. Tokyo (2005), p. 285 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Atlas+of+Eh-pH+diagrams+Intercomparison+of+thermodynamic+databases#0 A.R. Gerson The role of fuzzy interfaces in the nucleation, growth and agglomeration of aluminum hydroxide in concentrated caustic solutions Prog. Cryst. Growth Charact. Mater., 43 (2001), pp. 187-220, 10.1016/S0960-8974(01)00006-7 Y.S. Ho Review of second-order models for adsorption systems J. Hazard. Mater., 136 (2006), pp. 681-689, 10.1016/j.jhazmat.2005.12.043 S. Lagergren Zur theorie der sogenannten adsorption gelöster stoffe K. Sven. Vetenskapsakademiens. Handl., 24 (1898), pp. 1-39 Z. Aksu, A. Çalik, A.Y. Dursun, Z. Demircan Biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms Process Biochem., 34 (1999), pp. 483-491, 10.1016/S0032-9592(98)00115-0 Z. Aksu Biosorption of heavy metals by microalgae in batch and continuous systems Wastewater Treat. Algae (1998), pp. 37-53, 10.1007/978-3-662-10863-5_3 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343720306850 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/dcd256c4-688e-4bf8-a56f-6eec7d01cbd0/download https://repositorio.cuc.edu.co/bitstreams/92f28b55-1436-49ba-bc38-f169d10af039/download https://repositorio.cuc.edu.co/bitstreams/b72f415d-6139-4751-8a9a-1df2573125e7/download https://repositorio.cuc.edu.co/bitstreams/651d02f4-b499-4d95-a20e-e08e83b581e5/download https://repositorio.cuc.edu.co/bitstreams/f209469d-c771-4378-ae8c-3b9f7b139add/download |
bitstream.checksum.fl_str_mv |
dd46bf2728d0f01e1483e8031d32cd3d 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 00b0e354e0db72308cda8f0e5706d4f0 54f632f0ad163474105016a36d1e332d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760779877154816 |
spelling |
González-Ipia, NicolásBolaños-Chamorro, Kevin CamiloAcuña-Bedoya, Jawer DavidMachuca-Martínez, FidermanCastilla-Acevedo, Samir2020-09-07T19:15:45Z2020-09-07T19:15:45Z2020-07-27https://hdl.handle.net/11323/7074https://doi.org/10.1016/j.jece.2020.104336Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The influence of the addition of cations on the adsorption of [Fe(CN)6] 3− on granular activated carbon (GAC) was evaluated. The tests were performed at three pH values (3, 8.2, and 13) to determine the repulsion or electrostatic affinity between the adsorbent and adsorbate. Afterward, the cations (K+, Ca2+, and Al3+) at three pollutant-cation molar ratios (1:1, 1:10, and 1:50) were added to the system, and the influence of those was identified by the changes in the adsorption efficiency. The results show that the higher removal (%) was obtained at pH 13 without neither the presence of iron precipitates nor the liberation of HCN. The adsorption of [Fe(CN)6] 3- was enhanced by the addition of K + at 1:10 and 1:50 mol ratio since higher removals were achieved (75.27 % and 76.81 % respectively) than those obtained in the absence of cations (64.18 %) or in the presence of Ca2+ (67.58 %) and Al3+ (65.13 %) at a 1:10 mol ratio. The behavior in adsorption in the presence of cations shows that the ion-pair adsorption mechanism can describe the physical phenomenon, showing an increase in the fraction removed and the rate of adsorption with increasing cation charge. The adsorption kinetics using K+ with a 1:10 pollutant-cation molar ratio was fitted to the Lagergren pseudo-first-order model. The GAC adsorption capacity describes the pollutant adsorption rate with the predominance of physical interactions. The experimental data were fitted by the Langmuir and Freundlich isotherms, indicating a monolayer adsorption phenomenon consistent with the previously proposed ion-pair adsorption mechanism.González-Ipia, NicolásBolaños-Chamorro, Kevin CamiloAcuña-Bedoya, Jawer DavidMachuca-Martínez, FidermanCastilla-Acevedo, Samir-will be generated-orcid-0000-0002-1218-4623-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S2213343720306850Gold miningWastewater treatmentCationsAdsorptionIon-pair mechanismGACEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatmentPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPresidencia de la República El Dane reveló que en el segundo trimestre de 2019, el PIB de Colombia creció al 3%, la cifra más alta desde 2015 (2019)M. Ericsson, O. Löf Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6M.J. Logsdon, K. Hagelstein, C.I. Terry Mudder El Manejo del cianuro en la extracción de oro (2001)C.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye Cyanide speciation at four gold leach operations undergoing remediation Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334nSamir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes J. Hazard. Mater., 392 (2020), 10.1016/j.jhazmat.2020.122389 NAM.J. López-Muñoz, J. Aguado, R. van Grieken, J. Marugán Simultaneous photocatalytic reduction of silver and oxidation of cyanide from dicyanoargentate solutions Appl. Catal. B Environ., 86 (2009), pp. 53-62, 10.1016/j.apcatb.2008.07.022E.E. Little, R.D. Calfee, P. Theodorakos, Z.A. Brown, C.A. Johnson Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance Environ. Sci. Pollut. Res., 14 (2007), pp. 333-337, 10.1065/espr2007.03.400C.A. Johnson The fate of cyanide in leach wastes at gold mines: an environmental perspective Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023A. Ramírez Cyanide toxicity. Bibliography research of its effects in animals and man An Fac Med., 71 (2010), pp. 54-61A. Smith, T. Mudder The Chemistry and Treatment of Cyanidation Wastes London (1991)E. Gail, S. Gos, R. Kulzer, J. Lorösch, A. Rubo, M. Sauer, R. Kellens, J. Reddy, N. Steier, W. Hasenpusch Cyano Compounds, Inorganic, Ullmanns Encycl. Ind. Chem. (2012), pp. 673-710., 10.1002/14356007.a08Ministerio de la protección social Ministerio de ambiente vivienda y desarrollo territorial, Resolución Numero 2115, Minambiente (2017), pp. 1-23, 10.1017/CBO9781107415324.004Ministerio de ambiente y desarrollo sostenible Resolución número, 631 (2015), pp. 1-62A. Gaviria, L. Meza Analysis of Alternatives for the Degradation of the Cyanide in Liquids and Solids Efluentes of the County of Segovia, Antioquia and in the Ore Dressing Mill of the Mineros Nacionales, County of Marmato, Caldas Rev. Dyna. (2006), pp. 31-44C. Young, T. Jordan Cyanide remediation: current and past technologies Proc. 10th Annu. Conf. (1995), pp. 104-129L. Giraldo, G. Juan, C. Moreno Determinación de la entalpía de inmersión y la capacidad de adsorción de un carbón activado en soluciones acuosas de plomo Rev. Colomb. Química., 33 (2004), pp. 87-97M. Tomaszewska, S. Mozia Removal of organic matter from water by PAC/UF system Water Res., 36 (2002), pp. 4137-4143, 10.1016/S0043-1354(02)00122-7C.A. Basar, A. Karagunduz, A. Cakici, B. Keskinler Removal of surfactants by powdered activated carbon and microfiltration Water Res., 38 (2004), pp. 2117-2124, 10.1016/j.watres.2004.02.001C. Johnson, D. Grimes, R. Rye Fate of process solution cyanide and nitrate at three Nevada gold mines inferred from stable carbon and nitrogen isotope measurements Miner. Process. Extr. Metall., 109 (2000), pp. 68-78, 10.1179/mpm.2000.109.2.68K. Anoop Krishnan, K.G. Sreejalekshmi, R.S. Baiju Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith Bioresour. Technol., 102 (2011), pp. 10239-10247, 10.1016/j.biortech.2011.08.069P. Navarro, C. Vargas Efecto de las propiedades físicas del carbón activado en la adsorción de oro desde medio cianuro Rev. Metal., 46 (2010), pp. 227-239, 10.3989/revmetalm.0929Z. Aksu, A. Çalik Adsorption of iron(III)-cyanide complex ions to granular activated carbon J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 34 (1999), pp. 2087-2103, 10.1080/10934529909376949I. Saito The removal of hexacyanoferrate(II) and (III) ions in dilute aqueous solution by activated carbon Water Res., 18 (1984), pp. 319-323, 10.1016/0043-1354(84)90106-4C.E. Alvarez-Pugliese, J. Acuña-Bedoya, S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes Diam. Relat. Mater., 93 (2019), pp. 193-199, 10.1016/j.diamond.2019.02.018H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, C.A. Zaror Effect of ozone treatment on surface properties of activated carbon Langmuir, 18 (2002), pp. 2111-2116, 10.1021/la010920aY.S. Ho, G. McKay The kinetics of sorption of divalent metal ions onto sphagnum moss peat Water Res., 34 (2000), pp. 735-742, 10.1016/S0043-1354(99)00232-8A.G. Ritchie Alternative to the Elovich equation for the kinetics of adsorption of gases on solids J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 73 (1977), pp. 1650-1653, 10.1039/F19777301650D.L. Sparks Sorption phenomena on soils Environ. Soil Chem. (second) (2003), pp. 133-186D.G. Kinniburgh General purpose adsorption isotherms Environ. Sci. Technol., 20 (1986), pp. 895-904, 10.1021/es00151a008J.C. Lazo, A.E. Navarro, M.R. Sun-Kou, N.P. Llanos Síntesis Y Caracterización De Arcillas Organofílicas Y Su Aplicación Como Adsorbentes Del Fenol Rev. La Soc. Química Del Perú., 74 (2008), pp. 3-19C.F. Rivas, O. Núñez, F. Longoria, L. González Isoterma De Langmuir Y Freundlich Como Modelos Para La Adsorción De Componentes De Ácido Nuclaico Sobre WO3 Saber [Online], 26 (2014), pp. 43-49I.M. Kolthoff Properties of active charcoal reactivated in oxygen at 400° J. Am. Chem. Soc., 54 (1932), pp. 4473-4480, 10.1021/ja01351a001The Chemistry of the Ferrocyanides, vol. VII, American Cyanamid Co, New York (1953)T.C. Eisele, K.L. Gabby Review of reductive leaching of iron by anaerobic bacteria Miner. Process. Extr. Metall. Rev., 35 (2014), pp. 75-105, 10.1080/08827508.2012.703627X. Dai, A. Simons, P. Breuer A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores Miner. Eng., 25 (2012), pp. 1-13, 10.1016/j.mineng.2011.10.002N. Kuyucak, A. Akcil Cyanide and removal options from effluents in gold mining and metallurgical processes Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027N. Takeno Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases Natl. Inst. Adv. Ind. Sci. Technol. Tokyo (2005), p. 285 http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Atlas+of+Eh-pH+diagrams+Intercomparison+of+thermodynamic+databases#0A.R. Gerson The role of fuzzy interfaces in the nucleation, growth and agglomeration of aluminum hydroxide in concentrated caustic solutions Prog. Cryst. Growth Charact. Mater., 43 (2001), pp. 187-220, 10.1016/S0960-8974(01)00006-7Y.S. Ho Review of second-order models for adsorption systems J. Hazard. Mater., 136 (2006), pp. 681-689, 10.1016/j.jhazmat.2005.12.043S. Lagergren Zur theorie der sogenannten adsorption gelöster stoffe K. Sven. Vetenskapsakademiens. Handl., 24 (1898), pp. 1-39Z. Aksu, A. Çalik, A.Y. Dursun, Z. Demircan Biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus: application of adsorption isotherms Process Biochem., 34 (1999), pp. 483-491, 10.1016/S0032-9592(98)00115-0Z. Aksu Biosorption of heavy metals by microalgae in batch and continuous systems Wastewater Treat. Algae (1998), pp. 37-53, 10.1007/978-3-662-10863-5_3PublicationORIGINALEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations.pdfEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations.pdfapplication/pdf55802https://repositorio.cuc.edu.co/bitstreams/dcd256c4-688e-4bf8-a56f-6eec7d01cbd0/downloaddd46bf2728d0f01e1483e8031d32cd3dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/92f28b55-1436-49ba-bc38-f169d10af039/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b72f415d-6139-4751-8a9a-1df2573125e7/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations.pdf.jpgEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations.pdf.jpgimage/jpeg59145https://repositorio.cuc.edu.co/bitstreams/651d02f4-b499-4d95-a20e-e08e83b581e5/download00b0e354e0db72308cda8f0e5706d4f0MD54TEXTEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations.pdf.txtEnhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations.pdf.txttext/plain2069https://repositorio.cuc.edu.co/bitstreams/f209469d-c771-4378-ae8c-3b9f7b139add/download54f632f0ad163474105016a36d1e332dMD5511323/7074oai:repositorio.cuc.edu.co:11323/70742024-09-17 11:06:52.305http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |