Penalised regressions vs. autoregressive moving average models for forecasting inflation

This paper relates seasonal autoregressive moving average (SARMA) models with linear regression. Based on this relation, the paper shows that penalised linear models may surpass the out-of-sample forecasting accuracy of the best SARMA models when forecasting inflation based on past values, due to pe...

Full description

Autores:
Ospina-Holguín, Javier Humberto
Ospina-Holguín, Ana Milena
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/11900
Acceso en línea:
https://hdl.handle.net/11323/11900
https://doi.org/10.17981/econcuc.41.1.2020.Econ.3
Palabra clave:
Ridge regression
Penalised linear model
ARMA
SARMA
Inflation forecasting
Regresión de arista
Modelo lineal penalizado
ARMA
SARMA
Pronóstico de la inflación
Rights
openAccess
License
Javier Humberto Ospina-Holguín, Ana Milena Ospina-Holguín - 2020
id RCUC2_3639cc990cbedab92e24c29b9aab5aed
oai_identifier_str oai:repositorio.cuc.edu.co:11323/11900
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Penalised regressions vs. autoregressive moving average models for forecasting inflation
dc.title.translated.eng.fl_str_mv Regresiones penalizadas vs. modelos autorregresivos de media móvil para pronosticar la inflación
title Penalised regressions vs. autoregressive moving average models for forecasting inflation
spellingShingle Penalised regressions vs. autoregressive moving average models for forecasting inflation
Ridge regression
Penalised linear model
ARMA
SARMA
Inflation forecasting
Regresión de arista
Modelo lineal penalizado
ARMA
SARMA
Pronóstico de la inflación
title_short Penalised regressions vs. autoregressive moving average models for forecasting inflation
title_full Penalised regressions vs. autoregressive moving average models for forecasting inflation
title_fullStr Penalised regressions vs. autoregressive moving average models for forecasting inflation
title_full_unstemmed Penalised regressions vs. autoregressive moving average models for forecasting inflation
title_sort Penalised regressions vs. autoregressive moving average models for forecasting inflation
dc.creator.fl_str_mv Ospina-Holguín, Javier Humberto
Ospina-Holguín, Ana Milena
dc.contributor.author.spa.fl_str_mv Ospina-Holguín, Javier Humberto
Ospina-Holguín, Ana Milena
dc.subject.eng.fl_str_mv Ridge regression
Penalised linear model
ARMA
SARMA
Inflation forecasting
topic Ridge regression
Penalised linear model
ARMA
SARMA
Inflation forecasting
Regresión de arista
Modelo lineal penalizado
ARMA
SARMA
Pronóstico de la inflación
dc.subject.spa.fl_str_mv Regresión de arista
Modelo lineal penalizado
ARMA
SARMA
Pronóstico de la inflación
description This paper relates seasonal autoregressive moving average (SARMA) models with linear regression. Based on this relation, the paper shows that penalised linear models may surpass the out-of-sample forecasting accuracy of the best SARMA models when forecasting inflation based on past values, due to penalisation and cross-validation. The paper constructs a minimal working example using ridge regression to compare both of the competing approaches when forecasting the monthly inflation in 35 selected countries of the Organisation for Economic Co-operation and Development and in three groups of countries. The results empirically verify the hypothesis that penalised linear regression, and ridge regression in particular, can outperform the best standard SARMA models computed through a grid search when forecasting inflation. Thus, a new and effective technique for forecasting inflation based on past values is provided for use by financial analysts and investors. The results indicate that more attention should be given to machine learning techniques for time series forecasting of inflation, even as basic as penalised linear regressions, due to their superior empirical performance.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-01 00:00:00
2024-04-09T20:09:31Z
dc.date.available.none.fl_str_mv 2020-01-01 00:00:00
2024-04-09T20:09:31Z
dc.date.issued.none.fl_str_mv 2020-01-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0120-3932
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/11900
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/econcuc.41.1.2020.Econ.3
dc.identifier.doi.none.fl_str_mv 10.17981/econcuc.41.1.2020.Econ.3
dc.identifier.eissn.none.fl_str_mv 2382-3860
identifier_str_mv 0120-3932
10.17981/econcuc.41.1.2020.Econ.3
2382-3860
url https://hdl.handle.net/11323/11900
https://doi.org/10.17981/econcuc.41.1.2020.Econ.3
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Económicas CUC
dc.relation.references.eng.fl_str_mv Anzola, C., Vargas, P. & Morales, A. (2019). Transición entre sistemas financieros bancarios y bursátiles. Una aproximación mediante modelo de Swithing Markov. Económicas CUC, 40(1), 123–144. https://doi.org/10.17981/econcuc.40.1.2019.08
Box, G. E. P. & Jenkin, G. M. (1976). Time series analysis, forecasting and control. San Francisco: Holden-Day.
Burnham, K. P. & Anderson, D. R. (2004). Multimodel inference. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
Diebold, F. X. & Mariano, R. S. (2002). Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 20(1), 134–144. https://doi.org/10.1198/073500102753410444
Faust, J. & Wright, J. H. (2013). Forecasting Inflation. In, G. Elliott & A. Timmermann (Eds.), Handbook of Economic Forecasting, Vol. 2. Part. A (pp. 2–56). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53683-9.00001-3
Gil, J., Castellanos, D. & Gonzalez, D. (2019). Margen de intermediación y concentración bancaria en Colombia: un análisis para el periodo 2000-2017. Económicas CUC, 40(2), 9–30. https://doi.org/10.17981/econcuc.40.2.2019.01
Gómez, C., Sánchez, V. & Millán, E. (2019). Capitalismo y ética: una relación de tensiones. Económicas CUC, 40(2), 31–42. https://doi.org/10.17981/econcuc.40.2.2019.02
Gu, S., Kelly, B. T. & Xiu, D. (december, 2018). Empirical Asset Pricing Via Machine Learning [Paper 18-04]. 31st Australasian Finance and Banking Conference, AFBC, Sydney, Australia, 1–79. https://doi.org/10.2139/ssrn.3159577
Hoerl, A. E. & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55–67. https://doi.org/10.2307/1267351
Hyndman, R. J. (july, 2013). Facts and fallacies of the AIC. [Online]. Available from https://robjhyndman.com/hyndsight/aic/
Hyndman, R. J. & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(1), 1–22. https://doi.org/10.18637/jss.v027.i03
Kvalseth, T. O. (1985). Cautionary Note about R 2. The American Statistician, 39(4), 279–285. https://doi.org/10.2307/2683704
MacKinnon, J. G. (1996). Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics, 11(6), 601–618. https://doi.org/10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-T
Mockus, J. (1989). Bayesian approach to global optimization. Dordrecht: Kluwer Academic Publishers.
Mullainathan, S. & Spiess, J. (2017). Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31(2), 87–106. https://doi.org/10.1257/jep.31.2.87
OECD. (2019). Inflation (CPI). [indicator]. https://doi.org/10.1787/eee82e6e-en
Osborn, D. R., Chui, A. P. L., Smith, J. P. & Birchenhall, C. R. (2009). Seasonality and the order of integration for consumption. Oxford Bulletin of Economics and Statistics, 50(4), 361–377. https://doi.org/10.1111/j.1468-0084.1988.mp50004002.x
Quinn, T., Kenny, G. & Meyler, A. (1999). Inflation analysis: An overview. [MPRA Paper No. 11361]. Munich: UTC. Retrieved from https://mpra.ub.uni-muenchen.de/11361/1/MPRA_paper_11361.pdf
Santosa, F. & Symes, W. W. (1986). Linear Inversion of Band-Limited Reflection Seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4), 1307–1330. https://doi.org/10.1137/0907087
Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Tikhonov, A. N. & Arsenin, V. Y. (1977). Solution of ill-posed problems. Washington: Winston & Sons.
Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
dc.relation.citationendpage.none.fl_str_mv 80
dc.relation.citationstartpage.none.fl_str_mv 65
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 41
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/economicascuc/article/download/2657/2824
https://revistascientificas.cuc.edu.co/economicascuc/article/download/2657/2825
https://revistascientificas.cuc.edu.co/economicascuc/article/download/2657/2826
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2020
dc.rights.eng.fl_str_mv Javier Humberto Ospina-Holguín, Ana Milena Ospina-Holguín - 2020
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Javier Humberto Ospina-Holguín, Ana Milena Ospina-Holguín - 2020
https://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.eng.fl_str_mv https://revistascientificas.cuc.edu.co/economicascuc/article/view/2657
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/34dfd2e9-c1ec-4494-89ca-f63933a9656e/download
bitstream.checksum.fl_str_mv ad9b9ca244e3bc9ec1fc3c4ea8fb0efd
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760783358427136
spelling Ospina-Holguín, Javier HumbertoOspina-Holguín, Ana Milena2020-01-01 00:00:002024-04-09T20:09:31Z2020-01-01 00:00:002024-04-09T20:09:31Z2020-01-010120-3932https://hdl.handle.net/11323/11900https://doi.org/10.17981/econcuc.41.1.2020.Econ.310.17981/econcuc.41.1.2020.Econ.32382-3860This paper relates seasonal autoregressive moving average (SARMA) models with linear regression. Based on this relation, the paper shows that penalised linear models may surpass the out-of-sample forecasting accuracy of the best SARMA models when forecasting inflation based on past values, due to penalisation and cross-validation. The paper constructs a minimal working example using ridge regression to compare both of the competing approaches when forecasting the monthly inflation in 35 selected countries of the Organisation for Economic Co-operation and Development and in three groups of countries. The results empirically verify the hypothesis that penalised linear regression, and ridge regression in particular, can outperform the best standard SARMA models computed through a grid search when forecasting inflation. Thus, a new and effective technique for forecasting inflation based on past values is provided for use by financial analysts and investors. The results indicate that more attention should be given to machine learning techniques for time series forecasting of inflation, even as basic as penalised linear regressions, due to their superior empirical performance.Este artículo relaciona los modelos autorregresivos estacionales de media móvil (SARMA) con la regresión lineal. Sobre la base de esta relación, el documento muestra que los modelos lineales penalizados pueden superar la precisión del pronóstico fuera de la muestra de los mejores modelos SARMA al pronosticar la inflación en función de valores pasados, debido a la penalización y a la validación cruzada. El artículo construye un ejemplo funcional mínimo utilizando la regresión de arista para comparar ambos enfoques que compiten al pronosticar la inflación mensual en 35 países seleccionados de la Organización para la Cooperación y el Desarrollo Económico y en tres grupos de países. Los resultados verifican empíricamente la hipótesis de que la regresión lineal penalizada, y la regresión de arista en particular, puede superar a los mejores modelos estándar SARMA calculados a través de una búsqueda de cuadrícula cuando se pronostica la inflación. Así, se proporciona una técnica nueva y efectiva para pronosticar la inflación basada en valores pasados ​​para el uso de analistas financieros e inversores. Los resultados indican que se debe prestar más atención a las técnicas de aprendizaje automático para el pronóstico de series de tiempo de la inflación, incluso tan básicas como las regresiones lineales penalizadas, debido a su rendimiento empírico superior.application/pdftext/htmlapplication/xmlengUniversidad de la CostaJavier Humberto Ospina-Holguín, Ana Milena Ospina-Holguín - 2020https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/economicascuc/article/view/2657Ridge regressionPenalised linear modelARMASARMAInflation forecastingRegresión de aristaModelo lineal penalizadoARMASARMAPronóstico de la inflaciónPenalised regressions vs. autoregressive moving average models for forecasting inflationRegresiones penalizadas vs. modelos autorregresivos de media móvil para pronosticar la inflaciónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Económicas CUCAnzola, C., Vargas, P. & Morales, A. (2019). Transición entre sistemas financieros bancarios y bursátiles. Una aproximación mediante modelo de Swithing Markov. Económicas CUC, 40(1), 123–144. https://doi.org/10.17981/econcuc.40.1.2019.08Box, G. E. P. & Jenkin, G. M. (1976). Time series analysis, forecasting and control. San Francisco: Holden-Day.Burnham, K. P. & Anderson, D. R. (2004). Multimodel inference. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348Diebold, F. X. & Mariano, R. S. (2002). Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 20(1), 134–144. https://doi.org/10.1198/073500102753410444Faust, J. & Wright, J. H. (2013). Forecasting Inflation. In, G. Elliott & A. Timmermann (Eds.), Handbook of Economic Forecasting, Vol. 2. Part. A (pp. 2–56). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53683-9.00001-3Gil, J., Castellanos, D. & Gonzalez, D. (2019). Margen de intermediación y concentración bancaria en Colombia: un análisis para el periodo 2000-2017. Económicas CUC, 40(2), 9–30. https://doi.org/10.17981/econcuc.40.2.2019.01Gómez, C., Sánchez, V. & Millán, E. (2019). Capitalismo y ética: una relación de tensiones. Económicas CUC, 40(2), 31–42. https://doi.org/10.17981/econcuc.40.2.2019.02Gu, S., Kelly, B. T. & Xiu, D. (december, 2018). Empirical Asset Pricing Via Machine Learning [Paper 18-04]. 31st Australasian Finance and Banking Conference, AFBC, Sydney, Australia, 1–79. https://doi.org/10.2139/ssrn.3159577Hoerl, A. E. & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12(1), 55–67. https://doi.org/10.2307/1267351Hyndman, R. J. (july, 2013). Facts and fallacies of the AIC. [Online]. Available from https://robjhyndman.com/hyndsight/aic/Hyndman, R. J. & Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(1), 1–22. https://doi.org/10.18637/jss.v027.i03Kvalseth, T. O. (1985). Cautionary Note about R 2. The American Statistician, 39(4), 279–285. https://doi.org/10.2307/2683704MacKinnon, J. G. (1996). Numerical distribution functions for unit root and cointegration tests. Journal of Applied Econometrics, 11(6), 601–618. https://doi.org/10.1002/(SICI)1099-1255(199611)11:6<601::AID-JAE417>3.0.CO;2-TMockus, J. (1989). Bayesian approach to global optimization. Dordrecht: Kluwer Academic Publishers.Mullainathan, S. & Spiess, J. (2017). Machine Learning: An Applied Econometric Approach. Journal of Economic Perspectives, 31(2), 87–106. https://doi.org/10.1257/jep.31.2.87OECD. (2019). Inflation (CPI). [indicator]. https://doi.org/10.1787/eee82e6e-enOsborn, D. R., Chui, A. P. L., Smith, J. P. & Birchenhall, C. R. (2009). Seasonality and the order of integration for consumption. Oxford Bulletin of Economics and Statistics, 50(4), 361–377. https://doi.org/10.1111/j.1468-0084.1988.mp50004002.xQuinn, T., Kenny, G. & Meyler, A. (1999). Inflation analysis: An overview. [MPRA Paper No. 11361]. Munich: UTC. Retrieved from https://mpra.ub.uni-muenchen.de/11361/1/MPRA_paper_11361.pdfSantosa, F. & Symes, W. W. (1986). Linear Inversion of Band-Limited Reflection Seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4), 1307–1330. https://doi.org/10.1137/0907087Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.xTikhonov, A. N. & Arsenin, V. Y. (1977). Solution of ill-posed problems. Washington: Winston & Sons.Zou, H. & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x8065141https://revistascientificas.cuc.edu.co/economicascuc/article/download/2657/2824https://revistascientificas.cuc.edu.co/economicascuc/article/download/2657/2825https://revistascientificas.cuc.edu.co/economicascuc/article/download/2657/2826Núm. 1 , Año 2020PublicationOREORE.xmltext/xml2623https://repositorio.cuc.edu.co/bitstreams/34dfd2e9-c1ec-4494-89ca-f63933a9656e/downloadad9b9ca244e3bc9ec1fc3c4ea8fb0efdMD5111323/11900oai:repositorio.cuc.edu.co:11323/119002024-09-17 11:08:06.819https://creativecommons.org/licenses/by-nc-nd/4.0Javier Humberto Ospina-Holguín, Ana Milena Ospina-Holguín - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co