Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions

Bioethanol produced from lignocellulosic sources still faces problems related to the feasibility of this technological route. Within the biorefinery concept and clean technology, subcritical water hydrolysis (SWH) is efficient for dissociating lignocellulosic biomass. The solid co-products can be us...

Full description

Autores:
Caponi, Natiela
Schnorr, Carlos Eduardo
Dison S.P., Franco
Netto, Matias S.
Vedovatto, Felipe
Tres, Marcus V.
Zabot, Giovani L.
Abaide, Ederson
Silva Oliveira, Luis Felipe
Silva Oliveira, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10785
Acceso en línea:
https://hdl.handle.net/11323/10785
https://repositorio.cuc.edu.co/
Palabra clave:
Bioethanol
Biosorption
Co-products
LDF model
Subcritical water
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_35c1cbb077a5e53cf77fa1ab337bb67a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10785
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
title Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
spellingShingle Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
Bioethanol
Biosorption
Co-products
LDF model
Subcritical water
title_short Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
title_full Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
title_fullStr Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
title_full_unstemmed Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
title_sort Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions
dc.creator.fl_str_mv Caponi, Natiela
Schnorr, Carlos Eduardo
Dison S.P., Franco
Netto, Matias S.
Vedovatto, Felipe
Tres, Marcus V.
Zabot, Giovani L.
Abaide, Ederson
Silva Oliveira, Luis Felipe
Silva Oliveira, Guilherme Luiz
dc.contributor.author.none.fl_str_mv Caponi, Natiela
Schnorr, Carlos Eduardo
Dison S.P., Franco
Netto, Matias S.
Vedovatto, Felipe
Tres, Marcus V.
Zabot, Giovani L.
Abaide, Ederson
Silva Oliveira, Luis Felipe
Silva Oliveira, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Bioethanol
Biosorption
Co-products
LDF model
Subcritical water
topic Bioethanol
Biosorption
Co-products
LDF model
Subcritical water
description Bioethanol produced from lignocellulosic sources still faces problems related to the feasibility of this technological route. Within the biorefinery concept and clean technology, subcritical water hydrolysis (SWH) is efficient for dissociating lignocellulosic biomass. The solid co-products can be used for other applications to become SWH a more feasible process. The potential use of subcritical water hydrolyzed soybean husks (SWHSH) as a biosorbent to remove basic Red 9 dye (BR9) from aqueous solutions was evaluated in this study. SWHSH was efficient in the uptake of BR9, mainly at a pH of 8.0. The Langmuir model satisfied the biosorption equilibrium profile with a biosorption capacity of 56.8 mg g−1. The thermodynamic parameters indicate that the biosorption is spontaneous, with the ΔG0 ranging from − 22.08 to − 24.88 kJ mol1, with an endothermic nature (ΔH0 = 5.59 kJ mol−1). The biosorption equilibrium was in 60 min for all the initial concentrations studied. The Linear Driving Force (LDF) model fitted the data well, furnishing diffusivity values from 1.41 to 2.00 × 10−8 cm2 s−1. Desorption was also possible under acid conditions, and SWHSH could be effectively used 3 times. Last, the fixed-bed biosorption showed that the SWHSH could remove the BR 9 dye up to 180 min without regeneration, presenting a biosorption capacity of 46.1 mg g1 for 900 mL of treated effluent with an initial concentration of 200 mg L1. The characterization and biosorption results indicate that the BR9 tends to be adsorbed by physical forces, possibly by hydrogen bonds, electrostatic interaction, ππ interaction, and cation-π interaction. Overall, the SWHSH demonstrated potential application as a biosorbent for the removal of BR9.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12
dc.date.accessioned.none.fl_str_mv 2024-02-23T15:47:20Z
dc.date.available.none.fl_str_mv 2024-12
2024-02-23T15:47:20Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Natiela Caponi, Carlos Schnorr, Dison S.P. Franco, Matias S. Netto, Felipe Vedovatto, Marcus V. Tres, Giovani L. Zabot, Ederson R. Abaide, Luis F.O. Silva, Guilherme L. Dotto, Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions, Journal of Environmental Chemical Engineering, Volume 10, Issue 6, 2022, 108603, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.108603
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10785
dc.identifier.doi.none.fl_str_mv 10.1016/j.jece.2022.108603
dc.identifier.eissn.spa.fl_str_mv 2213-3437
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Natiela Caponi, Carlos Schnorr, Dison S.P. Franco, Matias S. Netto, Felipe Vedovatto, Marcus V. Tres, Giovani L. Zabot, Ederson R. Abaide, Luis F.O. Silva, Guilherme L. Dotto, Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions, Journal of Environmental Chemical Engineering, Volume 10, Issue 6, 2022, 108603, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.108603
10.1016/j.jece.2022.108603
2213-3437
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10785
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Environmental Chemical Engineering
dc.relation.references.spa.fl_str_mv [1] E.R. Abaide, M.V. Tres, G.L. Zabot, et al., Reasons for processing of rice coproducts: reality and expectations, Biomass Bioenergy 120 (2019) 240–256, https://doi.org/10.1016/j.biombioe.2018.11.032.
[2] J.M. Prado, D. Lachos-Perez, T. Forster-Carneiro, et al., Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: a review, Food Bioprod. Process 98 (2016) 95–123, https:// doi.org/10.1016/j.fbp.2015.11.004.
[3] D. Lachos-Perez, F. Martinez-Jimenez, C.A. Rezende, et al., Subcritical water hydrolysis of sugarcane bagasse: an approach on solid residues characterization, J. Supercrit. Fluids 108 (2016) 69–78, https://doi.org/10.1016/j. supflu.2015.10.019.
[4] D. Lachos-Perez, G.A. Tompsett, P. Guerra, et al., Sugars and char formation on subcritical water hydrolysis of sugarcane straw, Bioresour. Technol. 243 (2017) 1069–1077, https://doi.org/10.1016/j.biortech.2017.07.080.
[5] E.R. Abaide, S.R. Mortari, G. Ugalde, et al., Subcritical water hydrolysis of rice straw in a semi-continuous mode, J. Clean. Prod. 209 (2019) 386–397, https://doi. org/10.1016/j.jclepro.2018.10.259.
[6] J.M. Prado, T. Forster-Carneiro, M.A. Rostagno, et al., Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water, J. Supercrit. Fluids 89 (2014) 89–98, https://doi.org/10.1016/j. supflu.2014.02.017.
[7] F. Barla, S. Kumar, Subcritical water technology in bioproducts extraction and nanocellulose production. Sub - and Supercritical Hydrothermal Technology Industrial Applications, 2019, pp. 1–29.
[8] E.R. Abaide, G.L. Dotto, M.V. Tres, et al., adsorption of 2–nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25–35, https://doi.org/10.1016/j.biortech.2019.03.110.
[9] L. Hevira, Rahmayeni Zilfa, et al., Biosorption of indigo carmine from aqueous solution by Terminalia catappa shell, J. Environ. Chem. Eng. 8 (2020), 104290, https://doi.org/10.1016/j.jece.2020.104290.
[10] R. Dallel, A. Kesraoui, M. Seffen, Biosorption of cationic dye onto "Phragmites australis" fibers: characterization and mechanism, J. Environ. Chem. Eng. 6 (2018) 7247–7256, https://doi.org/10.1016/j.jece.2018.10.024.
[11] D.S.P. Franco, J. Georgin, M.S. Netto, et al., Conversion of the forest species Inga marginata and Tipuana tipu wastes into biosorbents: Dye biosorption study from isotherm to mass transfer, Environ. Technol. Innov. 22 (2021), 101521, https:// doi.org/10.1016/j.eti.2021.101521.
[12] D. Tonato, F.C. Drumm, P. Grassi, et al., Residual biomass of Nigrospora sp. from process of the microbial oil extraction for the biosorption of procion red H–E7B dye, J. Water Proc. Eng. 31 (2019), 100818, https://doi.org/10.1016/j. jwpe.2019.100818.
[13] T.A. Khan, E.A. Khan, Shahjahan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling, Appl. Clay Sci. 107 (2015) 70–77, https://doi.org/10.1016/ j.clay.2015.01.005.
[14] A.G. Ibrahim, A.Z. Sayed, H. Abd El-Wahab, et al., Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye, Int. J. Biol. Macromol. 159 (2020) 422–432, https://doi.org/10.1016/j.ijbiomac.2020.05.039.
[15] Y.L. Salomon, ´ J. Georgin, G.S. dos Reis, et al., Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.
[16] E.R. Abaide, G. Ugalde, M. Di Luccio, et al., Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode, Bioresour. Technol. 272 (2019) 510–520, https://doi.org/10.1016/j. biortech.2018.10.075.
[17] F. Vedovatto, G. Ugalde, C. Bonatto, et al., Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars, J. Supercrit. Fluids 167 (2021), 105043, https://doi.org/10.1016/j.supflu.2020.105043.
[18] P. Grassi, P. Lunardi, E.L. Foletto, et al., Production of sugar-derived carbons by different routes and their applications for dye removal in water, Chem. Eng. Res. Des. 182 (2022) 237–245, https://doi.org/10.1016/j.cherd.2022.03.054.
[19] G.S. dos Reis, M. Guy, M. Mathieu, et al., A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues, Colloids Surf. A Physicochem Eng. Asp. 642 (2022), 128626, https://doi.org/10.1016/j.colsurfa.2022.128626.
[20] J.C. Diel, K.B. Martinello, C.L. Silveira, et al., New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations, Chem. Eng. J. 431 (2022), 134095, https://doi.org/10.1016/j.cej.2021.134095.
[21] J.S. Lazarotto, K.B. Martinello, J. Georgin, et al., Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (2021), 106843, https://doi.org/10.1016/j.jece.2021.106843.
[22] A.G. Ibrahin, A.G. Sayed, H.A. El-Wahab, et al., Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye, Int. J. Biol. Macromol. 159 (2020) 422–432, https://doi.org/ 10.1016/j.ijbiomac.2020.05.039.
[23] M. Hinojosa-Reyes, R. Camposeco-Solis, F. Ruiz, H2Ti3O7 titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification, Microporous Mesoporous Mater. 276 (2019) 183–191, https://doi.org/10.1016/j. micromeso.2018.09.035.
[24] M. El Haddad, Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: equilibrium, kinetics, and thermodynamics, J. Taibah Univ. Sci. 10 (2016) 664–674, https://doi.org/10.1016/j.jtusci.2015.08.007.
[25] H. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–471.
[26] C. Nguyen, D.D. Do, The Dubinin-Radushkevich equation and the underlying microscopic adsorption description, Carbon 39 (2001) 1327–1336, https://doi. org/10.1016/S0008-6223(00)00265-7.
[27] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.
[28] D.S.P. Franco, J. Vieillard, N.P.G. Salau, et al., Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (2020), 112758, https://doi.org/10.1016/j.molliq.2020.112758.
[29] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, et al., A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.
[30] G.L. Dotto, J.M.N. Santos, R. Rosa, et al., Fixed bed adsorption of Methylene Blue by ultrasonic surface-modified chitin supported on sand, Chem. Eng. Res. Des. 100 (2015) 302–310, https://doi.org/10.1016/j.cherd.2015.06.003.
[31] J. Georgin, D.S.P. Franco, F.C. Drumm, et al., Powdered biosorbent from the mandacaru cactus (Cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/j.powtec.2020.01.064.
[32] D.S.P. Franco, J.L.S. Fagundez, J. Georgin, et al., A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J. 397 (2020), 125423, https:// doi.org/10.1016/j.cej.2020.125423.
[33] F. Xu, J. Yu, T. Tesso, et al., Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review, Appl. Energy 104 (2013) 801–809, https://doi.org/10.1016/j.apenergy.2012.12.019.
[34] M.J. Cocero, A. ´ Cabeza, N. Abad, et al., Understanding biomass fractionation in subcritical & supercritical water, J. Supercrit. Fluids 133 (2018) 550–565, https:// doi.org/10.1016/j.supflu.2017.08.012.
[35] R. Azargohar, S. Nanda, J.A. Kozinski, et al., Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass, Fuel 125 (2014) 90–100, https://doi.org/10.1016/j. fuel.2014.01.083.
[36] F.A. Gonçalves, H.A. Ruiz, C.D.C. Nogueira, et al., Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies, Fuel 131 (2014) 66–76, https://doi.org/10.1016/j.fuel.2014.04.021.
[37] P.F. Pinheiro Nascimento, E.L. Barros Neto, Steam explosion: hydrothermal pretreatment in the production of an adsorbent material using coconut husk, Bioenergy Res. 14 (2021) 153–162, https://doi.org/10.1007/s12155-020-10159-y.
[38] X. You, R. Wang, Y. Zhu, et al., Comparison of adsorption properties of a celluloserich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution, Ind. Crop. Prod. 170 (2021), 113687, https://doi.org/ 10.1016/j.indcrop.2021.113687.
[39] F.P. Marques, L.M.A. Silva, D. Lomonaco, et al., Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber, Ind. Crop. Prod. 143 (2020), 111907, https://doi.org/10.1016/j.indcrop.2019.111907.
[40] J. Georgin, D.S.P. Franco, M. Schadeck Netto, et al., Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574.
[41] J.V. Freitas, F.G.E. Nogueira, C.S. Farinas, Coconut shell activated carbon as an alternative adsorbent of inhibitors from lignocellulosic biomass pretreatment, Ind. Crop. Prod. 137 (2019) 16–23, https://doi.org/10.1016/j.indcrop.2019.05.018.
[42] J. Toth. ´ Adsorption: Theory, Modeling and Analysis, 2002.
[43] L.N. Cortes, ˆ S.P. Druzian, A.F.M. Streit, et al., Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption, Environ. Sci. Pollut. Res 26 (2019) 28574–28583, https://doi.org/ 10.1007/s11356-018-3679-2.
[44] M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, et al., Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design, Water Air Soil Pollut. (2019) 230, https://doi.org/10.1007/ s11270-019-4230-x.
[45] T.S. Silva, L. Meili, S.H.V. Carvalho, et al., Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste, Environ. Sci. Pollut. Res. 24 (2017) 19927–19937, https://doi.org/10.1007/s11356-017- 9645-6.
[46] G.L. Dotto, C. Buriol, L.A.A. Pinto, Diffusional mass transfer model for the adsorption of food dyes on chitosan films, Chem. Eng. Res. Des. 92 (2014) 2324–2332, https://doi.org/10.1016/j.cherd.2014.03.013.
dc.relation.citationissue.spa.fl_str_mv 6
dc.relation.citationvolume.spa.fl_str_mv 10
dc.rights.eng.fl_str_mv © 2022 Elsevier Ltd. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343722014762
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f3c3224e-7fe5-4ead-ad7d-64af08d9353d/download
https://repositorio.cuc.edu.co/bitstreams/0170071d-492a-4cac-97e1-c3923f9a77c2/download
https://repositorio.cuc.edu.co/bitstreams/4ba0f0e6-3614-4dc5-84b6-99080c033b30/download
https://repositorio.cuc.edu.co/bitstreams/39aecce9-024d-4bc8-8c8e-9939602e15b8/download
bitstream.checksum.fl_str_mv 77f69e075d3d4f49a8300bd11ab8d316
2f9959eaf5b71fae44bbf9ec84150c7a
a9a092d01fc7221fa85a19338bb64377
91a8c87dcfb28852d8150e572c9033e3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760708032921600
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCaponi, NatielaSchnorr, Carlos EduardoDison S.P., FrancoNetto, Matias S.Vedovatto, FelipeTres, Marcus V.Zabot, Giovani L.Abaide, EdersonSilva Oliveira, Luis FelipeSilva Oliveira, Guilherme Luiz2024-02-23T15:47:20Z2024-122024-02-23T15:47:20Z2022-12Natiela Caponi, Carlos Schnorr, Dison S.P. Franco, Matias S. Netto, Felipe Vedovatto, Marcus V. Tres, Giovani L. Zabot, Ederson R. Abaide, Luis F.O. Silva, Guilherme L. Dotto, Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions, Journal of Environmental Chemical Engineering, Volume 10, Issue 6, 2022, 108603, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.108603https://hdl.handle.net/11323/1078510.1016/j.jece.2022.1086032213-3437Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/Bioethanol produced from lignocellulosic sources still faces problems related to the feasibility of this technological route. Within the biorefinery concept and clean technology, subcritical water hydrolysis (SWH) is efficient for dissociating lignocellulosic biomass. The solid co-products can be used for other applications to become SWH a more feasible process. The potential use of subcritical water hydrolyzed soybean husks (SWHSH) as a biosorbent to remove basic Red 9 dye (BR9) from aqueous solutions was evaluated in this study. SWHSH was efficient in the uptake of BR9, mainly at a pH of 8.0. The Langmuir model satisfied the biosorption equilibrium profile with a biosorption capacity of 56.8 mg g−1. The thermodynamic parameters indicate that the biosorption is spontaneous, with the ΔG0 ranging from − 22.08 to − 24.88 kJ mol1, with an endothermic nature (ΔH0 = 5.59 kJ mol−1). The biosorption equilibrium was in 60 min for all the initial concentrations studied. The Linear Driving Force (LDF) model fitted the data well, furnishing diffusivity values from 1.41 to 2.00 × 10−8 cm2 s−1. Desorption was also possible under acid conditions, and SWHSH could be effectively used 3 times. Last, the fixed-bed biosorption showed that the SWHSH could remove the BR 9 dye up to 180 min without regeneration, presenting a biosorption capacity of 46.1 mg g1 for 900 mL of treated effluent with an initial concentration of 200 mg L1. The characterization and biosorption results indicate that the BR9 tends to be adsorbed by physical forces, possibly by hydrogen bonds, electrostatic interaction, ππ interaction, and cation-π interaction. Overall, the SWHSH demonstrated potential application as a biosorbent for the removal of BR9.8 páginasapplication/pdfengElsevier BVUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S2213343722014762Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutionsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Environmental Chemical Engineering[1] E.R. Abaide, M.V. Tres, G.L. Zabot, et al., Reasons for processing of rice coproducts: reality and expectations, Biomass Bioenergy 120 (2019) 240–256, https://doi.org/10.1016/j.biombioe.2018.11.032.[2] J.M. Prado, D. Lachos-Perez, T. Forster-Carneiro, et al., Sub- and supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: a review, Food Bioprod. Process 98 (2016) 95–123, https:// doi.org/10.1016/j.fbp.2015.11.004.[3] D. Lachos-Perez, F. Martinez-Jimenez, C.A. Rezende, et al., Subcritical water hydrolysis of sugarcane bagasse: an approach on solid residues characterization, J. Supercrit. Fluids 108 (2016) 69–78, https://doi.org/10.1016/j. supflu.2015.10.019.[4] D. Lachos-Perez, G.A. Tompsett, P. Guerra, et al., Sugars and char formation on subcritical water hydrolysis of sugarcane straw, Bioresour. Technol. 243 (2017) 1069–1077, https://doi.org/10.1016/j.biortech.2017.07.080.[5] E.R. Abaide, S.R. Mortari, G. Ugalde, et al., Subcritical water hydrolysis of rice straw in a semi-continuous mode, J. Clean. Prod. 209 (2019) 386–397, https://doi. org/10.1016/j.jclepro.2018.10.259.[6] J.M. Prado, T. Forster-Carneiro, M.A. Rostagno, et al., Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water, J. Supercrit. Fluids 89 (2014) 89–98, https://doi.org/10.1016/j. supflu.2014.02.017.[7] F. Barla, S. Kumar, Subcritical water technology in bioproducts extraction and nanocellulose production. Sub - and Supercritical Hydrothermal Technology Industrial Applications, 2019, pp. 1–29.[8] E.R. Abaide, G.L. Dotto, M.V. Tres, et al., adsorption of 2–nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25–35, https://doi.org/10.1016/j.biortech.2019.03.110.[9] L. Hevira, Rahmayeni Zilfa, et al., Biosorption of indigo carmine from aqueous solution by Terminalia catappa shell, J. Environ. Chem. Eng. 8 (2020), 104290, https://doi.org/10.1016/j.jece.2020.104290.[10] R. Dallel, A. Kesraoui, M. Seffen, Biosorption of cationic dye onto "Phragmites australis" fibers: characterization and mechanism, J. Environ. Chem. Eng. 6 (2018) 7247–7256, https://doi.org/10.1016/j.jece.2018.10.024.[11] D.S.P. Franco, J. Georgin, M.S. Netto, et al., Conversion of the forest species Inga marginata and Tipuana tipu wastes into biosorbents: Dye biosorption study from isotherm to mass transfer, Environ. Technol. Innov. 22 (2021), 101521, https:// doi.org/10.1016/j.eti.2021.101521.[12] D. Tonato, F.C. Drumm, P. Grassi, et al., Residual biomass of Nigrospora sp. from process of the microbial oil extraction for the biosorption of procion red H–E7B dye, J. Water Proc. Eng. 31 (2019), 100818, https://doi.org/10.1016/j. jwpe.2019.100818.[13] T.A. Khan, E.A. Khan, Shahjahan, Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling, Appl. Clay Sci. 107 (2015) 70–77, https://doi.org/10.1016/ j.clay.2015.01.005.[14] A.G. Ibrahim, A.Z. Sayed, H. Abd El-Wahab, et al., Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye, Int. J. Biol. Macromol. 159 (2020) 422–432, https://doi.org/10.1016/j.ijbiomac.2020.05.039.[15] Y.L. Salomon, ´ J. Georgin, G.S. dos Reis, et al., Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.[16] E.R. Abaide, G. Ugalde, M. Di Luccio, et al., Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode, Bioresour. Technol. 272 (2019) 510–520, https://doi.org/10.1016/j. biortech.2018.10.075.[17] F. Vedovatto, G. Ugalde, C. Bonatto, et al., Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars, J. Supercrit. Fluids 167 (2021), 105043, https://doi.org/10.1016/j.supflu.2020.105043.[18] P. Grassi, P. Lunardi, E.L. Foletto, et al., Production of sugar-derived carbons by different routes and their applications for dye removal in water, Chem. Eng. Res. Des. 182 (2022) 237–245, https://doi.org/10.1016/j.cherd.2022.03.054.[19] G.S. dos Reis, M. Guy, M. Mathieu, et al., A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues, Colloids Surf. A Physicochem Eng. Asp. 642 (2022), 128626, https://doi.org/10.1016/j.colsurfa.2022.128626.[20] J.C. Diel, K.B. Martinello, C.L. Silveira, et al., New insights into glyphosate adsorption on modified carbon nanotubes via green synthesis: statistical physical modeling and steric and energetic interpretations, Chem. Eng. J. 431 (2022), 134095, https://doi.org/10.1016/j.cej.2021.134095.[21] J.S. Lazarotto, K.B. Martinello, J. Georgin, et al., Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (2021), 106843, https://doi.org/10.1016/j.jece.2021.106843.[22] A.G. Ibrahin, A.G. Sayed, H.A. El-Wahab, et al., Synthesis of a hydrogel by grafting of acrylamide-co-sodium methacrylate onto chitosan for effective adsorption of Fuchsin basic dye, Int. J. Biol. Macromol. 159 (2020) 422–432, https://doi.org/ 10.1016/j.ijbiomac.2020.05.039.[23] M. Hinojosa-Reyes, R. Camposeco-Solis, F. Ruiz, H2Ti3O7 titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification, Microporous Mesoporous Mater. 276 (2019) 183–191, https://doi.org/10.1016/j. micromeso.2018.09.035.[24] M. El Haddad, Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: equilibrium, kinetics, and thermodynamics, J. Taibah Univ. Sci. 10 (2016) 664–674, https://doi.org/10.1016/j.jtusci.2015.08.007.[25] H. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–471.[26] C. Nguyen, D.D. Do, The Dubinin-Radushkevich equation and the underlying microscopic adsorption description, Carbon 39 (2001) 1327–1336, https://doi. org/10.1016/S0008-6223(00)00265-7.[27] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.[28] D.S.P. Franco, J. Vieillard, N.P.G. Salau, et al., Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (2020), 112758, https://doi.org/10.1016/j.molliq.2020.112758.[29] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, et al., A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[30] G.L. Dotto, J.M.N. Santos, R. Rosa, et al., Fixed bed adsorption of Methylene Blue by ultrasonic surface-modified chitin supported on sand, Chem. Eng. Res. Des. 100 (2015) 302–310, https://doi.org/10.1016/j.cherd.2015.06.003.[31] J. Georgin, D.S.P. Franco, F.C. Drumm, et al., Powdered biosorbent from the mandacaru cactus (Cereus jamacaru) for discontinuous and continuous removal of Basic Fuchsin from aqueous solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/j.powtec.2020.01.064.[32] D.S.P. Franco, J.L.S. Fagundez, J. Georgin, et al., A mass transfer study considering intraparticle diffusion and axial dispersion for fixed-bed adsorption of crystal violet on pecan pericarp (Carya illinoensis), Chem. Eng. J. 397 (2020), 125423, https:// doi.org/10.1016/j.cej.2020.125423.[33] F. Xu, J. Yu, T. Tesso, et al., Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review, Appl. Energy 104 (2013) 801–809, https://doi.org/10.1016/j.apenergy.2012.12.019.[34] M.J. Cocero, A. ´ Cabeza, N. Abad, et al., Understanding biomass fractionation in subcritical & supercritical water, J. Supercrit. Fluids 133 (2018) 550–565, https:// doi.org/10.1016/j.supflu.2017.08.012.[35] R. Azargohar, S. Nanda, J.A. Kozinski, et al., Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass, Fuel 125 (2014) 90–100, https://doi.org/10.1016/j. fuel.2014.01.083.[36] F.A. Gonçalves, H.A. Ruiz, C.D.C. Nogueira, et al., Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies, Fuel 131 (2014) 66–76, https://doi.org/10.1016/j.fuel.2014.04.021.[37] P.F. Pinheiro Nascimento, E.L. Barros Neto, Steam explosion: hydrothermal pretreatment in the production of an adsorbent material using coconut husk, Bioenergy Res. 14 (2021) 153–162, https://doi.org/10.1007/s12155-020-10159-y.[38] X. You, R. Wang, Y. Zhu, et al., Comparison of adsorption properties of a celluloserich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution, Ind. Crop. Prod. 170 (2021), 113687, https://doi.org/ 10.1016/j.indcrop.2021.113687.[39] F.P. Marques, L.M.A. Silva, D. Lomonaco, et al., Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber, Ind. Crop. Prod. 143 (2020), 111907, https://doi.org/10.1016/j.indcrop.2019.111907.[40] J. Georgin, D.S.P. Franco, M. Schadeck Netto, et al., Transforming shrub waste into a high-efficiency adsorbent: application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (2021), 104574, https://doi.org/10.1016/j.jece.2020.104574.[41] J.V. Freitas, F.G.E. Nogueira, C.S. Farinas, Coconut shell activated carbon as an alternative adsorbent of inhibitors from lignocellulosic biomass pretreatment, Ind. Crop. Prod. 137 (2019) 16–23, https://doi.org/10.1016/j.indcrop.2019.05.018.[42] J. Toth. ´ Adsorption: Theory, Modeling and Analysis, 2002.[43] L.N. Cortes, ˆ S.P. Druzian, A.F.M. Streit, et al., Preparation of carbonaceous materials from pyrolysis of chicken bones and its application for fuchsine adsorption, Environ. Sci. Pollut. Res 26 (2019) 28574–28583, https://doi.org/ 10.1007/s11356-018-3679-2.[44] M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, et al., Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design, Water Air Soil Pollut. (2019) 230, https://doi.org/10.1007/ s11270-019-4230-x.[45] T.S. Silva, L. Meili, S.H.V. Carvalho, et al., Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste, Environ. Sci. Pollut. Res. 24 (2017) 19927–19937, https://doi.org/10.1007/s11356-017- 9645-6.[46] G.L. Dotto, C. Buriol, L.A.A. Pinto, Diffusional mass transfer model for the adsorption of food dyes on chitosan films, Chem. Eng. Res. Des. 92 (2014) 2324–2332, https://doi.org/10.1016/j.cherd.2014.03.013.610BioethanolBiosorptionCo-productsLDF modelSubcritical waterPublicationORIGINALPotential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions.pdfPotential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions.pdfArtículoapplication/pdf2064538https://repositorio.cuc.edu.co/bitstreams/f3c3224e-7fe5-4ead-ad7d-64af08d9353d/download77f69e075d3d4f49a8300bd11ab8d316MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/0170071d-492a-4cac-97e1-c3923f9a77c2/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPotential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions.pdf.txtPotential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions.pdf.txtExtracted texttext/plain43648https://repositorio.cuc.edu.co/bitstreams/4ba0f0e6-3614-4dc5-84b6-99080c033b30/downloada9a092d01fc7221fa85a19338bb64377MD53THUMBNAILPotential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions.pdf.jpgPotential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions.pdf.jpgGenerated Thumbnailimage/jpeg14746https://repositorio.cuc.edu.co/bitstreams/39aecce9-024d-4bc8-8c8e-9939602e15b8/download91a8c87dcfb28852d8150e572c9033e3MD5411323/10785oai:repositorio.cuc.edu.co:11323/107852024-09-17 10:44:05.734https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=