Automatización de cultivos aeropónicos de cilantro libres de pesticidas

Introducción: La aeroponía permite la posibilidad de cultivar plantas, en lugares donde la agricultura convencional de campo abierto es difícil. El uso de la tecnología permite mejorar la eficiencia de los procesos, aunque se requiere incorporar algunas mejoras y soluciones en los sistemas de sumini...

Full description

Autores:
Hoyos Velasco, Fredy
Candelo, John E.
Chavarria, Hector J.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12211
Acceso en línea:
https://hdl.handle.net/11323/12211
https://doi.org/10.17981/ingecuc.15.1.2019.11
Palabra clave:
aeroponics
autonomous irrigation system
clean production
autonomous electric power supply
pesticide-free food
aeroponía
sistemas de irrigación autónoma
producción limpia
fuente de potencia eléctrica autónoma
alimentos libres de pesticidas
Rights
openAccess
License
INGE CUC - 2019
id RCUC2_35a1abd7d966bb3819c469ebc68efdbd
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12211
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Automatización de cultivos aeropónicos de cilantro libres de pesticidas
dc.title.translated.eng.fl_str_mv Automation of pesticide-free cilantro aeroponic crops
title Automatización de cultivos aeropónicos de cilantro libres de pesticidas
spellingShingle Automatización de cultivos aeropónicos de cilantro libres de pesticidas
aeroponics
autonomous irrigation system
clean production
autonomous electric power supply
pesticide-free food
aeroponía
sistemas de irrigación autónoma
producción limpia
fuente de potencia eléctrica autónoma
alimentos libres de pesticidas
title_short Automatización de cultivos aeropónicos de cilantro libres de pesticidas
title_full Automatización de cultivos aeropónicos de cilantro libres de pesticidas
title_fullStr Automatización de cultivos aeropónicos de cilantro libres de pesticidas
title_full_unstemmed Automatización de cultivos aeropónicos de cilantro libres de pesticidas
title_sort Automatización de cultivos aeropónicos de cilantro libres de pesticidas
dc.creator.fl_str_mv Hoyos Velasco, Fredy
Candelo, John E.
Chavarria, Hector J.
dc.contributor.author.spa.fl_str_mv Hoyos Velasco, Fredy
Candelo, John E.
Chavarria, Hector J.
dc.subject.eng.fl_str_mv aeroponics
autonomous irrigation system
clean production
autonomous electric power supply
pesticide-free food
topic aeroponics
autonomous irrigation system
clean production
autonomous electric power supply
pesticide-free food
aeroponía
sistemas de irrigación autónoma
producción limpia
fuente de potencia eléctrica autónoma
alimentos libres de pesticidas
dc.subject.spa.fl_str_mv aeroponía
sistemas de irrigación autónoma
producción limpia
fuente de potencia eléctrica autónoma
alimentos libres de pesticidas
description Introducción: La aeroponía permite la posibilidad de cultivar plantas, en lugares donde la agricultura convencional de campo abierto es difícil. El uso de la tecnología permite mejorar la eficiencia de los procesos, aunque se requiere incorporar algunas mejoras y soluciones en los sistemas de suministro energético y control del riego. Objetivo: Implementar una fuente autónoma de suministro energético y un sistema de control del riego para la producción de alimentos libres de pesticidas. Metodología: El sistema autónomo se diseñó utilizando la herramienta Matlab-Simulink-MPLAB, para desarrollar el modelo de control y aplicarlo al cultivo. Además, se programó un dsPIC para los algoritmos de control del ciclo de riego utilizando bloques Matlab-Simulink. Resultados: Los resultados muestran que el ciclo de riego y el suministro de energía, ayudan a mantener plantas uniformes en el cultivo durante el periodo de las pruebas, lo que permite a su vez incorporar mejoras en el desarrollo de los cultivos aeropónicos. Conclusiones: Cultivar de manera aeropónica reduce el uso de pesticidas, espacio, agua y nutrientes. La automatización en los sistemas de irrigación y de suministro de potencia, permite lograr un buen crecimiento en el cilantro, lo cual se puede evidenciar mediante el incremento en los niveles de peso y volumen, registrados en las mediciones de las plantas de prueba.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-03-07 00:00:00
2024-04-09T20:15:12Z
dc.date.available.none.fl_str_mv 2019-03-07 00:00:00
2024-04-09T20:15:12Z
dc.date.issued.none.fl_str_mv 2019-03-07
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12211
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.15.1.2019.11
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.15.1.2019.11
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.15.1.2019.11
2382-4700
url https://hdl.handle.net/11323/12211
https://doi.org/10.17981/ingecuc.15.1.2019.11
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv CEPAL, “Perspectivas del Comercio Internacional de América Latina y el Caribe 2018: las tensions comerciales exigen una mayor integración regional,” in Perspectivas económicas de América Latina 2018, Repensando las instituciones para el desarrollo, París, France: OECD Publishing, 2018, doi: https://doi.org/10.1787/leo-2018-graph58-es
K. K. R. Lakkireddy, K. Kasturi and K. R. S. Sambasiva Rao, “Role of Hydroponics and Aeroponics in Soilless Culture in Commercial Food Production,” Res. Rev. J. Agric. Sci. Technol., vol. 1, no. 3, pp. 26–35, Apr. 2012. Available: http://sciencejournals.stmjournals.in/index.php/RRJoAST/article/view/800
I. Y. R. Odegard and E. van der Voet, “The future of food–Scenarios and the effect on natural resource use in agriculture in 2050,” Ecol. Econ., vol. 97, pp. 51–59, Jan. 2014, doi: https://doi.org/10.1016/j.ecolecon.2013.10.005
J. J. Cabello, A. Sagastume, E. López-Bastida, C. Vandecasteele, and L. Hens, “Water Footprint from Growing Potato Crops in Cuba,” Tecnol. y Ciencias del Agua, vol. 7, no. 1, pp. 107–116, Jan. 2016. Available: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/1154/1058
M. A. García Samper, J. G. Guiliany, and J. C. Eras, “Eficiencia en el uso de los recursos y producción más limpia (RECP) para la competitividad del sector hotelero,” Rev. Gestão Soc. e Ambient., vol. 11, no. 2, p. 18, Aug. 2017, doi: https://doi.org/10.24857/rgsa.v11i2.1252
P. A. Ochoa George, J. J. C. Eras, A. S. Gutierrez, L. Hens, and C. Vandecasteele, “Residue from Sugarcane Juice Filtration (Filter Cake): Energy Use at the Sugar Factory,” Waste and Biomass Valorization, vol. 1, no. 4, pp. 407–413, Dec. 2010, doi: https://doi.org/10.1007/s12649-010-9046-2
W. T. Runia, “A review of possibilities for disinfection of recirculation water from soilless culture,” in Acta Hortic., vol. 382, IV International Symposium on Soil and Substrate Infestation and Disinfestation, (Leuven, Belgium), 1995, pp. 221–229, doi: https://doi.org/10.17660/actahortic.1995.382.25
E. Ojeda Camargo, J. E. Candelo Becerra and J. I. Silva-Ortega, “Solar and wind energy potential characterization to integrate sustainable projects in native communities in La Guajira Colombia,” Espacios, vol. 38, no. 37, Aug. 2017.
A. Vides-Prado, E. Ojeda, C. Vides-Prado, I. Herrera, F. Chenlo and A. Barrios, “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renew. Sustain. Energy Rev., vol. 82, no. 3, pp. 4245–4255. Feb. 2018, doi: https://doi.org/10.1016/j.rser.2017.05.101
E. Molina, J. E. Candelo-Becerra and E. Ojeda-Camargo, “Understanding Electricity Saving Behavior of Rural Indigenous Communities in La Guajira Department, Colombia,” J. Eng. Sci. Technol. Rev., vol. 11, no. 6, pp. 47–53, Dec. 2018, doi: https://doi.org/10.25103/jestr.116.07
A. Hoehn, “Root Wetting Experiments aboard NASA’s KC-135 Microgravity Simulator,” BioServe Sp. Technol., 1998.
W. A. Carter, “A method of growing plants in water vapor to facilitate examination of roots,” Phytopathology, vol. 732, pp. 623–625, 1942.
R. Bisgrove, “Urban horticulture: future scenarios,” Acta Hortic., no. 881, II International Conference on Landscape and Urban Horticulture, (Bologna, Italy), 2010, pp. 33–46, doi: https://doi.org/10.17660/actahortic.2010.881.1
Mei-Yu Wu, Ya-Hui Lin and Chih-Kun Ke, “Monitoring management platform for Plant Factory,” in The 16th North-East Asia Symp. Nano, Information Technology and Reliability, (Macao, China), 2011, pp. 49–52, doi: https://doi.org/10.1109/nasnit.2011.6111120
M. Sugano, “Elemental technologies for realizing a fully-controlled artificial light-type plant factory,” in 2015 12th Int. Conf. & Expo on Emerging Technologies for a Smarter World (CEWIT), (Melville, NY, USA), 2015, pp. 1–5, doi: https://doi.org/10.1109/cewit.2015.7338169
T. Liu, A. Janku and D. Pietz, Landscape Change and Resource Utilization in East Asia: Perspectives from Environmental History. Academia Sinica on East Asia and Academia Sinica Taiwan, London, UK: Routledge, 2018, doi: https://doi.org/10.4324/9781351182928
NASA Spinoff, “Progressive Plant Growing Has Business Blooming,” Environmental and Agricultural Resources, 2006.
M. Björkman, I. Klingen, A. Birch, A. Bones, T. Bruce, T. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L. Smart and D. Stewart, “Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice.,” Phytochemistry, vol. 72, no. 7, pp. 538–56, May. 2011, doi: https://doi.org/10.1016/j.phytochem.2011.01.014
M. Dekker and R. Verkerk, “Dealing with variability in food production chains: A tool to enhance the sensitivity of epidemiological studies on phytochemicals,” Eur. J. Nutr., vol. 42, no. 1, pp. 67–72, Feb. 2003, doi: https://doi.org/10.1007/s00394-003-0412-8
J. D. Hayes, M. O. Kelleher and I. M. Eggleston, “The cancer chemopreventive actions of phytochemicals derived from glucosinolates,” Eur. J. Nutr., vol. 47, no. Suppl. 2, pp. 73–88, May. 2008, doi: https://doi.org/10.1007/s00394-008-2009-8
S. Kumar, T. Jawaid and S. Dubey, “Therapeutic Plants of Ayurveda; A Review on Anticancer,” Pharmacogn. J., vol. 3, no. 23, pp. 01-11, Jul. 2011, doi: https://doi.org/10.5530/pj.2011.23.1
M. Villatoro-Pulido et al., “In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane.,” Food Chem. Toxicol., vol. 50, no. 5, pp. 1384–92, May. 2012, doi: https://doi.org/10.1016/j.fct.2012.02.017
dc.relation.citationendpage.none.fl_str_mv 132
dc.relation.citationstartpage.none.fl_str_mv 123
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/1949/2060
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1949/2093
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1949/2305
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2019 : (Enero - Junio)
dc.rights.spa.fl_str_mv INGE CUC - 2019
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2019
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1949
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/baf62aa9-2341-4ce7-b7f7-64123d2c96fa/download
bitstream.checksum.fl_str_mv f5bd72d87cbeec26576680c64d8069de
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760823726505984
spelling Hoyos Velasco, FredyCandelo, John E.Chavarria, Hector J.2019-03-07 00:00:002024-04-09T20:15:12Z2019-03-07 00:00:002024-04-09T20:15:12Z2019-03-070122-6517https://hdl.handle.net/11323/12211https://doi.org/10.17981/ingecuc.15.1.2019.1110.17981/ingecuc.15.1.2019.112382-4700Introducción: La aeroponía permite la posibilidad de cultivar plantas, en lugares donde la agricultura convencional de campo abierto es difícil. El uso de la tecnología permite mejorar la eficiencia de los procesos, aunque se requiere incorporar algunas mejoras y soluciones en los sistemas de suministro energético y control del riego. Objetivo: Implementar una fuente autónoma de suministro energético y un sistema de control del riego para la producción de alimentos libres de pesticidas. Metodología: El sistema autónomo se diseñó utilizando la herramienta Matlab-Simulink-MPLAB, para desarrollar el modelo de control y aplicarlo al cultivo. Además, se programó un dsPIC para los algoritmos de control del ciclo de riego utilizando bloques Matlab-Simulink. Resultados: Los resultados muestran que el ciclo de riego y el suministro de energía, ayudan a mantener plantas uniformes en el cultivo durante el periodo de las pruebas, lo que permite a su vez incorporar mejoras en el desarrollo de los cultivos aeropónicos. Conclusiones: Cultivar de manera aeropónica reduce el uso de pesticidas, espacio, agua y nutrientes. La automatización en los sistemas de irrigación y de suministro de potencia, permite lograr un buen crecimiento en el cilantro, lo cual se puede evidenciar mediante el incremento en los niveles de peso y volumen, registrados en las mediciones de las plantas de prueba.Introduction: Aeroponics allows the possibility to grow plants in places where conventional open-field agriculture is difficult. The use of technology improves the efficiency of the process although some energy control and irrigation system solutions must be improved. Objective: Implement an autonomous power supply and an irrigation control system for pesticide-free food production. Methodology: The autonomous system was designed using MATLAB-Simulink-MPLAB tool to perform the control model and to be applied to the crop. A dsPIC was programmed for the irrigation cycle control algorithms using MATLAB-Simulink blocks. Results: The results show that the irrigation cycle and power supply of the aeroponic system help maintain uniformity of plant growth during the tests period, which allows a better development of the aeroponic crop. Conclusions: Cultivation by aeroponics reduces the use of pesticides, growing space, water consumption, and nutrients consumption. Automation in irrigation and power supply systems allows good growth in coriander, which can be evidenced by increases in the weight and volume of the test plants.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2019http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1949aeroponicsautonomous irrigation systemclean productionautonomous electric power supplypesticide-free foodaeroponíasistemas de irrigación autónomaproducción limpiafuente de potencia eléctrica autónomaalimentos libres de pesticidasAutomatización de cultivos aeropónicos de cilantro libres de pesticidasAutomation of pesticide-free cilantro aeroponic cropsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucCEPAL, “Perspectivas del Comercio Internacional de América Latina y el Caribe 2018: las tensions comerciales exigen una mayor integración regional,” in Perspectivas económicas de América Latina 2018, Repensando las instituciones para el desarrollo, París, France: OECD Publishing, 2018, doi: https://doi.org/10.1787/leo-2018-graph58-esK. K. R. Lakkireddy, K. Kasturi and K. R. S. Sambasiva Rao, “Role of Hydroponics and Aeroponics in Soilless Culture in Commercial Food Production,” Res. Rev. J. Agric. Sci. Technol., vol. 1, no. 3, pp. 26–35, Apr. 2012. Available: http://sciencejournals.stmjournals.in/index.php/RRJoAST/article/view/800I. Y. R. Odegard and E. van der Voet, “The future of food–Scenarios and the effect on natural resource use in agriculture in 2050,” Ecol. Econ., vol. 97, pp. 51–59, Jan. 2014, doi: https://doi.org/10.1016/j.ecolecon.2013.10.005J. J. Cabello, A. Sagastume, E. López-Bastida, C. Vandecasteele, and L. Hens, “Water Footprint from Growing Potato Crops in Cuba,” Tecnol. y Ciencias del Agua, vol. 7, no. 1, pp. 107–116, Jan. 2016. Available: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/1154/1058M. A. García Samper, J. G. Guiliany, and J. C. Eras, “Eficiencia en el uso de los recursos y producción más limpia (RECP) para la competitividad del sector hotelero,” Rev. Gestão Soc. e Ambient., vol. 11, no. 2, p. 18, Aug. 2017, doi: https://doi.org/10.24857/rgsa.v11i2.1252P. A. Ochoa George, J. J. C. Eras, A. S. Gutierrez, L. Hens, and C. Vandecasteele, “Residue from Sugarcane Juice Filtration (Filter Cake): Energy Use at the Sugar Factory,” Waste and Biomass Valorization, vol. 1, no. 4, pp. 407–413, Dec. 2010, doi: https://doi.org/10.1007/s12649-010-9046-2W. T. Runia, “A review of possibilities for disinfection of recirculation water from soilless culture,” in Acta Hortic., vol. 382, IV International Symposium on Soil and Substrate Infestation and Disinfestation, (Leuven, Belgium), 1995, pp. 221–229, doi: https://doi.org/10.17660/actahortic.1995.382.25E. Ojeda Camargo, J. E. Candelo Becerra and J. I. Silva-Ortega, “Solar and wind energy potential characterization to integrate sustainable projects in native communities in La Guajira Colombia,” Espacios, vol. 38, no. 37, Aug. 2017.A. Vides-Prado, E. Ojeda, C. Vides-Prado, I. Herrera, F. Chenlo and A. Barrios, “Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira,” Renew. Sustain. Energy Rev., vol. 82, no. 3, pp. 4245–4255. Feb. 2018, doi: https://doi.org/10.1016/j.rser.2017.05.101E. Molina, J. E. Candelo-Becerra and E. Ojeda-Camargo, “Understanding Electricity Saving Behavior of Rural Indigenous Communities in La Guajira Department, Colombia,” J. Eng. Sci. Technol. Rev., vol. 11, no. 6, pp. 47–53, Dec. 2018, doi: https://doi.org/10.25103/jestr.116.07A. Hoehn, “Root Wetting Experiments aboard NASA’s KC-135 Microgravity Simulator,” BioServe Sp. Technol., 1998.W. A. Carter, “A method of growing plants in water vapor to facilitate examination of roots,” Phytopathology, vol. 732, pp. 623–625, 1942.R. Bisgrove, “Urban horticulture: future scenarios,” Acta Hortic., no. 881, II International Conference on Landscape and Urban Horticulture, (Bologna, Italy), 2010, pp. 33–46, doi: https://doi.org/10.17660/actahortic.2010.881.1Mei-Yu Wu, Ya-Hui Lin and Chih-Kun Ke, “Monitoring management platform for Plant Factory,” in The 16th North-East Asia Symp. Nano, Information Technology and Reliability, (Macao, China), 2011, pp. 49–52, doi: https://doi.org/10.1109/nasnit.2011.6111120M. Sugano, “Elemental technologies for realizing a fully-controlled artificial light-type plant factory,” in 2015 12th Int. Conf. & Expo on Emerging Technologies for a Smarter World (CEWIT), (Melville, NY, USA), 2015, pp. 1–5, doi: https://doi.org/10.1109/cewit.2015.7338169T. Liu, A. Janku and D. Pietz, Landscape Change and Resource Utilization in East Asia: Perspectives from Environmental History. Academia Sinica on East Asia and Academia Sinica Taiwan, London, UK: Routledge, 2018, doi: https://doi.org/10.4324/9781351182928NASA Spinoff, “Progressive Plant Growing Has Business Blooming,” Environmental and Agricultural Resources, 2006.M. Björkman, I. Klingen, A. Birch, A. Bones, T. Bruce, T. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L. Smart and D. Stewart, “Phytochemicals of Brassicaceae in plant protection and human health--influences of climate, environment and agronomic practice.,” Phytochemistry, vol. 72, no. 7, pp. 538–56, May. 2011, doi: https://doi.org/10.1016/j.phytochem.2011.01.014M. Dekker and R. Verkerk, “Dealing with variability in food production chains: A tool to enhance the sensitivity of epidemiological studies on phytochemicals,” Eur. J. Nutr., vol. 42, no. 1, pp. 67–72, Feb. 2003, doi: https://doi.org/10.1007/s00394-003-0412-8J. D. Hayes, M. O. Kelleher and I. M. Eggleston, “The cancer chemopreventive actions of phytochemicals derived from glucosinolates,” Eur. J. Nutr., vol. 47, no. Suppl. 2, pp. 73–88, May. 2008, doi: https://doi.org/10.1007/s00394-008-2009-8S. Kumar, T. Jawaid and S. Dubey, “Therapeutic Plants of Ayurveda; A Review on Anticancer,” Pharmacogn. J., vol. 3, no. 23, pp. 01-11, Jul. 2011, doi: https://doi.org/10.5530/pj.2011.23.1M. Villatoro-Pulido et al., “In vivo biological activity of rocket extracts (Eruca vesicaria subsp. sativa (Miller) Thell) and sulforaphane.,” Food Chem. Toxicol., vol. 50, no. 5, pp. 1384–92, May. 2012, doi: https://doi.org/10.1016/j.fct.2012.02.017132123115https://revistascientificas.cuc.edu.co/ingecuc/article/download/1949/2060https://revistascientificas.cuc.edu.co/ingecuc/article/download/1949/2093https://revistascientificas.cuc.edu.co/ingecuc/article/download/1949/2305Núm. 1 , Año 2019 : (Enero - Junio)PublicationOREORE.xmltext/xml2615https://repositorio.cuc.edu.co/bitstreams/baf62aa9-2341-4ce7-b7f7-64123d2c96fa/downloadf5bd72d87cbeec26576680c64d8069deMD5111323/12211oai:repositorio.cuc.edu.co:11323/122112024-09-17 14:05:30.114http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2019metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co