Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru

Dissociative adsorption of H2 was carried out on the @13 cluster (@ = Ag, Co, Cu and Ru) according to the number of nH2 molecules (n = 1–10) and it was compared with H2 adsorption on the surface (1 1 1) of the same metals using Density Functional Theory. The adsorption of H2 is energetically more fa...

Full description

Autores:
Amaya Roncancio, S.
Toncón Leal, C.F.
Arellano Ramírez, I.D.
Torres Cerón, Darwin Augusto
Restrepo Parra, E.
Sapag, K.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13638
Acceso en línea:
https://hdl.handle.net/11323/13638
https://repositorio.cuc.edu.co/
Palabra clave:
Density functional theory
Hydrogen dissociative adsorption
Cluster
Metal surface
Chemisorption
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_35659005dbeb397929c665c2a58a627a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13638
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
title Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
spellingShingle Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
Density functional theory
Hydrogen dissociative adsorption
Cluster
Metal surface
Chemisorption
title_short Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
title_full Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
title_fullStr Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
title_full_unstemmed Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
title_sort Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru
dc.creator.fl_str_mv Amaya Roncancio, S.
Toncón Leal, C.F.
Arellano Ramírez, I.D.
Torres Cerón, Darwin Augusto
Restrepo Parra, E.
Sapag, K.
dc.contributor.author.none.fl_str_mv Amaya Roncancio, S.
Toncón Leal, C.F.
Arellano Ramírez, I.D.
Torres Cerón, Darwin Augusto
Restrepo Parra, E.
Sapag, K.
dc.subject.proposal.eng.fl_str_mv Density functional theory
Hydrogen dissociative adsorption
Cluster
Metal surface
Chemisorption
topic Density functional theory
Hydrogen dissociative adsorption
Cluster
Metal surface
Chemisorption
description Dissociative adsorption of H2 was carried out on the @13 cluster (@ = Ag, Co, Cu and Ru) according to the number of nH2 molecules (n = 1–10) and it was compared with H2 adsorption on the surface (1 1 1) of the same metals using Density Functional Theory. The adsorption of H2 is energetically more favorable on the @13 clusters than on the surfaces for all metals studied. Charge population analysis and density of states were calculated to understand the electronic behavior of hydrogen on the @13 cluster and on the (1 1 1) surface. In all the cases studied, hydrogen takes more charge from the @13 metal cluster than on (1 1 1) surfaces. The ab-initio thermodynamics shows the favorable ranges of pressure, energy, and chemical potential for dissociative adsorption of H2 for all the coverages studied on the metal clusters. Additionally, XPS and chemisorption results for supported nanoparticles and bulk material are presented for cobalt.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-04-18
dc.date.accessioned.none.fl_str_mv 2024-11-05T12:51:07Z
dc.date.available.none.fl_str_mv 2024-11-05T12:51:07Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv S. Amaya-Roncancio, C.F. Toncón-Leal, I.D. Arellano-Ramírez, Darwin Augusto Torres-Cerón, E. Restrepo-Parra, K. Sapag, Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru, Chemical Physics, Volume 559, 2022, 111546, ISSN 0301-0104, https://doi.org/10.1016/j.chemphys.2022.111546.
dc.identifier.issn.none.fl_str_mv 0301-0104
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13638
dc.identifier.doi.none.fl_str_mv 10.1016/j.chemphys.2022.111546
dc.identifier.eissn.none.fl_str_mv 1873-4421
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv S. Amaya-Roncancio, C.F. Toncón-Leal, I.D. Arellano-Ramírez, Darwin Augusto Torres-Cerón, E. Restrepo-Parra, K. Sapag, Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru, Chemical Physics, Volume 559, 2022, 111546, ISSN 0301-0104, https://doi.org/10.1016/j.chemphys.2022.111546.
0301-0104
10.1016/j.chemphys.2022.111546
1873-4421
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13638
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Chemical Physics
dc.relation.references.none.fl_str_mv I. Swart, F.M.F. de Groot, B.M. Weckhuysen, P. Gruene, G. Meijer, A. Fielicke, H2 Adsorption on 3d Transition Metal Clusters: A Combined Infrared Spectroscopy and Density Functional Study, J. Phys. Chem. A. 112 (2008) 1139–1149, https://doi. org/10.1021/jp076702t.
V. Jain, B. Kandasubramanian, Functionalized graphene materials for hydrogen storage, J. Mater. Sci. 55 (2020) 1865–1903, https://doi.org/10.1007/s10853- 019-04150-y.
C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz, D. Astruc, Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release, J. Am. Chem. Soc. 139 (2017) 11610–11615, https://doi.org/10.1021/jacs.7b06859.
G. Chen, R. Wang, W. Zhao, B. Kang, D. Gao, C. Li, J.Y. Lee, Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane, J. Power Sources 396 (2018) 148–154, https://doi.org/10.1016/j. jpowsour.2018.06.028.
A. Montoya, A. Schlunke, B.S. Haynes, Reaction of Hydrogen with Ag(111): Binding States, Minimum Energy Paths, and Kinetics, J. Phys. Chem. B 110 (2006) 17145–17154, https://doi.org/10.1021/jp062725g.
A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Nanostructured Metal Hydrides for Hydrogen Storage, Chem. Rev. 118 (2018) 10775–10839, https://doi.org/10.1021/acs.chemrev.8b00313.
K. García-Díez, J. Fern´ andez-Fern´ andez, J.A. Alonso, M.J. Lopez, ´ Theoretical study of the adsorption of hydrogen on cobalt clusters, PCCP 20 (2018) 21163–21176, https://doi.org/10.1039/C8CP03048K.
H. Akbarzadeh, A.N. Shamkhali, H2 adsorption on Ag-nanocluster/single-walled carbon nanotube composites: A molecular dynamics study on the effects of nanocluster size, diameter, and chirality of nanotube, J. Comput. Chem. 36 (2015) 433–440, https://doi.org/10.1002/jcc.23817.
M. Yu, L. Liu, Q. Wang, L. Jia, B. Hou, Y. Si, D. Li, Y. Zhao, High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics, International Journal of Hydrogen Energy. 43 (2018) 5576–5590. https://doi.org/ https://doi.org/10.1016/j.ijhydene.2018.01.165.
A. Nakhaei Pour, Z. Keyvanloo, M. Izadyar, S.M. Modaresi, Dissociative hydrogen adsorption on the cubic cobalt surfaces: A DFT study, Int. J. Hydrogen Energy 40 (2015) 7064–7071, https://doi.org/10.1016/j.ijhydene.2015.04.028.
K. Mudiyanselage, Y. Yang, F.M. Hoffmann, O.J. Furlong, J. Hrbek, M.G. White, P. Liu, D.J. Stacchiola, Adsorption of hydrogen on the surface and sub-surface of Cu (111), The Journal of Chemical Physics. 139 (2013) 044712. https://doi.org/ 10.1063/1.4816515.
K. Cao, G. Füchsel, A.W. Kleyn, L.B.F. Juurlink, Hydrogen adsorption and desorption from Cu(111) and Cu(211), PCCP 20 (2018) 22477–22488, https://doi. org/10.1039/C8CP03386B.
P. Zhao, Y. He, D.B. Cao, X. Wen, H. Xiang, Y.W. Li, J. Wang, H. Jiao, High coverage adsorption and co-adsorption of CO and H<inf>2</inf> on Ru(0001) from DFT and thermodynamics, PCCP 17 (2015) 19446–19456, https://doi.org/ 10.1039/c5cp02486b.
I. Yarovsky, A. Goldberg, DFT study of hydrogen adsorption on Al 13 clusters, Mol. Simul. 31 (2005) 475–481, https://doi.org/10.1080/08927020412331337041.
S. Amaya-Roncancio, A.A. García Blanco, D.H. Linares, K. Sapag, DFT study of hydrogen adsorption on Ni/graphene, Appl. Surf. Sci. 447 (2018) 254–260, https://doi.org/10.1016/j.apsusc.2018.03.233.
P. Felício-Sousa, K.F. Andriani, J.L.F. Da Silva, Ab initioinvestigation of the role of the d-states occupation on the adsorption properties of H2, CO, CH4and CH3OH on the Fe13, Co13, Ni13and Cu13clusters, PCCP 23 (2021) 8739–8751, https://doi. org/10.1039/d0cp06091g.
S. Amaya-Roncancio, L. Reinaudi, M. Cecilia, Gimenez, Adsorption and dissociation of CO on metal clusters, Materials Today, Communications. 24 (2020), 101158, https://doi.org/10.1016/j.mtcomm.2020.101158.
M.R. Dehghan, S. Ahmadi, Z. Mosapour Kotena, M. Niakousari, A computational study of N2 adsorption on aromatic metal Mg16M;(M=Be, Mg, and Ca) nanoclusters, J. Mol. Graph. Model. 105 (2021), 107862, https://doi.org/10.1016/ j.jmgm.2021.107862.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. MartinSamos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.
M.D. the E. Transition, QUANTUMESPRESSO, (n.d.). https://www.quantumespresso.org/resources/faq/pseudopotentials (accessed March 5, 2021).
(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/H.pbe-rrkjus_ psl.1.0.0.UPF (accessed June 2, 2021).
(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Ru.pbe-spn-rrkjus_ psl.1.0.0.UPF (accessed June 2, 2021).
(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Cu.pbe-d-rrkjus. UPF (accessed June 2, 2021).
(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Co.rel-pbe-ndrrkjus.UPF (accessed June 2, 2021).
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865.
M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045–1097, https:// doi.org/10.1103/RevModPhys.64.1045.
Z.Z. Lin, X. Chen, C. Yin, H. Tang, Y.C. Hu, X.J. Ning, Theoretical prediction of the growth and surface structure of Pt and Ni nanoparticles, EPL (Europhysics Letters). 96 (2011) 66005, https://doi.org/10.1209/0295-5075/96/66005.
X. Liu, D. Tian, C. Meng, DFT study on the adsorption and dissociation of H2 on Pdn (n=4, 6, 13, 19, 55) clusters, Journal of Molecular Structure. 1080 (2015) 105–110. https://doi.org/https://doi.org/10.1016/j.molstruc.2014.09.078.
C. Kittel, Introduction to Solid State Physics, eigth, Jhon Wiley & Sons, New York, 2005.
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B. 13 (1976) 5188–5192, https://doi.org/10.1103/PhysRevB.13.5188.
G. Henkelman, B.P. Uberuaga, H. Jonsson, ´ Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904, https://doi.org/10.1063/1.1329672.
A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, in, Computational Materials Science, Elsevier (2003) 155–168, https://doi.org/10.1016/S0927-0256(03)00104-6.
F. Silveri, M.G. Quesne, A. Roldan, N.H. de Leeuw, C.R.A. Catlow, Hydrogen adsorption on transition metal carbides: a DFT study, PCCP 21 (2019) 5335–5343, https://doi.org/10.1039/C8CP05975F.
W. Bergermayer, H. Schweiger, E. Wimmer, Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001), Physical Review B. 69 (2004), 195409, https://doi. org/10.1103/PhysRevB.69.195409.
S.A. Tacey, B.W.J. Chen, T. Szilvasi, ´ M. Mavrikakis, An automated cluster surface scanning method for exploring reaction paths on metal-cluster surfaces, Comput. Mater. Sci. 186 (2021), 110010, https://doi.org/10.1016/j. commatsci.2020.110010.
Y. Kunisada, H. Kasai, Hindered rotational physisorption states of H2 on Ag(111) surfaces, PCCP 17 (2015) 19625–19630, https://doi.org/10.1039/C5CP01701G.
B. Jiang, H. Guo, Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface, PCCP 16 (2014) 24704–24715, https://doi.org/10.1039/ C4CP03761H.
P. Hirunsit, K. Shimizu, R. Fukuda, S. Namuangruk, Y. Morikawa, M. Ehara, Cooperative H 2 Activation at Ag Cluster/θ-Al 2 O 3 (110) Dual Perimeter Sites: A Density Functional Theory Study, The Journal of Physical Chemistry C. 118 (2014) 7996–8006, https://doi.org/10.1021/jp5000792.
H.-W.-H.-P.-D.-L.-Z.-H.-Z.-U.-O. Zhi-Jun, CO and H2 Molecules Adsorption on Cu (111) Surface and Solvent Effects, Acta Phys. -Chim. Sin. 25 (2009) 2507–2512.
G.H. Guvelioglu, P. Ma, X. He, R.C. Forrey, H. Cheng, First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H2, Physical Review B - Condensed Matter and Materials Physics. 73 (2006), 155436, https:// doi.org/10.1103/PhysRevB.73.155436.
M.J.S. Spencer, G.L. Nyberg, DFT modelling of hydrogen on Cu(110)- and (111)- type clusters, Mol. Simul. 28 (8-9) (2002) 807–825.
G.X. Ge, H.X. Yan, Q. Jing, Y.H. Luo, Theoretical Study of Hydrogen Adsorption on Ruthenium Clusters, J. Cluster Sci. 22 (2011) 473–489, https://doi.org/10.1007/ s10876-011-0395-1.
dc.relation.citationendpage.none.fl_str_mv 11
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 559
dc.rights.eng.fl_str_mv © 2022 Elsevier B.V.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier B.V.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S030101042200101X?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/64fdca68-4532-4b4a-83d8-41310db2ad69/download
https://repositorio.cuc.edu.co/bitstreams/5f0a178e-9224-4adc-a1cc-3cb87258abfa/download
https://repositorio.cuc.edu.co/bitstreams/87b85fdf-83ce-4d86-8ad0-c98245fee034/download
https://repositorio.cuc.edu.co/bitstreams/2dadfca8-0ca4-469c-b381-1a5642de383d/download
bitstream.checksum.fl_str_mv 1c049627ea83198edd0b9989f8778c72
73a5432e0b76442b22b026844140d683
f08650b77c2a5f6298ae8cc196d1a31f
db9c7adbcd92b7904afa5148890d03e9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166819197747200
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier B.V.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Amaya Roncancio, S.Toncón Leal, C.F.Arellano Ramírez, I.D.Torres Cerón, Darwin AugustoRestrepo Parra, E.Sapag, K.2024-11-05T12:51:07Z2024-11-05T12:51:07Z2022-04-18S. Amaya-Roncancio, C.F. Toncón-Leal, I.D. Arellano-Ramírez, Darwin Augusto Torres-Cerón, E. Restrepo-Parra, K. Sapag, Dissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and Ru, Chemical Physics, Volume 559, 2022, 111546, ISSN 0301-0104, https://doi.org/10.1016/j.chemphys.2022.111546.0301-0104https://hdl.handle.net/11323/1363810.1016/j.chemphys.2022.1115461873-4421Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Dissociative adsorption of H2 was carried out on the @13 cluster (@ = Ag, Co, Cu and Ru) according to the number of nH2 molecules (n = 1–10) and it was compared with H2 adsorption on the surface (1 1 1) of the same metals using Density Functional Theory. The adsorption of H2 is energetically more favorable on the @13 clusters than on the surfaces for all metals studied. Charge population analysis and density of states were calculated to understand the electronic behavior of hydrogen on the @13 cluster and on the (1 1 1) surface. In all the cases studied, hydrogen takes more charge from the @13 metal cluster than on (1 1 1) surfaces. The ab-initio thermodynamics shows the favorable ranges of pressure, energy, and chemical potential for dissociative adsorption of H2 for all the coverages studied on the metal clusters. Additionally, XPS and chemisorption results for supported nanoparticles and bulk material are presented for cobalt.11 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S030101042200101X?via%3DihubDissociative adsorption of H2 on metal cluster and (111) surface of Ag, Co, Cu and RuArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Chemical PhysicsI. Swart, F.M.F. de Groot, B.M. Weckhuysen, P. Gruene, G. Meijer, A. Fielicke, H2 Adsorption on 3d Transition Metal Clusters: A Combined Infrared Spectroscopy and Density Functional Study, J. Phys. Chem. A. 112 (2008) 1139–1149, https://doi. org/10.1021/jp076702t.V. Jain, B. Kandasubramanian, Functionalized graphene materials for hydrogen storage, J. Mater. Sci. 55 (2020) 1865–1903, https://doi.org/10.1007/s10853- 019-04150-y.C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz, D. Astruc, Hydrolysis of Ammonia-Borane over Ni/ZIF-8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release, J. Am. Chem. Soc. 139 (2017) 11610–11615, https://doi.org/10.1021/jacs.7b06859.G. Chen, R. Wang, W. Zhao, B. Kang, D. Gao, C. Li, J.Y. Lee, Effect of Ru crystal phase on the catalytic activity of hydrolytic dehydrogenation of ammonia borane, J. Power Sources 396 (2018) 148–154, https://doi.org/10.1016/j. jpowsour.2018.06.028.A. Montoya, A. Schlunke, B.S. Haynes, Reaction of Hydrogen with Ag(111): Binding States, Minimum Energy Paths, and Kinetics, J. Phys. Chem. B 110 (2006) 17145–17154, https://doi.org/10.1021/jp062725g.A. Schneemann, J.L. White, S. Kang, S. Jeong, L.F. Wan, E.S. Cho, T.W. Heo, D. Prendergast, J.J. Urban, B.C. Wood, M.D. Allendorf, V. Stavila, Nanostructured Metal Hydrides for Hydrogen Storage, Chem. Rev. 118 (2018) 10775–10839, https://doi.org/10.1021/acs.chemrev.8b00313.K. García-Díez, J. Fern´ andez-Fern´ andez, J.A. Alonso, M.J. Lopez, ´ Theoretical study of the adsorption of hydrogen on cobalt clusters, PCCP 20 (2018) 21163–21176, https://doi.org/10.1039/C8CP03048K.H. Akbarzadeh, A.N. Shamkhali, H2 adsorption on Ag-nanocluster/single-walled carbon nanotube composites: A molecular dynamics study on the effects of nanocluster size, diameter, and chirality of nanotube, J. Comput. Chem. 36 (2015) 433–440, https://doi.org/10.1002/jcc.23817.M. Yu, L. Liu, Q. Wang, L. Jia, B. Hou, Y. Si, D. Li, Y. Zhao, High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics, International Journal of Hydrogen Energy. 43 (2018) 5576–5590. https://doi.org/ https://doi.org/10.1016/j.ijhydene.2018.01.165.A. Nakhaei Pour, Z. Keyvanloo, M. Izadyar, S.M. Modaresi, Dissociative hydrogen adsorption on the cubic cobalt surfaces: A DFT study, Int. J. Hydrogen Energy 40 (2015) 7064–7071, https://doi.org/10.1016/j.ijhydene.2015.04.028.K. Mudiyanselage, Y. Yang, F.M. Hoffmann, O.J. Furlong, J. Hrbek, M.G. White, P. Liu, D.J. Stacchiola, Adsorption of hydrogen on the surface and sub-surface of Cu (111), The Journal of Chemical Physics. 139 (2013) 044712. https://doi.org/ 10.1063/1.4816515.K. Cao, G. Füchsel, A.W. Kleyn, L.B.F. Juurlink, Hydrogen adsorption and desorption from Cu(111) and Cu(211), PCCP 20 (2018) 22477–22488, https://doi. org/10.1039/C8CP03386B.P. Zhao, Y. He, D.B. Cao, X. Wen, H. Xiang, Y.W. Li, J. Wang, H. Jiao, High coverage adsorption and co-adsorption of CO and H<inf>2</inf> on Ru(0001) from DFT and thermodynamics, PCCP 17 (2015) 19446–19456, https://doi.org/ 10.1039/c5cp02486b.I. Yarovsky, A. Goldberg, DFT study of hydrogen adsorption on Al 13 clusters, Mol. Simul. 31 (2005) 475–481, https://doi.org/10.1080/08927020412331337041.S. Amaya-Roncancio, A.A. García Blanco, D.H. Linares, K. Sapag, DFT study of hydrogen adsorption on Ni/graphene, Appl. Surf. Sci. 447 (2018) 254–260, https://doi.org/10.1016/j.apsusc.2018.03.233.P. Felício-Sousa, K.F. Andriani, J.L.F. Da Silva, Ab initioinvestigation of the role of the d-states occupation on the adsorption properties of H2, CO, CH4and CH3OH on the Fe13, Co13, Ni13and Cu13clusters, PCCP 23 (2021) 8739–8751, https://doi. org/10.1039/d0cp06091g.S. Amaya-Roncancio, L. Reinaudi, M. Cecilia, Gimenez, Adsorption and dissociation of CO on metal clusters, Materials Today, Communications. 24 (2020), 101158, https://doi.org/10.1016/j.mtcomm.2020.101158.M.R. Dehghan, S. Ahmadi, Z. Mosapour Kotena, M. Niakousari, A computational study of N2 adsorption on aromatic metal Mg16M;(M=Be, Mg, and Ca) nanoclusters, J. Mol. Graph. Model. 105 (2021), 107862, https://doi.org/10.1016/ j.jmgm.2021.107862.P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. MartinSamos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, Journal of Physics Condensed Matter. 21 (2009) 395502. https://doi.org/10.1088/0953-8984/21/39/395502.M.D. the E. Transition, QUANTUMESPRESSO, (n.d.). https://www.quantumespresso.org/resources/faq/pseudopotentials (accessed March 5, 2021).(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/H.pbe-rrkjus_ psl.1.0.0.UPF (accessed June 2, 2021).(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Ru.pbe-spn-rrkjus_ psl.1.0.0.UPF (accessed June 2, 2021).(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Cu.pbe-d-rrkjus. UPF (accessed June 2, 2021).(No Title), (n.d.). https://www.quantum-espresso.org/upf_files/Co.rel-pbe-ndrrkjus.UPF (accessed June 2, 2021).J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868, https://doi.org/10.1103/ PhysRevLett.77.3865.M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045–1097, https:// doi.org/10.1103/RevModPhys.64.1045.Z.Z. Lin, X. Chen, C. Yin, H. Tang, Y.C. Hu, X.J. Ning, Theoretical prediction of the growth and surface structure of Pt and Ni nanoparticles, EPL (Europhysics Letters). 96 (2011) 66005, https://doi.org/10.1209/0295-5075/96/66005.X. Liu, D. Tian, C. Meng, DFT study on the adsorption and dissociation of H2 on Pdn (n=4, 6, 13, 19, 55) clusters, Journal of Molecular Structure. 1080 (2015) 105–110. https://doi.org/https://doi.org/10.1016/j.molstruc.2014.09.078.C. Kittel, Introduction to Solid State Physics, eigth, Jhon Wiley & Sons, New York, 2005.H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B. 13 (1976) 5188–5192, https://doi.org/10.1103/PhysRevB.13.5188.G. Henkelman, B.P. Uberuaga, H. Jonsson, ´ Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904, https://doi.org/10.1063/1.1329672.A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, in, Computational Materials Science, Elsevier (2003) 155–168, https://doi.org/10.1016/S0927-0256(03)00104-6.F. Silveri, M.G. Quesne, A. Roldan, N.H. de Leeuw, C.R.A. Catlow, Hydrogen adsorption on transition metal carbides: a DFT study, PCCP 21 (2019) 5335–5343, https://doi.org/10.1039/C8CP05975F.W. Bergermayer, H. Schweiger, E. Wimmer, Ab initio thermodynamics of oxide surfaces: O2 on Fe2O3(0001), Physical Review B. 69 (2004), 195409, https://doi. org/10.1103/PhysRevB.69.195409.S.A. Tacey, B.W.J. Chen, T. Szilvasi, ´ M. Mavrikakis, An automated cluster surface scanning method for exploring reaction paths on metal-cluster surfaces, Comput. Mater. Sci. 186 (2021), 110010, https://doi.org/10.1016/j. commatsci.2020.110010.Y. Kunisada, H. Kasai, Hindered rotational physisorption states of H2 on Ag(111) surfaces, PCCP 17 (2015) 19625–19630, https://doi.org/10.1039/C5CP01701G.B. Jiang, H. Guo, Six-dimensional quantum dynamics for dissociative chemisorption of H2 and D2 on Ag(111) on a permutation invariant potential energy surface, PCCP 16 (2014) 24704–24715, https://doi.org/10.1039/ C4CP03761H.P. Hirunsit, K. Shimizu, R. Fukuda, S. Namuangruk, Y. Morikawa, M. Ehara, Cooperative H 2 Activation at Ag Cluster/θ-Al 2 O 3 (110) Dual Perimeter Sites: A Density Functional Theory Study, The Journal of Physical Chemistry C. 118 (2014) 7996–8006, https://doi.org/10.1021/jp5000792.H.-W.-H.-P.-D.-L.-Z.-H.-Z.-U.-O. Zhi-Jun, CO and H2 Molecules Adsorption on Cu (111) Surface and Solvent Effects, Acta Phys. -Chim. Sin. 25 (2009) 2507–2512.G.H. Guvelioglu, P. Ma, X. He, R.C. Forrey, H. Cheng, First principles studies on the growth of small Cu clusters and the dissociative chemisorption of H2, Physical Review B - Condensed Matter and Materials Physics. 73 (2006), 155436, https:// doi.org/10.1103/PhysRevB.73.155436.M.J.S. Spencer, G.L. Nyberg, DFT modelling of hydrogen on Cu(110)- and (111)- type clusters, Mol. Simul. 28 (8-9) (2002) 807–825.G.X. Ge, H.X. Yan, Q. Jing, Y.H. Luo, Theoretical Study of Hydrogen Adsorption on Ruthenium Clusters, J. Cluster Sci. 22 (2011) 473–489, https://doi.org/10.1007/ s10876-011-0395-1.111559Density functional theoryHydrogen dissociative adsorptionClusterMetal surfaceChemisorptionPublicationORIGINALDissociative adsorption of H2 on metal cluster and (1 1 1) surface of Ag, Co, Cu and Ru.pdfDissociative adsorption of H2 on metal cluster and (1 1 1) surface of Ag, Co, Cu and Ru.pdfapplication/pdf8603882https://repositorio.cuc.edu.co/bitstreams/64fdca68-4532-4b4a-83d8-41310db2ad69/download1c049627ea83198edd0b9989f8778c72MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/5f0a178e-9224-4adc-a1cc-3cb87258abfa/download73a5432e0b76442b22b026844140d683MD52TEXTDissociative adsorption of H2 on metal cluster and (1 1 1) surface of Ag, Co, Cu and Ru.pdf.txtDissociative adsorption of H2 on metal cluster and (1 1 1) surface of Ag, Co, Cu and Ru.pdf.txtExtracted texttext/plain63544https://repositorio.cuc.edu.co/bitstreams/87b85fdf-83ce-4d86-8ad0-c98245fee034/downloadf08650b77c2a5f6298ae8cc196d1a31fMD53THUMBNAILDissociative adsorption of H2 on metal cluster and (1 1 1) surface of Ag, Co, Cu and Ru.pdf.jpgDissociative adsorption of H2 on metal cluster and (1 1 1) surface of Ag, Co, Cu and Ru.pdf.jpgGenerated Thumbnailimage/jpeg14987https://repositorio.cuc.edu.co/bitstreams/2dadfca8-0ca4-469c-b381-1a5642de383d/downloaddb9c7adbcd92b7904afa5148890d03e9MD5411323/13638oai:repositorio.cuc.edu.co:11323/136382024-11-06 03:01:57.285https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K