Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation
The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297–0.149 mm, a...
- Autores:
-
de Lima, Renata Silva
Tonholo, Josealdo
Rangabhashiyam, Selvasembian
Fernandes, Daniel Pinto
Georgin, Jordana
de Paiva e Silva Zanta, Carmem Lúcia
Meili, Lucas
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13785
- Acceso en línea:
- https://hdl.handle.net/11323/13785
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorbent regeneration
Ecologically viable
Methylene blue dye molecule
Removing pollutants
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_3531c1c6a515a44af3863c083435089c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13785 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
title |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
spellingShingle |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation Adsorbent regeneration Ecologically viable Methylene blue dye molecule Removing pollutants |
title_short |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
title_full |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
title_fullStr |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
title_full_unstemmed |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
title_sort |
Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidation |
dc.creator.fl_str_mv |
de Lima, Renata Silva Tonholo, Josealdo Rangabhashiyam, Selvasembian Fernandes, Daniel Pinto Georgin, Jordana de Paiva e Silva Zanta, Carmem Lúcia Meili, Lucas |
dc.contributor.author.none.fl_str_mv |
de Lima, Renata Silva Tonholo, Josealdo Rangabhashiyam, Selvasembian Fernandes, Daniel Pinto Georgin, Jordana de Paiva e Silva Zanta, Carmem Lúcia Meili, Lucas |
dc.subject.proposal.eng.fl_str_mv |
Adsorbent regeneration Ecologically viable Methylene blue dye molecule Removing pollutants |
topic |
Adsorbent regeneration Ecologically viable Methylene blue dye molecule Removing pollutants |
description |
The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297–0.149 mm, and pH 12.0, demonstrated the highest dye molecule removal efficiency of 82.41%. The material’s porosity was observed through scanning electron microscopy, which is favorable for adsorption, while Fourier-transform infrared spectroscopy and X-Ray diffraction analysis analyses confirmed the presence of calcium carbonate in the crystalline phases. The pseudo-second order model was found to be the best fit for the data, suggesting that the adsorption mechanism involves two steps: external diffusion and diffusion via the solid pores. The Redlich-Peterson isotherm model better represented the equilibrium data, and the methylene blue adsorption was found to be spontaneous, favorable, and endothermic. The hydrogen peroxide with UV oxidation was found to be the most efficient method of regeneration, with a regeneration percentage of 63% achieved using 600 mmol.L−1 of oxidizing agents. The results suggest that pyrolyzed Mytella falcata shells could serve as an ecologically viable adsorbent alternative, reducing the amount of waste produced in the local environment and at the same time removing pollutants from the water. The material’s adsorption capacity remained almost constant in the first adsorption-oxidation cycles, indicating its potential for repeated use. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-10-21 |
dc.date.accessioned.none.fl_str_mv |
2024-11-22T12:07:32Z |
dc.date.available.none.fl_str_mv |
2024-10-21 2024-11-22T12:07:32Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
draft |
dc.identifier.citation.none.fl_str_mv |
de Lima, R.S., Tonholo, J., Rangabhashiyam, S. et al. Enhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells: Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation. Environmental Management 73, 425–442 (2024). https://doi.org/10.1007/s00267-023-01898-7. |
dc.identifier.issn.none.fl_str_mv |
0364-152X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13785 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00267-023-01898-7 |
dc.identifier.eissn.none.fl_str_mv |
1432-1009 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
de Lima, R.S., Tonholo, J., Rangabhashiyam, S. et al. Enhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells: Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation. Environmental Management 73, 425–442 (2024). https://doi.org/10.1007/s00267-023-01898-7. 0364-152X 10.1007/s00267-023-01898-7 1432-1009 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13785 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Environmental Management |
dc.relation.references.none.fl_str_mv |
Abdulhameed, A.S., Jawad, A.H., Kashi, E., Radzun, K.A., ALOthman, Z.A., Wilson, L.D. Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application (2022) Algal Res, 67, p. 102864. Addadi, L., Joester, D., Nudelman, F., Weiner, S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes (2006) Chem - A Eur J, 12, pp. 980-987. 1:CAS:528:DC%2BD28Xht1Wnur4%3D Ahmad, T., Manzar, M.S., Georgin, J., Franco, D.S.P., Khan, S., Meili, L., Ullah, N. Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water (2023) J Water Process Eng, 53, p. 103623. Aldahash, S.A., Siddiqui, S., Uddin, M.K. Eco-friendly synthesis of copper nanoparticles from fiber of trapa natans l. shells and their impregnation onto polyamide-12 for environmental applications (2023) J Nat Fibers, 20. https:// Asuha, S., Fei, F., Wurendaodi, W., Zhao, S., Wu, H., Zhuang, X. Activation of kaolinite by a low-temperature chemical method and its effect on methylene blue adsorption (2020) Powder Technol, 361, pp. 624-632. 1:CAS:528:DC%2BC1MXit1KjurbL Babuponnusami, A., Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment (2014) J Environ Chem Eng, 2, pp. 557-572. 1:CAS:528:DC%2BC2cXosV2nsbk%3D Barkat, M., Nibou, D., Chegrouche, S., Mellah, A. Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions (2009) Chem Eng Process Process Intensif, 48, pp. 38-47. 1:CAS:528:DC%2BD1cXhsVymtbbM Beltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L., Almeida, V.C. (2017) Adsorption of Caffeine on Mesoporous Activated Carbon Fibers Prepared from Pineapple Plant Leaves, Besinella-Junior, E., Matsuo, M.S., Walz, M., Da Silva, A.F., Da Silva, C.F. Effects of temperature and particle size on the adsorption of remazol golden yellow rnl in activated carbon (2009) Acta Sci - Technol, 31, pp. 185-193. 1:CAS:528:DC%2BD1MXhsFahur7O Brillas, E. A review on the degradation of organic pollutants in waters by UV photoelectrofenton and solar photoelectro-fenton (2014) J Braz Chem Soc, 25, pp. 393-417. 1:CAS:528:DC%2BC2cXpsFCntL8%3D Buelvas, D.D.A., Camargo, L.P., Salgado, I.K.I., Vicentin, B.L.S., Valezi, D.F., Dall’Antonia, L.H., Tarley, C.R.T., Di Mauro, E. Study and optimization of the adsorption process of methylene blue dye in reusable polyaniline-magnetite composites (2023) Synth Met, 292. Castro, T.F.D., Paiva, I.M., Carvalho, A.F.S., Assis, I.L., Palmieri, M.J., Andrade-Vieira, L.F., Marcussi, S., Solis-Murgas, L.D. Genotoxicity of spent pot liner as determined with the zebrafish (Danio rerio) experimental model (2018) Environ Sci Pollut Res, 25, pp. 11527-11535. 1:CAS:528:DC%2BC1cXjsFSitLc%3D Chen, Q., Liu, H., Yang, Z., Tan, D. Regeneration performance of spent granular activated carbon for tertiary treatment of dyeing wastewater by Fenton reagent and hydrogen peroxide (2017) J Mater Cycles Waste Manag, 19, pp. 256-264. 1:CAS:528:DC%2BC2MXhtFaitrnI Chowdhury, S., Saha, P. Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies (2010) Chem Eng J, 164, pp. 168-177. 1:CAS:528:DC%2BC3cXht1equrnJ Coutinho, M.K., Assad, L.T., Normande, A.C.L., Brandão, T.B.C. (2014) A Cada Lata: A Extração Do Sururu Na Lagoa Mundaú – Alagoas, Brasília Crini, G. Non-conventional low-cost adsorbents for dye removal: A review (2006) Bioresour Technol, 97, pp. 1061-1085. 1:CAS:528:DC%2BD28XivVOjur4%3D, 15993052 Dahiya, D., Nigam, P.S. Waste management by biological approach employing natural substrates and microbial agents for the remediation of dyes’ wastewater (2020) Appl Sci, 10. https:// Ebrahimi, A., Arami, M., Bahrami, H., Pajootan, E. Fish Bone as a Low-Cost Adsorbent for Dye Removal from Wastewater: Response Surface Methodology and Classical Method (2013) Environ Model Assess, 18, pp. 661-670. Ekanayake, A., Rajapaksha, A.U., Selvasembian, R., Vithanage, M. Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media (2022) Environ Res, 211, p. 113073. 1:CAS:528:DC%2BB38Xnt1ygtLc%3D, 35283075 El Haddad, M., Regti, A., Laamari, M.R., Slimani, R., Mamouni, R., El Antri, S., Lazar, S. Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions (2014) J Taiwan Inst Chem Eng, 45, pp. 533-540. 1:CAS:528:DC%2BC3sXptVCku78%3D Eltaweil, A.S., Ali Mohamed, H., Abd El-Monaem, E.M., El-Subruiti, G.M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms (2020) Adv Powder Technol, 31, pp. 1253-1263. 1:CAS:528:DC%2BB3cXhs1Kmtro%3D Eskandarian, L., Arami, M., Pajootan, E. Evaluation of adsorption characteristics of multiwalled carbon nanotubes modified by a poly(propylene imine) dendrimer in single and multiple dye solutions: Isotherms, kinetics, and thermodynamics (2014) J Chem Eng Data, 59, pp. 444-454. 1:CAS:528:DC%2BC2cXmt1Ghtg%3D%3D Eskandarian, L., Pajootan, E., Arami, M. Novel super adsorbent molecules, carbon nanotubes modified by dendrimer miniature structure, for the removal of trace organic dyes (2014) Ind Eng Chem Res, 53, pp. 14841-14853. 1:CAS:528:DC%2BC2cXhsVCqtbfJ Estrada, M., Sepúlveda, F., Nenen, A., Bravo-Linares, C., Nishide, H., Suga, T., MorenoVilloslada, I. Novel reusable catalytic poly(4-styrenesulfonate-co-glycidylmethacrylate) foams for adsorption and photodegradation of the model pollutant dye methylene blue based on aromatic-aromatic interactions (2023) Chem Eng J, 459, p. 141518. 1:CAS:528:DC%2BB3sXitVCitLw%3D Fernandes, E.P., Silva, T.S., Carvalho, C.M., Selvasembian, R., Chaukura, N., Oliveira, L.M.T.M., Meneghetti, S.M.P., Meili, L. Efficient adsorption of dyes by γ-alumina synthesized from aluminum wastes: Kinetics, isotherms, thermodynamics and toxicity assessment (2021) J Environ Chem Eng, 9. Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L. Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes (2010) Bioresour Technol, 101, pp. 9500-9507. 1:CAS:528:DC%2BC3cXhtV2gt7nM, 20727738 Franco, D.S.P., Georgin, J., Ramos, C.G., Netto, M.S., Lobo, B., Jimenez, G., Lima, E.C., Sher, F. Production of adsorbent for removal of propranolol hydrochloride: Use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean (2023) J Mol Liq, 380, p. 121677. 1:CAS:528:DC%2BB3sXmvV2jtbY%3D Franco, D.S.P., Georgin, J., Ramos, C.G., Eljaiek, S.M., Badillo, D.R., de Oliveira, A.H.P., Allasia, D., Meili, L. The synthesis and evaluation of porous carbon material from corozo fruit (bactris guineensis) for efficient propranolol hydrochloride adsorption (2023) Molecules, 28. (, b, ),., :, https:// Freundlich, H. Über die Adsorption in Lösungen (1907) Zeitschrift für Phys Chemie, 57U Gao, N., Li, J., Qi, B., Li, A., Duan, Y., Wang, Z. Thermal analysis and products distribution of dried sewage sludge pyrolysis (2014) J Anal Appl Pyrolysis, 105, pp. 43-48. 1:CAS:528:DC%2BC3sXhslCqs7zI Gautam, R.K., Mudhoo, A., Chattopadhyaya, M.C. Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of Alizarin Red S removal by mustard husk (2013) J Environ Chem Eng, 1, pp. 1283-1291. 1:CAS:528:DC%2BC2cXpvVyltw%3D%3D Georgin, J., Franco, D.S.P., Sher, F. A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology (2023) Chem Eng Res Des, 193, pp. 99-120. 1:CAS:528:DC%2BB3sXlsFansb8%3D Georgin, J., Franco, D.S.P.P., Netto, M.S., Allasia, D., Oliveira, M.L.S.S., Dotto, G.L. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora) (2020) Environ Sci Pollut Res, 27, pp. 20831-20843. 1:CAS:528:DC%2BB3cXmsVelsbc%3D Georgin, J., Marques, B.S., Peres, E.C., Allasia, D., Dotto, G.L. Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa) (2018) Water Sci Technol, 77, pp. 1612-1621. 1:CAS:528:DC%2BC1MXhs1Cntbk%3D, 29595163 Grassi, P., Georgin, J., Franco, D.S.P., Sá, Í., Lins, P.V.S., Foletto, E.L., Jahn, S.L., Rangabhashiyam, S. Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems (2023) Int J Phytoremediat, pp. 1-16. 1:CAS:528:DC%2BB3sXhtlKrsb7O Heidarinejad, Z., Rahmanian, O., Fazlzadeh, M., Heidari, M. Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound (2018) J Mol Liq, 264, pp. 591-599. 1:CAS:528:DC%2BC1cXhtVamsbvK Henrique, D.C., Quintela, D.U., Ide, A.H., Erto, A., Duarte, J.L.D.S., Meili, L. Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions (2020) J Environ Chem Eng, 8, p. 103782. 1:CAS:528:DC%2BB3cXptVCgsbY%3D Henrique, D.C., Quitela, D.U., Ide, A.H., Lins, P.V.S., Perazzini, M.T.B., Perazzini, H., Oliveira, L.M.T.M., Meili, L. Mollusk shells as adsorbent for removal of endocrine disruptor in different water matrix (2021) J Environ Chem Eng, 9 Henrique, D.C.D.C.D.C., Henrique, D.C.D.C.D.C., Solano, J.R.S., Barbosa, V.T., Silva, A.O.S., Dornelas, C.B., Duarte, J.L.S., Meili, L. Calcined Mytella falcata shells as a source for CaAl/LDH production: Synthesis and characterization (2022) Colloids Surfaces A Physicochem Eng Asp, 644. https:// Hernandes, P.T., Oliveira, M.L.S.S., Georgin, J., Franco, D.S.P.P., Allasia, D., Dotto, G.L. Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus) (2019) Environ Sci Pollut Res, 26, pp. 31924-31933. 1:CAS:528:DC%2BC1MXhslaju7vF Ho, Y.S., Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood (1998) Process Saf Environ Prot, 76, pp. 183-191. 1:CAS:528:DyaK1cXjvVGgtLY%3D Ho, Y.S., McKay, G. Pseudo-second order model for sorption processes (1999) Process Biochem, 34, pp. 451-465. 1:CAS:528:DyaK1MXlt1Omtbk%3D Ho, Y.S., McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents (1998) Process Saf Environ Prot, 76, pp. 332-340. 1:CAS:528:DyaK1MXjt1Ci Huang, H., Leung, D.Y.C., Kwong, P.C.W., Xiong, J., Zhang, L. Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation (2013) Catal Today, 201, pp. 189-194. 1:CAS:528:DC%2BC38XhtFOmtLfN Jawad, A.H., Abdulhameed, A.S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study (2020) Surf Interfaces, 18, p. 100422. 1:CAS:528:DC%2BB3cXitV2mt7fO Jawad, A.H., Razuan, R., Appaturi, J.N., Wilson, L.D. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation (2019) Surf Interfaces, 16, pp. 76-84. 1:CAS:528:DC%2BC1MXitFKksbnJ Khan, G., Manzar, M.S., Lins Pv Dos, S., Zubair, M., Khan, S.U., Selvasembian, R., Meili, L., Kayed, T.S. RSM-CCD optimization approach for the adsorptive removal of Eriochrome Black T from aqueous system using steel slag-based adsorbent: Characteriza-tion, Isotherm, Kinetic modeling and Thermodynamic analysis (2021) J Mol Liq Khodabandehloo, A., Rahbar-Kelishami, A., Shayesteh, H. Methylene blue removal using Salix babylonica (Weeping willow) leaves powder as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies (2017) J Mol Liq, 244, pp. 540-548. 1:CAS:528:DC%2BC2sXhsFCqs7fF Kumar, A., Jena, H.M. Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4 (2017) J Environ Chem Eng, 5, pp. 2032-2041. 1:CAS:528:DC%2BC2sXhtVCksr3L Lagergren, S.K. About the theory of so-called adsorption of soluble substances (1898) Sven Vetenskapsakad Handingarl, 24, pp. 1-39. Langmuir, I. Adsorption of gases on glass, mica and platinum (1918) J Am Chem Soc, 40, pp. 1361-1403. 1:CAS:528:DyaC1cXht1KgsA%3D%3D Li, H., Kong, J., Zhang, H., Gao, J., Fang, Y., Shi, J., Ge, T., Li, H. Mechanisms and adsorption capacities of ball milled biomass fly ash/biochar composites for the adsorption of methylene blue dye from aqueous solution (2023) J Water Process Eng, 53, p. 103713. Li, M., Yao, Z.T., Chen, T., Lou, Z.H., Xia, M. The antibacterial activity and mechanism of mussel shell waste derived material (2014) Powder Technol, 264, pp. 577-582. 1:CAS:528:DC%2BC2cXhtFynur3E Li, Z., Wang, G., Zhai, K., He, C., Li, Q., Guo, P. Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons (2018) Colloids Surf A Physicochem Eng Asp, 538, pp. 28-35. 1:CAS:528:DC%2BC2sXhslKlsbjK Loutfi, M., Mariouch, R., Mariouch, I., Belfaquir, M., ElYoubi, M.S. Adsorption of methylene blue dye from aqueous solutions onto natural clay: Equilibrium and kinetic studies (2023) Mater Today Proc, 72, pp. 3638-3643. 1:CAS:528:DC%2BB38XisFKisLvJ Low, L.W., Teng, T.T., Morad, N., Azahari, B. Studies on the Adsorption of Methylene Blue Dye from Aqueous Solution onto LowCost Tartaric Acid Treated Bagasse (2012) APCBEE Procedia, 1, pp. 103-109. 1:CAS:528:DC%2BC2cXisFSrurk%3D Machado, F.M., Bergmann, C.P., Fernandes, T.H.M., Lima, E.C., Royer, B., Calvete, T., Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon (2011) J Hazard Mater, 192, pp. 1122-1131. 1:CAS:528:DC%2BC3MXhtVygtL7F, 21724329 Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., Erto, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling (2019) Prog Biophys Mol Biol, 141, pp. 60-71. 1:CAS:528:DC%2BC1cXhsVSmt7fL, 30055187 Meili, L., Lins, P.V., Zanta, C.L.P.S., Soletti, J.I., Ribeiro, L.M.O., Dornelas, C.B., Silva, T.L., Vieira, M.G.A. MgAl-LDH/Biochar composites for methylene blue removal by adsorption (2019) Appl Clay Sci, 168, pp. 11-20. 1:CAS:528:DC%2BC1cXitVKhsrfE Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review (2018) Water Res, 139, pp. 118-131. 1:CAS:528:DC%2BC1cXntFylsr0%3D, 29631187 Milonjic, S. A consideration of the correct calculation of thermodynamic parameters of adsorption (2007) J Serb Chem Soc, 72, pp. 1363-1367. 1:CAS:528:DC%2BD2sXhsVGhtrzN Mohamed, M., Yousuf, S., Maitra, S. Decomposition study of calcium carbonate in cockle shell (2012) J Eng Sci Technol, 7, pp. 1-10 Mu, Z., Liu, D., Lv, J., Chai, D.F., Bai, L., Zhang, Z., Dong, G., Zhang, W. Insight into the highly efficient adsorption towards cationic methylene blue dye with a superabsorbent polymer modified by esterified starch (2022) J Environ Chem Eng, 10, p. 108425. 1:CAS:528:DC%2BB38XitF2ju7%2FP Munagapati, V.S., Wen, H.Y., Gollakota, A.R.K., Wen, J.C., Lin, K.Y.A., Shu, C.M., Yarramuthi, V., Zyryanov, G.V. Magnetic Fe3O4 nanoparticles loaded guava leaves powder impregnated into calcium alginate hydrogel beads (Fe3O4-GLP@CAB) for efficient removal of methylene blue dye from aqueous environment: Synthesis, characterization, and its adsorption performance (2023) Int J Biol Macromol, 246, p. 125675. 1:CAS:528:DC%2BB3sXhsVWrsbnN, 37414311 Nasuha, N., Hameed, B.H., Din, A.T.M. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue (2010) J Hazard Mater, 175, pp. 126-132. 1:CAS:528:DC%2BD1MXhsFOqsr%2FO, 19879046 Nethaji, S., Sivasamy, A., Thennarasu, G., Saravanan, S. Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass (2010) J Hazard Mater, 181, pp. 271-280. 1:CAS:528:DC%2BC3cXosF2gt7w%3D, 20537793 Neyens, E., Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique (2003) J Hazard Mater, 98, pp. 33-50. 1:CAS:528:DC%2BD3sXhslKjsLw%3D, 12628776 Oei, B.C., Ibrahim, S., Wang, S., Ang, H.M. Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution (2009) Bioresour Technol, 100, pp. 4292-4295. 1:CAS:528:DC%2BD1MXmtl2ktrY%3D, 19386493 Oliveira, L.S., Franca, A.S., Alves, T.M., Rocha, S.D.F. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters (2008) J Hazard Mater, 155, pp. 507-512. 1:CAS:528:DC%2BD1cXmsFahtLo%3D, 18226444 Paz, D.S., Baiotto, A., Schwaab, M., Mazutti, M.A., Bassaco, M.M., Bertuol, D.A., Foletto, E.L., Meili, L. Use of papaya seeds as a biosorbent of methylene blue from aqueous solution (2013) Water Sci Technol, 68, pp. 441-447. 1:CAS:528:DC%2BC3sXhsVOnsrzE, 23863440 Peter, A., Mihaly-Cozmuta, A., Nicula, C., Mihaly-Cozmuta, L., Jastrzębska, A., Olszyna, A., Baia, L. UV Light-Assisted Degradation of Methyl Orange, Methylene Blue, Phenol, Salicylic Acid, and Rhodamine B: Photolysis Versus Photocatalyis (2017) Water Air Soil Pollut, 228. https:// Pi, S., Li, A., Wei, W., Feng, L., Zhang, G., Chen, T., Zhou, X., Ma, F. Synthesis of a novel magnetic nano-scale biosorbent using extracellular polymeric substances from Klebsiella sp. J1 for tetracycline adsorption (2017) Bioresour Technol, 245, pp. 471-476. 1:CAS:528:DC%2BC2sXhsVeisrvN, 28898846 Pierce, J. Colour in textile effluents - the origins of the problem (1994) J Soc Dye Colour, 110, pp. 131-133. 1:CAS:528:DyaK2cXlsVSrsrc%3D Pv, N. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review (2017) Environ Sci Pollut Res Int, 24, pp. 27047-27069. Quintela, D.U., Henrique, D.C., Lins Pv Dos, S., Ide, A.H., Erto, A., Duarte Jl Da, S., Meili, L. Waste of Mytella Falcata shells for removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies (2020) Colloids Surfaces B Biointerfaces, 195. Rangabhashiyam, S., do Lins, P.V.S., Oliveira, L.M.T.D.M., Sepulveda, P., Ighalo, J.O., Rajapaksha, A.U., Meili, L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review (2022) Environ Pollut, 293, p. 118581. 1:CAS:528:DC%2BB3MXis1KmtrbO, 34861332 Redlich, O., Peterson, D.L. A Useful Adsorption Isotherm (1959) J Phys Chem, 63, p. 1024. 1:CAS:528:DyaF3cXislI%3D Rosli, N.A., Ahmad, M.A., Noh, T.U. Unleashing the potential of pineapple peel-based activated carbon: Response surface methodology optimization and regeneration for methylene blue and methyl red dyes adsorption (2023) Inorg Chem Commun, 155, p. 111041. 1:CAS:528:DC%2BB3sXhsVGitb7M Saechiam, S., Sripongpun, G. Adsorption of malachite green from synthetic wastewater using banana peel adsorbents (2019) Songklanakarin J Sci Technol, 41, pp. 21-29. 1:CAS:528:DC%2BC1MXhsVyrtLrO Sajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S., Chiu, W.S. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution (2011) Bioresour Technol, 102, pp. 7237-7243. 1:CAS:528:DC%2BC3MXnsVequ7o%3D, 21620692 Sangor, F.I.M.S., Al-Ghouti, M.A. Waste-to-value: Synthesis of nano-aluminum oxide (nano-γ-Al2O3) from waste aluminum foils for efficient adsorption of methylene blue dye (2023) Case Stud Chem Environ Eng, 8, p. 100394. 1:CAS:528:DC%2BB3sXht1CrtL%2FK Santos, D.H.S., Duarte, J.L.S., Tonholo, J., Meili, L., Zanta, C.L.P.S. Saturated activated carbon regeneration by UV-light, H2O2 and Fenton reaction (2020) Sep Purif Technol, 250, p. 117112. 1:CAS:528:DC%2BB3cXpvFarsrg%3D Schneider, C.D., de Oliveira, A.R. Oxygen free radicals and exercise: Mechanisms of synthesis and adaptation to the physical training (2004) Rev Bras Med do Esport, 10, pp. 314-318. Siddiqui, S.I., Rathi, G., Chaudhry, S.A. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies (2018) J Mol Liq, 264, pp. 275-284. 1:CAS:528:DC%2BC1cXpvFKgur8%3D Silva, D., Debacher, N.A., Junior, A.B.C., Rohers, F., De Castilhos, A.B., Rohers, F., Junior, A.B.C., Rohers, F. Physical chemistry and micro structural characterization of shells of bivalve mollusks from sea farmer around the santa catarina island (2010) Quim Nova, 33, pp. 1053-1058. 1:CAS:528:DC%2BC3cXps1Sju7c%3D Silva, T.S., Meili, L., Carvalho, S.H.V., Soletti, J.I., Dotto, G.L., Fonseca, E.J.S. Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste (2017) Environ Sci Pollut Res, 24, pp. 19927-19937. 1:CAS:528:DC%2BC2sXhtFCgs7vL Sips, R. On the structure of a catalyst surface (1948) J Chem Phys, 16, pp. 490-495. 1:CAS:528:DyaH1cXit1KhtQ%3D%3D Sivakumar, D. Role of Lemna minor Lin. in treating the textile industry wastewater (2014) Int J Mater Text Eng, 8, pp. 208-212. Somsesta, N., Sricharoenchaikul, V., Aht-Ong, D. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies (2020) Mater Chem Phys, 240, p. 122221. 1:CAS:528:DC%2BC1MXhvV2iu7jO Soudagar, S., Akash, S., Sree Venkat, M., Rao Poiba, V., Vangalapati, M. Adsorption of methylene blue dye on nano graphene oxide-thermodynamics and kinetic studies (2022) Mater Today Proc, 59, pp. 667-672. 1:CAS:528:DC%2BB38XhtVChsrnE Tan, I.A.W., Ahmad, A.L., Hameed, B.H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6- trichlorophenol on oil palm empty fruit bunch-based activated carbon (2009) J Hazard Mater, 164, pp. 473-482. 1:CAS:528:DC%2BD1MXjsVCksLg%3D, 18818013 Tisa, F., Abdul Raman, A.A., Wan Daud, W.M.A. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review (2014) J Environ Manag, 146, pp. 260-275. 1:CAS:528:DC%2BC2cXhsVSntL3F Tsai, W.T., Hsien, K.J., Hsu, H.C., Lin, C.M., Lin, K.Y., Chiu, C.H. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution (2008) Bioresour Technol, 99, pp. 1623-1629. 1:CAS:528:DC%2BD1cXjtVGmsg%3D%3D, 17543519 Tunali, S., Özcan, A.S., Akar, T., Özcan, A., Kaynak, Z. Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste (2009) DES, 249, pp. 757-761. 1:CAS:528:DC%2BD1MXhtlekur7F Uddin, M.K., Abd Malek, N.N., Jawad, A.H., Sabar, S. Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process (2023) Int J Phytoremediat, 25, pp. 393-402. 1:CAS:528:DC%2BB38XhslOgsLrE Uddin, M.K., Nasar, A. Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations (2020) Sci Rep, 10, pp. 1-13. 1:CAS:528:DC%2BB3cXps1Olurc%3D Vikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges (2018) Bioresour Technol, 253, pp. 355-367. 1:CAS:528:DC%2BC1cXosVKhuw%3D%3D, 29352640 Wan, X., Rong, Z., Zhu, K., Wu, Y. Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye (2022) Int J Biol Macromol, 222, pp. 725-735. 1:CAS:528:DC%2BB38XisFWiurfF, 36174861 Wang, S., Huang, H., Liu, J., Deng, Y. Micro-meso porous biocarbons derived from a typical biopolymer with superior adsorption capacity for methylene blue dye and high-performance supercapacitors (2022) J Electroanal Chem, 924, p. 116877. 1:CAS:528:DC%2BB38XisF2gtrfE Wang, X., Ju, X., Jia, T.Z., Xia, Q.C., Guo, J.L., Wang, C., Cui, Z., Sun, S.P. New surface cross-linking method to fabricate positively charged nanofiltration membranes for dye removal (2018) J Chem Technol Biotechnol, 93, pp. 2281-2291. 1:CAS:528:DC%2BC1cXkt1Kjs7c%3D Xu, C., Liu, F.Q., Gao, J., Li, L.J., Bai, Z.P., Ling, C., Zhu, C.Q., Li, A.M. Enhancement mechanisms behind exclusive removal and selective recovery of copper from salt solutions with an aminothiazole-functionalized adsorbent (2014) J Hazard Mater, 280, pp. 1-11. 1:CAS:528:DC%2BC2cXht1enur7E, 25117766 Yan, J., Chen, Y., Gao, W., Chen, Y., Qian, L., Han, L., Chen, M. Catalysis of hydrogen peroxide with Cu layered double hydrotalcite for the degradation of ethylbenzene (2019) Chemosphere, 225, pp. 157-165. 1:CAS:528:DC%2BC1MXkslehs74%3D, 30875498 |
dc.relation.citationendpage.none.fl_str_mv |
442 |
dc.relation.citationstartpage.none.fl_str_mv |
425 |
dc.relation.citationissue.none.fl_str_mv |
2 |
dc.relation.citationvolume.none.fl_str_mv |
73 |
dc.rights.eng.fl_str_mv |
© 2023 The Authors. |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
12 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer New York |
dc.publisher.place.none.fl_str_mv |
United States |
publisher.none.fl_str_mv |
Springer New York |
dc.source.none.fl_str_mv |
https://link.springer.com/article/10.1007/s00267-023-01898-7 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/2b774500-d52a-42c3-a890-7d6c34eb1028/download https://repositorio.cuc.edu.co/bitstreams/69359912-d378-411c-b856-ff5d0684463c/download https://repositorio.cuc.edu.co/bitstreams/82a4c7e9-9ace-40e7-8a49-bc8bc08b691a/download https://repositorio.cuc.edu.co/bitstreams/a02ecccd-83c4-4e29-940e-d2c89777ab86/download |
bitstream.checksum.fl_str_mv |
cf2af23dd367013a40361804e7b953cb 73a5432e0b76442b22b026844140d683 f70d676db9510d3a2418327a722dd2e5 7612de5d641de6b7f93104d2c3060e2a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166905201950720 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2023 The Authors.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfde Lima, Renata SilvaTonholo, JosealdoRangabhashiyam, SelvasembianFernandes, Daniel PintoGeorgin, Jordanade Paiva e Silva Zanta, Carmem LúciaMeili, Lucas2024-11-22T12:07:32Z2024-10-212024-11-22T12:07:32Z2023-10-21de Lima, R.S., Tonholo, J., Rangabhashiyam, S. et al. Enhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells: Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation. Environmental Management 73, 425–442 (2024). https://doi.org/10.1007/s00267-023-01898-7.0364-152Xhttps://hdl.handle.net/11323/1378510.1007/s00267-023-01898-71432-1009Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297–0.149 mm, and pH 12.0, demonstrated the highest dye molecule removal efficiency of 82.41%. The material’s porosity was observed through scanning electron microscopy, which is favorable for adsorption, while Fourier-transform infrared spectroscopy and X-Ray diffraction analysis analyses confirmed the presence of calcium carbonate in the crystalline phases. The pseudo-second order model was found to be the best fit for the data, suggesting that the adsorption mechanism involves two steps: external diffusion and diffusion via the solid pores. The Redlich-Peterson isotherm model better represented the equilibrium data, and the methylene blue adsorption was found to be spontaneous, favorable, and endothermic. The hydrogen peroxide with UV oxidation was found to be the most efficient method of regeneration, with a regeneration percentage of 63% achieved using 600 mmol.L−1 of oxidizing agents. The results suggest that pyrolyzed Mytella falcata shells could serve as an ecologically viable adsorbent alternative, reducing the amount of waste produced in the local environment and at the same time removing pollutants from the water. The material’s adsorption capacity remained almost constant in the first adsorption-oxidation cycles, indicating its potential for repeated use.12 páginasapplication/pdfengSpringer New YorkUnited Stateshttps://link.springer.com/article/10.1007/s00267-023-01898-7Enhancing methylene blue dye removal using pyrolyzed mytella falcata shells: characterization, kinetics, isotherm, and regeneration through photolysis and peroxidationArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceEnvironmental ManagementAbdulhameed, A.S., Jawad, A.H., Kashi, E., Radzun, K.A., ALOthman, Z.A., Wilson, L.D. Insight into adsorption mechanism, modeling, and desirability function of crystal violet and methylene blue dyes by microalgae: Box-Behnken design application (2022) Algal Res, 67, p. 102864.Addadi, L., Joester, D., Nudelman, F., Weiner, S. Mollusk shell formation: A source of new concepts for understanding biomineralization processes (2006) Chem - A Eur J, 12, pp. 980-987. 1:CAS:528:DC%2BD28Xht1Wnur4%3DAhmad, T., Manzar, M.S., Georgin, J., Franco, D.S.P., Khan, S., Meili, L., Ullah, N. Development of a new hyper crosslinked resin based on polyamine-isocyanurate for the efficient removal of endocrine disruptor bisphenol-A from water (2023) J Water Process Eng, 53, p. 103623.Aldahash, S.A., Siddiqui, S., Uddin, M.K. Eco-friendly synthesis of copper nanoparticles from fiber of trapa natans l. shells and their impregnation onto polyamide-12 for environmental applications (2023) J Nat Fibers, 20. https://Asuha, S., Fei, F., Wurendaodi, W., Zhao, S., Wu, H., Zhuang, X. Activation of kaolinite by a low-temperature chemical method and its effect on methylene blue adsorption (2020) Powder Technol, 361, pp. 624-632. 1:CAS:528:DC%2BC1MXit1KjurbLBabuponnusami, A., Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment (2014) J Environ Chem Eng, 2, pp. 557-572. 1:CAS:528:DC%2BC2cXosV2nsbk%3DBarkat, M., Nibou, D., Chegrouche, S., Mellah, A. Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions (2009) Chem Eng Process Process Intensif, 48, pp. 38-47. 1:CAS:528:DC%2BD1cXhsVymtbbMBeltrame, K.K., Cazetta, A.L., de Souza, P.S.C., Spessato, L., Silva, T.L., Almeida, V.C. (2017) Adsorption of Caffeine on Mesoporous Activated Carbon Fibers Prepared from Pineapple Plant Leaves,Besinella-Junior, E., Matsuo, M.S., Walz, M., Da Silva, A.F., Da Silva, C.F. Effects of temperature and particle size on the adsorption of remazol golden yellow rnl in activated carbon (2009) Acta Sci - Technol, 31, pp. 185-193. 1:CAS:528:DC%2BD1MXhsFahur7OBrillas, E. A review on the degradation of organic pollutants in waters by UV photoelectrofenton and solar photoelectro-fenton (2014) J Braz Chem Soc, 25, pp. 393-417. 1:CAS:528:DC%2BC2cXpsFCntL8%3DBuelvas, D.D.A., Camargo, L.P., Salgado, I.K.I., Vicentin, B.L.S., Valezi, D.F., Dall’Antonia, L.H., Tarley, C.R.T., Di Mauro, E. Study and optimization of the adsorption process of methylene blue dye in reusable polyaniline-magnetite composites (2023) Synth Met, 292.Castro, T.F.D., Paiva, I.M., Carvalho, A.F.S., Assis, I.L., Palmieri, M.J., Andrade-Vieira, L.F., Marcussi, S., Solis-Murgas, L.D. Genotoxicity of spent pot liner as determined with the zebrafish (Danio rerio) experimental model (2018) Environ Sci Pollut Res, 25, pp. 11527-11535. 1:CAS:528:DC%2BC1cXjsFSitLc%3DChen, Q., Liu, H., Yang, Z., Tan, D. Regeneration performance of spent granular activated carbon for tertiary treatment of dyeing wastewater by Fenton reagent and hydrogen peroxide (2017) J Mater Cycles Waste Manag, 19, pp. 256-264. 1:CAS:528:DC%2BC2MXhtFaitrnIChowdhury, S., Saha, P. Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies (2010) Chem Eng J, 164, pp. 168-177. 1:CAS:528:DC%2BC3cXht1equrnJCoutinho, M.K., Assad, L.T., Normande, A.C.L., Brandão, T.B.C. (2014) A Cada Lata: A Extração Do Sururu Na Lagoa Mundaú – Alagoas, BrasíliaCrini, G. Non-conventional low-cost adsorbents for dye removal: A review (2006) Bioresour Technol, 97, pp. 1061-1085. 1:CAS:528:DC%2BD28XivVOjur4%3D, 15993052Dahiya, D., Nigam, P.S. Waste management by biological approach employing natural substrates and microbial agents for the remediation of dyes’ wastewater (2020) Appl Sci, 10. https://Ebrahimi, A., Arami, M., Bahrami, H., Pajootan, E. Fish Bone as a Low-Cost Adsorbent for Dye Removal from Wastewater: Response Surface Methodology and Classical Method (2013) Environ Model Assess, 18, pp. 661-670.Ekanayake, A., Rajapaksha, A.U., Selvasembian, R., Vithanage, M. Amino-functionalized biochars for the detoxification and removal of hexavalent chromium in aqueous media (2022) Environ Res, 211, p. 113073. 1:CAS:528:DC%2BB38Xnt1ygtLc%3D, 35283075El Haddad, M., Regti, A., Laamari, M.R., Slimani, R., Mamouni, R., El Antri, S., Lazar, S. Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions (2014) J Taiwan Inst Chem Eng, 45, pp. 533-540. 1:CAS:528:DC%2BC3sXptVCku78%3DEltaweil, A.S., Ali Mohamed, H., Abd El-Monaem, E.M., El-Subruiti, G.M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms (2020) Adv Powder Technol, 31, pp. 1253-1263. 1:CAS:528:DC%2BB3cXhs1Kmtro%3DEskandarian, L., Arami, M., Pajootan, E. Evaluation of adsorption characteristics of multiwalled carbon nanotubes modified by a poly(propylene imine) dendrimer in single and multiple dye solutions: Isotherms, kinetics, and thermodynamics (2014) J Chem Eng Data, 59, pp. 444-454. 1:CAS:528:DC%2BC2cXmt1Ghtg%3D%3DEskandarian, L., Pajootan, E., Arami, M. Novel super adsorbent molecules, carbon nanotubes modified by dendrimer miniature structure, for the removal of trace organic dyes (2014) Ind Eng Chem Res, 53, pp. 14841-14853. 1:CAS:528:DC%2BC2cXhsVCqtbfJEstrada, M., Sepúlveda, F., Nenen, A., Bravo-Linares, C., Nishide, H., Suga, T., MorenoVilloslada, I. Novel reusable catalytic poly(4-styrenesulfonate-co-glycidylmethacrylate) foams for adsorption and photodegradation of the model pollutant dye methylene blue based on aromatic-aromatic interactions (2023) Chem Eng J, 459, p. 141518. 1:CAS:528:DC%2BB3sXitVCitLw%3DFernandes, E.P., Silva, T.S., Carvalho, C.M., Selvasembian, R., Chaukura, N., Oliveira, L.M.T.M., Meneghetti, S.M.P., Meili, L. Efficient adsorption of dyes by γ-alumina synthesized from aluminum wastes: Kinetics, isotherms, thermodynamics and toxicity assessment (2021) J Environ Chem Eng, 9.Fernandez, M.E., Nunell, G.V., Bonelli, P.R., Cukierman, A.L. Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes (2010) Bioresour Technol, 101, pp. 9500-9507. 1:CAS:528:DC%2BC3cXhtV2gt7nM, 20727738Franco, D.S.P., Georgin, J., Ramos, C.G., Netto, M.S., Lobo, B., Jimenez, G., Lima, E.C., Sher, F. Production of adsorbent for removal of propranolol hydrochloride: Use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean (2023) J Mol Liq, 380, p. 121677. 1:CAS:528:DC%2BB3sXmvV2jtbY%3DFranco, D.S.P., Georgin, J., Ramos, C.G., Eljaiek, S.M., Badillo, D.R., de Oliveira, A.H.P., Allasia, D., Meili, L. The synthesis and evaluation of porous carbon material from corozo fruit (bactris guineensis) for efficient propranolol hydrochloride adsorption (2023) Molecules, 28. (, b, ),., :, https://Freundlich, H. Über die Adsorption in Lösungen (1907) Zeitschrift für Phys Chemie, 57UGao, N., Li, J., Qi, B., Li, A., Duan, Y., Wang, Z. Thermal analysis and products distribution of dried sewage sludge pyrolysis (2014) J Anal Appl Pyrolysis, 105, pp. 43-48. 1:CAS:528:DC%2BC3sXhslCqs7zIGautam, R.K., Mudhoo, A., Chattopadhyaya, M.C. Kinetic, equilibrium, thermodynamic studies and spectroscopic analysis of Alizarin Red S removal by mustard husk (2013) J Environ Chem Eng, 1, pp. 1283-1291. 1:CAS:528:DC%2BC2cXpvVyltw%3D%3DGeorgin, J., Franco, D.S.P., Sher, F. A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology (2023) Chem Eng Res Des, 193, pp. 99-120. 1:CAS:528:DC%2BB3sXlsFansb8%3DGeorgin, J., Franco, D.S.P.P., Netto, M.S., Allasia, D., Oliveira, M.L.S.S., Dotto, G.L. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora) (2020) Environ Sci Pollut Res, 27, pp. 20831-20843. 1:CAS:528:DC%2BB3cXmsVelsbc%3DGeorgin, J., Marques, B.S., Peres, E.C., Allasia, D., Dotto, G.L. Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa) (2018) Water Sci Technol, 77, pp. 1612-1621. 1:CAS:528:DC%2BC1MXhs1Cntbk%3D, 29595163Grassi, P., Georgin, J., Franco, D.S.P., Sá, Í., Lins, P.V.S., Foletto, E.L., Jahn, S.L., Rangabhashiyam, S. Removal of dyes from water using Citrullus lanatus seed powder in continuous and discontinuous systems (2023) Int J Phytoremediat, pp. 1-16. 1:CAS:528:DC%2BB3sXhtlKrsb7OHeidarinejad, Z., Rahmanian, O., Fazlzadeh, M., Heidari, M. Enhancement of methylene blue adsorption onto activated carbon prepared from Date Press Cake by low frequency ultrasound (2018) J Mol Liq, 264, pp. 591-599. 1:CAS:528:DC%2BC1cXhtVamsbvKHenrique, D.C., Quintela, D.U., Ide, A.H., Erto, A., Duarte, J.L.D.S., Meili, L. Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions (2020) J Environ Chem Eng, 8, p. 103782. 1:CAS:528:DC%2BB3cXptVCgsbY%3DHenrique, D.C., Quitela, D.U., Ide, A.H., Lins, P.V.S., Perazzini, M.T.B., Perazzini, H., Oliveira, L.M.T.M., Meili, L. Mollusk shells as adsorbent for removal of endocrine disruptor in different water matrix (2021) J Environ Chem Eng, 9Henrique, D.C.D.C.D.C., Henrique, D.C.D.C.D.C., Solano, J.R.S., Barbosa, V.T., Silva, A.O.S., Dornelas, C.B., Duarte, J.L.S., Meili, L. Calcined Mytella falcata shells as a source for CaAl/LDH production: Synthesis and characterization (2022) Colloids Surfaces A Physicochem Eng Asp, 644. https://Hernandes, P.T., Oliveira, M.L.S.S., Georgin, J., Franco, D.S.P.P., Allasia, D., Dotto, G.L. Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus albus) (2019) Environ Sci Pollut Res, 26, pp. 31924-31933. 1:CAS:528:DC%2BC1MXhslaju7vFHo, Y.S., Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood (1998) Process Saf Environ Prot, 76, pp. 183-191. 1:CAS:528:DyaK1cXjvVGgtLY%3DHo, Y.S., McKay, G. Pseudo-second order model for sorption processes (1999) Process Biochem, 34, pp. 451-465. 1:CAS:528:DyaK1MXlt1Omtbk%3DHo, Y.S., McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents (1998) Process Saf Environ Prot, 76, pp. 332-340. 1:CAS:528:DyaK1MXjt1CiHuang, H., Leung, D.Y.C., Kwong, P.C.W., Xiong, J., Zhang, L. Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation (2013) Catal Today, 201, pp. 189-194. 1:CAS:528:DC%2BC38XhtFOmtLfNJawad, A.H., Abdulhameed, A.S. Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study (2020) Surf Interfaces, 18, p. 100422. 1:CAS:528:DC%2BB3cXitV2mt7fOJawad, A.H., Razuan, R., Appaturi, J.N., Wilson, L.D. Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation (2019) Surf Interfaces, 16, pp. 76-84. 1:CAS:528:DC%2BC1MXitFKksbnJKhan, G., Manzar, M.S., Lins Pv Dos, S., Zubair, M., Khan, S.U., Selvasembian, R., Meili, L., Kayed, T.S. RSM-CCD optimization approach for the adsorptive removal of Eriochrome Black T from aqueous system using steel slag-based adsorbent: Characteriza-tion, Isotherm, Kinetic modeling and Thermodynamic analysis (2021) J Mol LiqKhodabandehloo, A., Rahbar-Kelishami, A., Shayesteh, H. Methylene blue removal using Salix babylonica (Weeping willow) leaves powder as a low-cost biosorbent in batch mode: Kinetic, equilibrium, and thermodynamic studies (2017) J Mol Liq, 244, pp. 540-548. 1:CAS:528:DC%2BC2sXhsFCqs7fFKumar, A., Jena, H.M. Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4 (2017) J Environ Chem Eng, 5, pp. 2032-2041. 1:CAS:528:DC%2BC2sXhtVCksr3LLagergren, S.K. About the theory of so-called adsorption of soluble substances (1898) Sven Vetenskapsakad Handingarl, 24, pp. 1-39.Langmuir, I. Adsorption of gases on glass, mica and platinum (1918) J Am Chem Soc, 40, pp. 1361-1403. 1:CAS:528:DyaC1cXht1KgsA%3D%3DLi, H., Kong, J., Zhang, H., Gao, J., Fang, Y., Shi, J., Ge, T., Li, H. Mechanisms and adsorption capacities of ball milled biomass fly ash/biochar composites for the adsorption of methylene blue dye from aqueous solution (2023) J Water Process Eng, 53, p. 103713.Li, M., Yao, Z.T., Chen, T., Lou, Z.H., Xia, M. The antibacterial activity and mechanism of mussel shell waste derived material (2014) Powder Technol, 264, pp. 577-582. 1:CAS:528:DC%2BC2cXhtFynur3ELi, Z., Wang, G., Zhai, K., He, C., Li, Q., Guo, P. Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons (2018) Colloids Surf A Physicochem Eng Asp, 538, pp. 28-35. 1:CAS:528:DC%2BC2sXhslKlsbjKLoutfi, M., Mariouch, R., Mariouch, I., Belfaquir, M., ElYoubi, M.S. Adsorption of methylene blue dye from aqueous solutions onto natural clay: Equilibrium and kinetic studies (2023) Mater Today Proc, 72, pp. 3638-3643. 1:CAS:528:DC%2BB38XisFKisLvJLow, L.W., Teng, T.T., Morad, N., Azahari, B. Studies on the Adsorption of Methylene Blue Dye from Aqueous Solution onto LowCost Tartaric Acid Treated Bagasse (2012) APCBEE Procedia, 1, pp. 103-109. 1:CAS:528:DC%2BC2cXisFSrurk%3DMachado, F.M., Bergmann, C.P., Fernandes, T.H.M., Lima, E.C., Royer, B., Calvete, T., Fagan, S.B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon (2011) J Hazard Mater, 192, pp. 1122-1131. 1:CAS:528:DC%2BC3MXhtVygtL7F, 21724329Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I., Dotto, G.L., Erto, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling (2019) Prog Biophys Mol Biol, 141, pp. 60-71. 1:CAS:528:DC%2BC1cXhsVSmt7fL, 30055187Meili, L., Lins, P.V., Zanta, C.L.P.S., Soletti, J.I., Ribeiro, L.M.O., Dornelas, C.B., Silva, T.L., Vieira, M.G.A. MgAl-LDH/Biochar composites for methylene blue removal by adsorption (2019) Appl Clay Sci, 168, pp. 11-20. 1:CAS:528:DC%2BC1cXitVKhsrfEMiklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review (2018) Water Res, 139, pp. 118-131. 1:CAS:528:DC%2BC1cXntFylsr0%3D, 29631187Milonjic, S. A consideration of the correct calculation of thermodynamic parameters of adsorption (2007) J Serb Chem Soc, 72, pp. 1363-1367. 1:CAS:528:DC%2BD2sXhsVGhtrzNMohamed, M., Yousuf, S., Maitra, S. Decomposition study of calcium carbonate in cockle shell (2012) J Eng Sci Technol, 7, pp. 1-10Mu, Z., Liu, D., Lv, J., Chai, D.F., Bai, L., Zhang, Z., Dong, G., Zhang, W. Insight into the highly efficient adsorption towards cationic methylene blue dye with a superabsorbent polymer modified by esterified starch (2022) J Environ Chem Eng, 10, p. 108425. 1:CAS:528:DC%2BB38XitF2ju7%2FPMunagapati, V.S., Wen, H.Y., Gollakota, A.R.K., Wen, J.C., Lin, K.Y.A., Shu, C.M., Yarramuthi, V., Zyryanov, G.V. Magnetic Fe3O4 nanoparticles loaded guava leaves powder impregnated into calcium alginate hydrogel beads (Fe3O4-GLP@CAB) for efficient removal of methylene blue dye from aqueous environment: Synthesis, characterization, and its adsorption performance (2023) Int J Biol Macromol, 246, p. 125675. 1:CAS:528:DC%2BB3sXhsVWrsbnN, 37414311Nasuha, N., Hameed, B.H., Din, A.T.M. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue (2010) J Hazard Mater, 175, pp. 126-132. 1:CAS:528:DC%2BD1MXhsFOqsr%2FO, 19879046Nethaji, S., Sivasamy, A., Thennarasu, G., Saravanan, S. Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass (2010) J Hazard Mater, 181, pp. 271-280. 1:CAS:528:DC%2BC3cXosF2gt7w%3D, 20537793Neyens, E., Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique (2003) J Hazard Mater, 98, pp. 33-50. 1:CAS:528:DC%2BD3sXhslKjsLw%3D, 12628776Oei, B.C., Ibrahim, S., Wang, S., Ang, H.M. Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution (2009) Bioresour Technol, 100, pp. 4292-4295. 1:CAS:528:DC%2BD1MXmtl2ktrY%3D, 19386493Oliveira, L.S., Franca, A.S., Alves, T.M., Rocha, S.D.F. Evaluation of untreated coffee husks as potential biosorbents for treatment of dye contaminated waters (2008) J Hazard Mater, 155, pp. 507-512. 1:CAS:528:DC%2BD1cXmsFahtLo%3D, 18226444Paz, D.S., Baiotto, A., Schwaab, M., Mazutti, M.A., Bassaco, M.M., Bertuol, D.A., Foletto, E.L., Meili, L. Use of papaya seeds as a biosorbent of methylene blue from aqueous solution (2013) Water Sci Technol, 68, pp. 441-447. 1:CAS:528:DC%2BC3sXhsVOnsrzE, 23863440Peter, A., Mihaly-Cozmuta, A., Nicula, C., Mihaly-Cozmuta, L., Jastrzębska, A., Olszyna, A., Baia, L. UV Light-Assisted Degradation of Methyl Orange, Methylene Blue, Phenol, Salicylic Acid, and Rhodamine B: Photolysis Versus Photocatalyis (2017) Water Air Soil Pollut, 228. https://Pi, S., Li, A., Wei, W., Feng, L., Zhang, G., Chen, T., Zhou, X., Ma, F. Synthesis of a novel magnetic nano-scale biosorbent using extracellular polymeric substances from Klebsiella sp. J1 for tetracycline adsorption (2017) Bioresour Technol, 245, pp. 471-476. 1:CAS:528:DC%2BC2sXhsVeisrvN, 28898846Pierce, J. Colour in textile effluents - the origins of the problem (1994) J Soc Dye Colour, 110, pp. 131-133. 1:CAS:528:DyaK2cXlsVSrsrc%3DPv, N. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review (2017) Environ Sci Pollut Res Int, 24, pp. 27047-27069.Quintela, D.U., Henrique, D.C., Lins Pv Dos, S., Ide, A.H., Erto, A., Duarte Jl Da, S., Meili, L. Waste of Mytella Falcata shells for removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies (2020) Colloids Surfaces B Biointerfaces, 195.Rangabhashiyam, S., do Lins, P.V.S., Oliveira, L.M.T.D.M., Sepulveda, P., Ighalo, J.O., Rajapaksha, A.U., Meili, L. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review (2022) Environ Pollut, 293, p. 118581. 1:CAS:528:DC%2BB3MXis1KmtrbO, 34861332Redlich, O., Peterson, D.L. A Useful Adsorption Isotherm (1959) J Phys Chem, 63, p. 1024. 1:CAS:528:DyaF3cXislI%3DRosli, N.A., Ahmad, M.A., Noh, T.U. Unleashing the potential of pineapple peel-based activated carbon: Response surface methodology optimization and regeneration for methylene blue and methyl red dyes adsorption (2023) Inorg Chem Commun, 155, p. 111041. 1:CAS:528:DC%2BB3sXhsVGitb7MSaechiam, S., Sripongpun, G. Adsorption of malachite green from synthetic wastewater using banana peel adsorbents (2019) Songklanakarin J Sci Technol, 41, pp. 21-29. 1:CAS:528:DC%2BC1MXhsVyrtLrOSajab, M.S., Chia, C.H., Zakaria, S., Jani, S.M., Ayob, M.K., Chee, K.L., Khiew, P.S., Chiu, W.S. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution (2011) Bioresour Technol, 102, pp. 7237-7243. 1:CAS:528:DC%2BC3MXnsVequ7o%3D, 21620692Sangor, F.I.M.S., Al-Ghouti, M.A. Waste-to-value: Synthesis of nano-aluminum oxide (nano-γ-Al2O3) from waste aluminum foils for efficient adsorption of methylene blue dye (2023) Case Stud Chem Environ Eng, 8, p. 100394. 1:CAS:528:DC%2BB3sXht1CrtL%2FKSantos, D.H.S., Duarte, J.L.S., Tonholo, J., Meili, L., Zanta, C.L.P.S. Saturated activated carbon regeneration by UV-light, H2O2 and Fenton reaction (2020) Sep Purif Technol, 250, p. 117112. 1:CAS:528:DC%2BB3cXpvFarsrg%3DSchneider, C.D., de Oliveira, A.R. Oxygen free radicals and exercise: Mechanisms of synthesis and adaptation to the physical training (2004) Rev Bras Med do Esport, 10, pp. 314-318.Siddiqui, S.I., Rathi, G., Chaudhry, S.A. Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies (2018) J Mol Liq, 264, pp. 275-284. 1:CAS:528:DC%2BC1cXpvFKgur8%3DSilva, D., Debacher, N.A., Junior, A.B.C., Rohers, F., De Castilhos, A.B., Rohers, F., Junior, A.B.C., Rohers, F. Physical chemistry and micro structural characterization of shells of bivalve mollusks from sea farmer around the santa catarina island (2010) Quim Nova, 33, pp. 1053-1058. 1:CAS:528:DC%2BC3cXps1Sju7c%3DSilva, T.S., Meili, L., Carvalho, S.H.V., Soletti, J.I., Dotto, G.L., Fonseca, E.J.S. Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste (2017) Environ Sci Pollut Res, 24, pp. 19927-19937. 1:CAS:528:DC%2BC2sXhtFCgs7vLSips, R. On the structure of a catalyst surface (1948) J Chem Phys, 16, pp. 490-495. 1:CAS:528:DyaH1cXit1KhtQ%3D%3DSivakumar, D. Role of Lemna minor Lin. in treating the textile industry wastewater (2014) Int J Mater Text Eng, 8, pp. 208-212.Somsesta, N., Sricharoenchaikul, V., Aht-Ong, D. Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies (2020) Mater Chem Phys, 240, p. 122221. 1:CAS:528:DC%2BC1MXhvV2iu7jOSoudagar, S., Akash, S., Sree Venkat, M., Rao Poiba, V., Vangalapati, M. Adsorption of methylene blue dye on nano graphene oxide-thermodynamics and kinetic studies (2022) Mater Today Proc, 59, pp. 667-672. 1:CAS:528:DC%2BB38XhtVChsrnETan, I.A.W., Ahmad, A.L., Hameed, B.H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6- trichlorophenol on oil palm empty fruit bunch-based activated carbon (2009) J Hazard Mater, 164, pp. 473-482. 1:CAS:528:DC%2BD1MXjsVCksLg%3D, 18818013Tisa, F., Abdul Raman, A.A., Wan Daud, W.M.A. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review (2014) J Environ Manag, 146, pp. 260-275. 1:CAS:528:DC%2BC2cXhsVSntL3FTsai, W.T., Hsien, K.J., Hsu, H.C., Lin, C.M., Lin, K.Y., Chiu, C.H. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution (2008) Bioresour Technol, 99, pp. 1623-1629. 1:CAS:528:DC%2BD1cXjtVGmsg%3D%3D, 17543519Tunali, S., Özcan, A.S., Akar, T., Özcan, A., Kaynak, Z. Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste (2009) DES, 249, pp. 757-761. 1:CAS:528:DC%2BD1MXhtlekur7FUddin, M.K., Abd Malek, N.N., Jawad, A.H., Sabar, S. Pyrolysis of rubber seed pericarp biomass treated with sulfuric acid for the adsorption of crystal violet and methylene green dyes: an optimized process (2023) Int J Phytoremediat, 25, pp. 393-402. 1:CAS:528:DC%2BB38XhslOgsLrEUddin, M.K., Nasar, A. Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations (2020) Sci Rep, 10, pp. 1-13. 1:CAS:528:DC%2BB3cXps1Olurc%3DVikrant, K., Giri, B.S., Raza, N., Roy, K., Kim, K.H., Rai, B.N., Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges (2018) Bioresour Technol, 253, pp. 355-367. 1:CAS:528:DC%2BC1cXosVKhuw%3D%3D, 29352640Wan, X., Rong, Z., Zhu, K., Wu, Y. Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye (2022) Int J Biol Macromol, 222, pp. 725-735. 1:CAS:528:DC%2BB38XisFWiurfF, 36174861Wang, S., Huang, H., Liu, J., Deng, Y. Micro-meso porous biocarbons derived from a typical biopolymer with superior adsorption capacity for methylene blue dye and high-performance supercapacitors (2022) J Electroanal Chem, 924, p. 116877. 1:CAS:528:DC%2BB38XisF2gtrfEWang, X., Ju, X., Jia, T.Z., Xia, Q.C., Guo, J.L., Wang, C., Cui, Z., Sun, S.P. New surface cross-linking method to fabricate positively charged nanofiltration membranes for dye removal (2018) J Chem Technol Biotechnol, 93, pp. 2281-2291. 1:CAS:528:DC%2BC1cXkt1Kjs7c%3DXu, C., Liu, F.Q., Gao, J., Li, L.J., Bai, Z.P., Ling, C., Zhu, C.Q., Li, A.M. Enhancement mechanisms behind exclusive removal and selective recovery of copper from salt solutions with an aminothiazole-functionalized adsorbent (2014) J Hazard Mater, 280, pp. 1-11. 1:CAS:528:DC%2BC2cXht1enur7E, 25117766Yan, J., Chen, Y., Gao, W., Chen, Y., Qian, L., Han, L., Chen, M. Catalysis of hydrogen peroxide with Cu layered double hydrotalcite for the degradation of ethylbenzene (2019) Chemosphere, 225, pp. 157-165. 1:CAS:528:DC%2BC1MXkslehs74%3D, 30875498442425273Adsorbent regenerationEcologically viableMethylene blue dye moleculeRemoving pollutantsPublicationORIGINALEnhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation.pdfEnhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation.pdfapplication/pdf349095https://repositorio.cuc.edu.co/bitstreams/2b774500-d52a-42c3-a890-7d6c34eb1028/downloadcf2af23dd367013a40361804e7b953cbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/69359912-d378-411c-b856-ff5d0684463c/download73a5432e0b76442b22b026844140d683MD52TEXTEnhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation.pdf.txtEnhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation.pdf.txtExtracted texttext/plain29918https://repositorio.cuc.edu.co/bitstreams/82a4c7e9-9ace-40e7-8a49-bc8bc08b691a/downloadf70d676db9510d3a2418327a722dd2e5MD53THUMBNAILEnhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation.pdf.jpgEnhancing Methylene Blue Dye Removal using pyrolyzed Mytella falcata Shells Characterization, Kinetics, Isotherm, and Regeneration through Photolysis and Peroxidation.pdf.jpgGenerated Thumbnailimage/jpeg16939https://repositorio.cuc.edu.co/bitstreams/a02ecccd-83c4-4e29-940e-d2c89777ab86/download7612de5d641de6b7f93104d2c3060e2aMD5411323/13785oai:repositorio.cuc.edu.co:11323/137852024-11-23 04:02:56.466https://creativecommons.org/licenses/by/4.0/© 2023 The Authors.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |