Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
El sector agrícola se encuentra entre los más beneficiados por la expansión del Internet de las Cosas (IoT), ya que permite recopilar y gestionar una gran cantidad de datos sobre el entorno de un cultivo. Este artículo presenta los resultados del diseño y la prueba de un prototipo de sistema de moni...
- Autores:
-
Martinez, Jorge Luis Diaz
Salcedo, Dixon
Mercado, Teobaldis
Quiñonez, Yadira
De la Hoz, Andrés Mejia
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13920
- Acceso en línea:
- https://hdl.handle.net/11323/13920
https://repositorio.cuc.edu.co/
- Palabra clave:
- Precision agriculture
Dashboard
ESP32
IoT
Sensors
Cloud monitoring
Agricultura de precisión
Sensores
Monitoreo en la nube
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_35221a2c2ee2c38cd7049fd5cb9fb51d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13920 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
title |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
spellingShingle |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo Precision agriculture Dashboard ESP32 IoT Sensors Cloud monitoring Agricultura de precisión Sensores Monitoreo en la nube |
title_short |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
title_full |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
title_fullStr |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
title_full_unstemmed |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
title_sort |
Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo |
dc.creator.fl_str_mv |
Martinez, Jorge Luis Diaz Salcedo, Dixon Mercado, Teobaldis Quiñonez, Yadira De la Hoz, Andrés Mejia |
dc.contributor.author.none.fl_str_mv |
Martinez, Jorge Luis Diaz Salcedo, Dixon Mercado, Teobaldis Quiñonez, Yadira De la Hoz, Andrés Mejia |
dc.subject.proposal.eng.fl_str_mv |
Precision agriculture Dashboard ESP32 IoT Sensors Cloud monitoring |
topic |
Precision agriculture Dashboard ESP32 IoT Sensors Cloud monitoring Agricultura de precisión Sensores Monitoreo en la nube |
dc.subject.proposal.spa.fl_str_mv |
Agricultura de precisión Sensores Monitoreo en la nube |
description |
El sector agrícola se encuentra entre los más beneficiados por la expansión del Internet de las Cosas (IoT), ya que permite recopilar y gestionar una gran cantidad de datos sobre el entorno de un cultivo. Este artículo presenta los resultados del diseño y la prueba de un prototipo de sistema de monitoreo de variables agrícolas, las cuales pueden almacenarse y consultarse en la nube. Se utilizaron sensores y sistemas de procesamiento de bajo costo y fácilmente adaptables a entornos agrícolas. Los resultados obtenidos confirman la viabilidad de implementar estos sistemas sin recurrir a herramientas tecnológicas y computacionales complejas. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-03 |
dc.date.accessioned.none.fl_str_mv |
2025-01-20T17:05:04Z |
dc.date.available.none.fl_str_mv |
2025-01-20T17:05:04Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
MARTINEZ, Jorge Luis Diaz; SALCEDO, Dixon; MERCADO, Teobaldis e QUINONEZ, Yadira. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI [online]. 2024, n.53 [citado 2025-01-20], pp.106-121. Disponível em: <http://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso>. Epub 30-Abr-2024. ISSN 1646-9895. https://doi.org/10.17013/risti.53.106-121. |
dc.identifier.issn.none.fl_str_mv |
1646-9895 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13920 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
MARTINEZ, Jorge Luis Diaz; SALCEDO, Dixon; MERCADO, Teobaldis e QUINONEZ, Yadira. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI [online]. 2024, n.53 [citado 2025-01-20], pp.106-121. Disponível em: <http://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso>. Epub 30-Abr-2024. ISSN 1646-9895. https://doi.org/10.17013/risti.53.106-121. 1646-9895 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13920 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.none.fl_str_mv |
RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao |
dc.relation.references.none.fl_str_mv |
Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8, 190194-190230. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ] Aguilar, J., García, R., Toro, M., Pinto, A., & Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105826 [ Links ] Alfred, R., Obit, J. H., Chin, C. P. Y., Haviluddin, H., & Lim, Y. (2021). Towards paddy rice smart farming: A review on big data, machine learning, and rice production tasks. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3069449 [ Links ] Ali, J. (2012). Factors affecting the adoption of information and communication technologies (ICTs) for farming decisions. Journal of Agricultural and Food Information, 13(1), 78-96. https://doi.org/10.1080/10496505.2012.636980 [ Links ] Amanullah, M. A., Habeeb, R. A. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S. M., Akim, N. M., & Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications, 151. https://doi.org/10.1016/j.comcom.2020.01.016 [ Links ] Arsovski, Z., Lula, P., & Đorđević, A. (2016). Impact of ICT on quality of life. [ Links ] Bankole, F. O., Shirazi, F., & Brown, I. (2011). Investigating the impact of ICT investments on human development. In EJISDC (Vol. 48). http://www.ejisdc.org [ Links ] Bhatia, G., Joshi, N., Iyengar, S., Rajpal, S., & Mahadevan, K. (2021). Crop Prediction Based on Environmental Conditions and Disease Prediction. Smart Innovation, Systems and Technologies, 195. https://doi.org/10.1007/978-981-15-7078-0_31 [ Links ] Biradar, H. B., & Shabadi, L. (2017). Review on IOT based multidisciplinary models for smart farming. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018-Janua, 1923-1926. https://doi.org/10.1109/RTEICT.2017.8256932 [ Links ] Bouachir, W., Ihou, K. E., Gueziri, H. E., Bouguila, N., & Belanger, N. (2019). Computer Vision System for Automatic Counting of Planting Microsites Using UAV Imagery. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2923765 [ Links ] Bula, A. (2020). Importancia de la Agricultura en el Desarrollo. [ Links ] Cecinati, F., Moreno-Ródenas, A. M., Rico-Ramirez, M. A., ten Veldhuis, M. C., & Langeveld, J. G. (2018). Considering rain gauge uncertainty using kriging for uncertain data. Atmosphere, 9(11). https://doi.org/10.3390/atmos9110446 [ Links ] de la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 146. https://doi.org/10.1016/j.isprsjprs.2018.10.018 [ Links ] Dobrescu, R., Merezeanu, D., & Mocanu, S. (2019). Context-aware control and monitoring system with IoT and cloud support. Computers and Electronics in Agriculture, 160. https://doi.org/10.1016/j.compag.2019.03.005 [ Links ] Gašparović, S. (2019). Impact of ICT on some segments of everyday life of highschool population of the city of Zagreb. IJRAR- International Journal of Research and Analytical Reviews, 6(2), 62-65. [ Links ] Ge, X. Y., Ding, J. L., Wang, J. Z., Sun, H. L., & Zhu, Z. Q. (2020). A New Method for Predicting Soil Moisture Based on UAV Hyperspectral Image. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 40(2). https://doi.org/10.3964/j.issn.1000-0593(2020)02-0602-08 [ Links ] Gopinath, R. (2023). Perception of ICT in farming practices with special reference to e-commerce in agriculture. IJRAR-International Journal of Research and Analytical Reviews, 6. http://ijrar.com/ [ Links ] Hernandez, R. M. (2017). Impact of ICT on education: Challenges and perspectives. Propósitos y Representaciones, 5(1), 325-347. https://doi.org/10.20511/pyr2017.v5n1.149 [ Links ] Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82. https://doi.org/10.1016/j.future.2017.11.022 [ Links ] Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90-91(October), 100315. https://doi.org/10.1016/j.njas.2019.100315 [ Links ] Kocian, A., & Incrocci, L. (2020). Learning from Data to Optimize Control in Precision Farming. Stats, 3(3). https://doi.org/10.3390/stats3030018 [ Links ] Marwa, M. E., Mburu, J., Oburu, R. E. J., Mwai, O., & Kahumbu, S. (2020). Impact of ICT based extension services on dairy production and household welfare: The case of iCow service in Kenya. Journal of Agricultural Science, 12(3), 141. https://doi.org/10.5539/jas.v12n3p141 [ Links ] Miller, G. A., Hyslop, J. J., Barclay, D., Edwards, A., Thomson, W., & Duthie, C. A. (2019). Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00030 [ Links ] Minagricultura. (2018). Un Campo para la Equidad: Política Agropecuaria y de Desarrollo Rural. [ Links ] Mohammad El-Basioni, B. M., & Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ] Mohamad Noor, M. B., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148. https://doi.org/10.1016/j.comnet.2018.11.025 [ Links ] Newase, A. D., Sheetlani, J., Sai, S., & Patil, R. D. (2017). A literature review on impact of information and communication technology tools on rural society of India. Indian Journal of Computer Science and Engineering, 8(3), 235-240. [ Links ] Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. In Journal of King Saud University - Computer and Information Sciences, 30, (4). https://doi.org/10.1016/j.jksuci.2017.06.001 [ Links ] Panesar, G. S., Venkatesh, D., Rakhra, M., Jairath, K., & Shabaz, M. (2021). Agile software and business development using artificial intelligence. Annals of the Romanian Society for Cell Biology, 25(2). [ Links ] Parra-Peña, R., Puyana, R., & Yepes-Chica, F. (2021). Análisis de la productividad del sector agropecuario en Colombia y su impacto en temas como: encadenamientos productivos, sostenibilidad e internacionalización, en el marco del programa Colombia más competitiva. [ Links ] Punchihewa, D. J., & Wimalaratne, P. (2010). Towards an ICT enabled farming community. E-Governance in Practice, India (pp. 201-207). https://www.icta.lk [ Links ] Sidhu, S., Mohd, B. J., & Hayajneh, T. (2019). Hardware security in IoT devices with emphasis on hardware trojans. Journal of Sensor and Actuator Networks, 8(3). https://doi.org/10.3390/jsan8030042 [ Links ] Thangaraju, G., Agnes, X., & Rani, K. (2016). A study to improve the organic farming and the impact of ICT in organic agriculture with special reference to Perambalur district in Tamilnadu (Data analysis with K-means clustering algorithm in datamining). International Journal of Emerging Technology in Computer Science & Electronics, 20. [ Links ] UNGRD. (2021). Sistema de Alerta Temprana. Retrieved from http://portal.gestiondelriesgo.gov.co/Paginas/SAT.aspx [ Links ] Unal, Z. (2020). Smart farming becomes even smarter with deep learning - A bibliographical analysis. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3000175 [ Links ] Vergara-Díaz, O., Kefauver, S., Araus, J. L., & Aranjuelo, I. (2020). Development of novel technological approaches for a reliable crop characterization under changing environmental conditions. NIR News, 31(7-8). https://doi.org/10.1177/096033602097874 [ Links ] Wei, H. E., Grafton, M., Bretherton, M., Irwin, M., & Sandoval, E. (2021). Evaluation of point hyperspectral reflectance and multivariate regression models for grapevine water status estimation. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163198 [ Links ] |
dc.relation.citationendpage.none.fl_str_mv |
121 |
dc.relation.citationstartpage.none.fl_str_mv |
106 |
dc.relation.citationissue.none.fl_str_mv |
53 |
dc.rights.eng.fl_str_mv |
© Copyright 2024 Elsevier B.V., All rights reserved. |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © Copyright 2024 Elsevier B.V., All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
16 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Associacao Iberica de Sistemas e Tecnologias de Informacao (AISTI) |
dc.publisher.place.none.fl_str_mv |
Portugal |
publisher.none.fl_str_mv |
Associacao Iberica de Sistemas e Tecnologias de Informacao (AISTI) |
dc.source.none.fl_str_mv |
https://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso&tlng=es |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/62330a39-4768-47e9-93d8-96aa46e08781/download https://repositorio.cuc.edu.co/bitstreams/c58f9237-0cca-4a62-9428-0ec3768161d0/download https://repositorio.cuc.edu.co/bitstreams/0fc9906e-6df4-4ce8-b54b-b6909f9453ba/download https://repositorio.cuc.edu.co/bitstreams/55bacab9-c0d0-494b-a98e-9e86f0e96ab4/download |
bitstream.checksum.fl_str_mv |
d98942854545ea35ad6688b1a8bc4709 73a5432e0b76442b22b026844140d683 26aeaeabad50c9906a20cf787719dd85 57a0d9504ec225e450d2b1be107fc23a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166797261537280 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© Copyright 2024 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martinez, Jorge Luis DiazSalcedo, DixonMercado, TeobaldisQuiñonez, YadiraDe la Hoz, Andrés Mejia2025-01-20T17:05:04Z2025-01-20T17:05:04Z2024-03MARTINEZ, Jorge Luis Diaz; SALCEDO, Dixon; MERCADO, Teobaldis e QUINONEZ, Yadira. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI [online]. 2024, n.53 [citado 2025-01-20], pp.106-121. Disponível em: <http://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso>. Epub 30-Abr-2024. ISSN 1646-9895. https://doi.org/10.17013/risti.53.106-121.1646-9895https://hdl.handle.net/11323/13920Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/El sector agrícola se encuentra entre los más beneficiados por la expansión del Internet de las Cosas (IoT), ya que permite recopilar y gestionar una gran cantidad de datos sobre el entorno de un cultivo. Este artículo presenta los resultados del diseño y la prueba de un prototipo de sistema de monitoreo de variables agrícolas, las cuales pueden almacenarse y consultarse en la nube. Se utilizaron sensores y sistemas de procesamiento de bajo costo y fácilmente adaptables a entornos agrícolas. Los resultados obtenidos confirman la viabilidad de implementar estos sistemas sin recurrir a herramientas tecnológicas y computacionales complejas.The agricultural sector is among the most benefited by the Internet of Things (IoT) expansion since it allows collecting and managing a large amount of data about a crop's environment. This article presents the results of designing and testing a prototype monitoring system for agricultural variables, which can be stored and consulted in the cloud. Low-cost sensors and processing systems were easily adaptable to agricultural environments. The results confirmed the viability of implementing this system without resorting to complex technological and computational tools.16 páginasapplication/pdfspaAssociacao Iberica de Sistemas e Tecnologias de Informacao (AISTI)Portugalhttps://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso&tlng=esInternet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipoArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85RISTI - Revista Iberica de Sistemas e Tecnologias de InformacaoAbd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8, 190194-190230. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ]Aguilar, J., García, R., Toro, M., Pinto, A., & Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105826 [ Links ]Alfred, R., Obit, J. H., Chin, C. P. Y., Haviluddin, H., & Lim, Y. (2021). Towards paddy rice smart farming: A review on big data, machine learning, and rice production tasks. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3069449 [ Links ]Ali, J. (2012). Factors affecting the adoption of information and communication technologies (ICTs) for farming decisions. Journal of Agricultural and Food Information, 13(1), 78-96. https://doi.org/10.1080/10496505.2012.636980 [ Links ]Amanullah, M. A., Habeeb, R. A. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S. M., Akim, N. M., & Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications, 151. https://doi.org/10.1016/j.comcom.2020.01.016 [ Links ]Arsovski, Z., Lula, P., & Đorđević, A. (2016). Impact of ICT on quality of life. [ Links ]Bankole, F. O., Shirazi, F., & Brown, I. (2011). Investigating the impact of ICT investments on human development. In EJISDC (Vol. 48). http://www.ejisdc.org [ Links ]Bhatia, G., Joshi, N., Iyengar, S., Rajpal, S., & Mahadevan, K. (2021). Crop Prediction Based on Environmental Conditions and Disease Prediction. Smart Innovation, Systems and Technologies, 195. https://doi.org/10.1007/978-981-15-7078-0_31 [ Links ]Biradar, H. B., & Shabadi, L. (2017). Review on IOT based multidisciplinary models for smart farming. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018-Janua, 1923-1926. https://doi.org/10.1109/RTEICT.2017.8256932 [ Links ]Bouachir, W., Ihou, K. E., Gueziri, H. E., Bouguila, N., & Belanger, N. (2019). Computer Vision System for Automatic Counting of Planting Microsites Using UAV Imagery. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2923765 [ Links ]Bula, A. (2020). Importancia de la Agricultura en el Desarrollo. [ Links ]Cecinati, F., Moreno-Ródenas, A. M., Rico-Ramirez, M. A., ten Veldhuis, M. C., & Langeveld, J. G. (2018). Considering rain gauge uncertainty using kriging for uncertain data. Atmosphere, 9(11). https://doi.org/10.3390/atmos9110446 [ Links ]de la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 146. https://doi.org/10.1016/j.isprsjprs.2018.10.018 [ Links ]Dobrescu, R., Merezeanu, D., & Mocanu, S. (2019). Context-aware control and monitoring system with IoT and cloud support. Computers and Electronics in Agriculture, 160. https://doi.org/10.1016/j.compag.2019.03.005 [ Links ]Gašparović, S. (2019). Impact of ICT on some segments of everyday life of highschool population of the city of Zagreb. IJRAR- International Journal of Research and Analytical Reviews, 6(2), 62-65. [ Links ]Ge, X. Y., Ding, J. L., Wang, J. Z., Sun, H. L., & Zhu, Z. Q. (2020). A New Method for Predicting Soil Moisture Based on UAV Hyperspectral Image. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 40(2). https://doi.org/10.3964/j.issn.1000-0593(2020)02-0602-08 [ Links ]Gopinath, R. (2023). Perception of ICT in farming practices with special reference to e-commerce in agriculture. IJRAR-International Journal of Research and Analytical Reviews, 6. http://ijrar.com/ [ Links ]Hernandez, R. M. (2017). Impact of ICT on education: Challenges and perspectives. Propósitos y Representaciones, 5(1), 325-347. https://doi.org/10.20511/pyr2017.v5n1.149 [ Links ]Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82. https://doi.org/10.1016/j.future.2017.11.022 [ Links ]Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90-91(October), 100315. https://doi.org/10.1016/j.njas.2019.100315 [ Links ]Kocian, A., & Incrocci, L. (2020). Learning from Data to Optimize Control in Precision Farming. Stats, 3(3). https://doi.org/10.3390/stats3030018 [ Links ]Marwa, M. E., Mburu, J., Oburu, R. E. J., Mwai, O., & Kahumbu, S. (2020). Impact of ICT based extension services on dairy production and household welfare: The case of iCow service in Kenya. Journal of Agricultural Science, 12(3), 141. https://doi.org/10.5539/jas.v12n3p141 [ Links ]Miller, G. A., Hyslop, J. J., Barclay, D., Edwards, A., Thomson, W., & Duthie, C. A. (2019). Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00030 [ Links ]Minagricultura. (2018). Un Campo para la Equidad: Política Agropecuaria y de Desarrollo Rural. [ Links ]Mohammad El-Basioni, B. M., & Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ]Mohamad Noor, M. B., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148. https://doi.org/10.1016/j.comnet.2018.11.025 [ Links ]Newase, A. D., Sheetlani, J., Sai, S., & Patil, R. D. (2017). A literature review on impact of information and communication technology tools on rural society of India. Indian Journal of Computer Science and Engineering, 8(3), 235-240. [ Links ]Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. In Journal of King Saud University - Computer and Information Sciences, 30, (4). https://doi.org/10.1016/j.jksuci.2017.06.001 [ Links ]Panesar, G. S., Venkatesh, D., Rakhra, M., Jairath, K., & Shabaz, M. (2021). Agile software and business development using artificial intelligence. Annals of the Romanian Society for Cell Biology, 25(2). [ Links ]Parra-Peña, R., Puyana, R., & Yepes-Chica, F. (2021). Análisis de la productividad del sector agropecuario en Colombia y su impacto en temas como: encadenamientos productivos, sostenibilidad e internacionalización, en el marco del programa Colombia más competitiva. [ Links ]Punchihewa, D. J., & Wimalaratne, P. (2010). Towards an ICT enabled farming community. E-Governance in Practice, India (pp. 201-207). https://www.icta.lk [ Links ]Sidhu, S., Mohd, B. J., & Hayajneh, T. (2019). Hardware security in IoT devices with emphasis on hardware trojans. Journal of Sensor and Actuator Networks, 8(3). https://doi.org/10.3390/jsan8030042 [ Links ]Thangaraju, G., Agnes, X., & Rani, K. (2016). A study to improve the organic farming and the impact of ICT in organic agriculture with special reference to Perambalur district in Tamilnadu (Data analysis with K-means clustering algorithm in datamining). International Journal of Emerging Technology in Computer Science & Electronics, 20. [ Links ]UNGRD. (2021). Sistema de Alerta Temprana. Retrieved from http://portal.gestiondelriesgo.gov.co/Paginas/SAT.aspx [ Links ]Unal, Z. (2020). Smart farming becomes even smarter with deep learning - A bibliographical analysis. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3000175 [ Links ]Vergara-Díaz, O., Kefauver, S., Araus, J. L., & Aranjuelo, I. (2020). Development of novel technological approaches for a reliable crop characterization under changing environmental conditions. NIR News, 31(7-8). https://doi.org/10.1177/096033602097874 [ Links ]Wei, H. E., Grafton, M., Bretherton, M., Irwin, M., & Sandoval, E. (2021). Evaluation of point hyperspectral reflectance and multivariate regression models for grapevine water status estimation. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163198 [ Links ]12110653Precision agricultureDashboardESP32IoTSensorsCloud monitoringAgricultura de precisiónSensoresMonitoreo en la nubePublicationORIGINALInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdfInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdfapplication/pdf770824https://repositorio.cuc.edu.co/bitstreams/62330a39-4768-47e9-93d8-96aa46e08781/downloadd98942854545ea35ad6688b1a8bc4709MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/c58f9237-0cca-4a62-9428-0ec3768161d0/download73a5432e0b76442b22b026844140d683MD52TEXTInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.txtInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.txtExtracted texttext/plain40343https://repositorio.cuc.edu.co/bitstreams/0fc9906e-6df4-4ce8-b54b-b6909f9453ba/download26aeaeabad50c9906a20cf787719dd85MD53THUMBNAILInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.jpgInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.jpgGenerated Thumbnailimage/jpeg12153https://repositorio.cuc.edu.co/bitstreams/55bacab9-c0d0-494b-a98e-9e86f0e96ab4/download57a0d9504ec225e450d2b1be107fc23aMD5411323/13920oai:repositorio.cuc.edu.co:11323/139202025-01-21 04:02:35.794https://creativecommons.org/licenses/by-nc-nd/4.0/© Copyright 2024 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |