Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo

El sector agrícola se encuentra entre los más beneficiados por la expansión del Internet de las Cosas (IoT), ya que permite recopilar y gestionar una gran cantidad de datos sobre el entorno de un cultivo. Este artículo presenta los resultados del diseño y la prueba de un prototipo de sistema de moni...

Full description

Autores:
Martinez, Jorge Luis Diaz
Salcedo, Dixon
Mercado, Teobaldis
Quiñonez, Yadira
De la Hoz, Andrés Mejia
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13920
Acceso en línea:
https://hdl.handle.net/11323/13920
https://repositorio.cuc.edu.co/
Palabra clave:
Precision agriculture
Dashboard
ESP32
IoT
Sensors
Cloud monitoring
Agricultura de precisión
Sensores
Monitoreo en la nube
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_35221a2c2ee2c38cd7049fd5cb9fb51d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13920
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
title Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
spellingShingle Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
Precision agriculture
Dashboard
ESP32
IoT
Sensors
Cloud monitoring
Agricultura de precisión
Sensores
Monitoreo en la nube
title_short Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
title_full Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
title_fullStr Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
title_full_unstemmed Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
title_sort Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo
dc.creator.fl_str_mv Martinez, Jorge Luis Diaz
Salcedo, Dixon
Mercado, Teobaldis
Quiñonez, Yadira
De la Hoz, Andrés Mejia
dc.contributor.author.none.fl_str_mv Martinez, Jorge Luis Diaz
Salcedo, Dixon
Mercado, Teobaldis
Quiñonez, Yadira
De la Hoz, Andrés Mejia
dc.subject.proposal.eng.fl_str_mv Precision agriculture
Dashboard
ESP32
IoT
Sensors
Cloud monitoring
topic Precision agriculture
Dashboard
ESP32
IoT
Sensors
Cloud monitoring
Agricultura de precisión
Sensores
Monitoreo en la nube
dc.subject.proposal.spa.fl_str_mv Agricultura de precisión
Sensores
Monitoreo en la nube
description El sector agrícola se encuentra entre los más beneficiados por la expansión del Internet de las Cosas (IoT), ya que permite recopilar y gestionar una gran cantidad de datos sobre el entorno de un cultivo. Este artículo presenta los resultados del diseño y la prueba de un prototipo de sistema de monitoreo de variables agrícolas, las cuales pueden almacenarse y consultarse en la nube. Se utilizaron sensores y sistemas de procesamiento de bajo costo y fácilmente adaptables a entornos agrícolas. Los resultados obtenidos confirman la viabilidad de implementar estos sistemas sin recurrir a herramientas tecnológicas y computacionales complejas.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-03
dc.date.accessioned.none.fl_str_mv 2025-01-20T17:05:04Z
dc.date.available.none.fl_str_mv 2025-01-20T17:05:04Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv MARTINEZ, Jorge Luis Diaz; SALCEDO, Dixon; MERCADO, Teobaldis e QUINONEZ, Yadira. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI [online]. 2024, n.53 [citado 2025-01-20], pp.106-121. Disponível em: <http://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso>. Epub 30-Abr-2024. ISSN 1646-9895. https://doi.org/10.17013/risti.53.106-121.
dc.identifier.issn.none.fl_str_mv 1646-9895
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13920
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv MARTINEZ, Jorge Luis Diaz; SALCEDO, Dixon; MERCADO, Teobaldis e QUINONEZ, Yadira. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI [online]. 2024, n.53 [citado 2025-01-20], pp.106-121. Disponível em: <http://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso>. Epub 30-Abr-2024. ISSN 1646-9895. https://doi.org/10.17013/risti.53.106-121.
1646-9895
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13920
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofjournal.none.fl_str_mv RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
dc.relation.references.none.fl_str_mv Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8, 190194-190230. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ]
Aguilar, J., García, R., Toro, M., Pinto, A., & Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105826 [ Links ]
Alfred, R., Obit, J. H., Chin, C. P. Y., Haviluddin, H., & Lim, Y. (2021). Towards paddy rice smart farming: A review on big data, machine learning, and rice production tasks. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3069449 [ Links ]
Ali, J. (2012). Factors affecting the adoption of information and communication technologies (ICTs) for farming decisions. Journal of Agricultural and Food Information, 13(1), 78-96. https://doi.org/10.1080/10496505.2012.636980 [ Links ]
Amanullah, M. A., Habeeb, R. A. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S. M., Akim, N. M., & Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications, 151. https://doi.org/10.1016/j.comcom.2020.01.016 [ Links ]
Arsovski, Z., Lula, P., & Đorđević, A. (2016). Impact of ICT on quality of life. [ Links ]
Bankole, F. O., Shirazi, F., & Brown, I. (2011). Investigating the impact of ICT investments on human development. In EJISDC (Vol. 48). http://www.ejisdc.org [ Links ]
Bhatia, G., Joshi, N., Iyengar, S., Rajpal, S., & Mahadevan, K. (2021). Crop Prediction Based on Environmental Conditions and Disease Prediction. Smart Innovation, Systems and Technologies, 195. https://doi.org/10.1007/978-981-15-7078-0_31 [ Links ]
Biradar, H. B., & Shabadi, L. (2017). Review on IOT based multidisciplinary models for smart farming. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018-Janua, 1923-1926. https://doi.org/10.1109/RTEICT.2017.8256932 [ Links ]
Bouachir, W., Ihou, K. E., Gueziri, H. E., Bouguila, N., & Belanger, N. (2019). Computer Vision System for Automatic Counting of Planting Microsites Using UAV Imagery. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2923765 [ Links ]
Bula, A. (2020). Importancia de la Agricultura en el Desarrollo. [ Links ]
Cecinati, F., Moreno-Ródenas, A. M., Rico-Ramirez, M. A., ten Veldhuis, M. C., & Langeveld, J. G. (2018). Considering rain gauge uncertainty using kriging for uncertain data. Atmosphere, 9(11). https://doi.org/10.3390/atmos9110446 [ Links ]
de la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 146. https://doi.org/10.1016/j.isprsjprs.2018.10.018 [ Links ]
Dobrescu, R., Merezeanu, D., & Mocanu, S. (2019). Context-aware control and monitoring system with IoT and cloud support. Computers and Electronics in Agriculture, 160. https://doi.org/10.1016/j.compag.2019.03.005 [ Links ]
Gašparović, S. (2019). Impact of ICT on some segments of everyday life of highschool population of the city of Zagreb. IJRAR- International Journal of Research and Analytical Reviews, 6(2), 62-65. [ Links ]
Ge, X. Y., Ding, J. L., Wang, J. Z., Sun, H. L., & Zhu, Z. Q. (2020). A New Method for Predicting Soil Moisture Based on UAV Hyperspectral Image. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 40(2). https://doi.org/10.3964/j.issn.1000-0593(2020)02-0602-08 [ Links ]
Gopinath, R. (2023). Perception of ICT in farming practices with special reference to e-commerce in agriculture. IJRAR-International Journal of Research and Analytical Reviews, 6. http://ijrar.com/ [ Links ]
Hernandez, R. M. (2017). Impact of ICT on education: Challenges and perspectives. Propósitos y Representaciones, 5(1), 325-347. https://doi.org/10.20511/pyr2017.v5n1.149 [ Links ]
Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82. https://doi.org/10.1016/j.future.2017.11.022 [ Links ]
Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90-91(October), 100315. https://doi.org/10.1016/j.njas.2019.100315 [ Links ]
Kocian, A., & Incrocci, L. (2020). Learning from Data to Optimize Control in Precision Farming. Stats, 3(3). https://doi.org/10.3390/stats3030018 [ Links ]
Marwa, M. E., Mburu, J., Oburu, R. E. J., Mwai, O., & Kahumbu, S. (2020). Impact of ICT based extension services on dairy production and household welfare: The case of iCow service in Kenya. Journal of Agricultural Science, 12(3), 141. https://doi.org/10.5539/jas.v12n3p141 [ Links ]
Miller, G. A., Hyslop, J. J., Barclay, D., Edwards, A., Thomson, W., & Duthie, C. A. (2019). Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00030 [ Links ]
Minagricultura. (2018). Un Campo para la Equidad: Política Agropecuaria y de Desarrollo Rural. [ Links ]
Mohammad El-Basioni, B. M., & Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ]
Mohamad Noor, M. B., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148. https://doi.org/10.1016/j.comnet.2018.11.025 [ Links ]
Newase, A. D., Sheetlani, J., Sai, S., & Patil, R. D. (2017). A literature review on impact of information and communication technology tools on rural society of India. Indian Journal of Computer Science and Engineering, 8(3), 235-240. [ Links ]
Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. In Journal of King Saud University - Computer and Information Sciences, 30, (4). https://doi.org/10.1016/j.jksuci.2017.06.001 [ Links ]
Panesar, G. S., Venkatesh, D., Rakhra, M., Jairath, K., & Shabaz, M. (2021). Agile software and business development using artificial intelligence. Annals of the Romanian Society for Cell Biology, 25(2). [ Links ]
Parra-Peña, R., Puyana, R., & Yepes-Chica, F. (2021). Análisis de la productividad del sector agropecuario en Colombia y su impacto en temas como: encadenamientos productivos, sostenibilidad e internacionalización, en el marco del programa Colombia más competitiva. [ Links ]
Punchihewa, D. J., & Wimalaratne, P. (2010). Towards an ICT enabled farming community. E-Governance in Practice, India (pp. 201-207). https://www.icta.lk [ Links ]
Sidhu, S., Mohd, B. J., & Hayajneh, T. (2019). Hardware security in IoT devices with emphasis on hardware trojans. Journal of Sensor and Actuator Networks, 8(3). https://doi.org/10.3390/jsan8030042 [ Links ]
Thangaraju, G., Agnes, X., & Rani, K. (2016). A study to improve the organic farming and the impact of ICT in organic agriculture with special reference to Perambalur district in Tamilnadu (Data analysis with K-means clustering algorithm in datamining). International Journal of Emerging Technology in Computer Science & Electronics, 20. [ Links ]
UNGRD. (2021). Sistema de Alerta Temprana. Retrieved from http://portal.gestiondelriesgo.gov.co/Paginas/SAT.aspx [ Links ]
Unal, Z. (2020). Smart farming becomes even smarter with deep learning - A bibliographical analysis. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3000175 [ Links ]
Vergara-Díaz, O., Kefauver, S., Araus, J. L., & Aranjuelo, I. (2020). Development of novel technological approaches for a reliable crop characterization under changing environmental conditions. NIR News, 31(7-8). https://doi.org/10.1177/096033602097874 [ Links ]
Wei, H. E., Grafton, M., Bretherton, M., Irwin, M., & Sandoval, E. (2021). Evaluation of point hyperspectral reflectance and multivariate regression models for grapevine water status estimation. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163198 [ Links ]
dc.relation.citationendpage.none.fl_str_mv 121
dc.relation.citationstartpage.none.fl_str_mv 106
dc.relation.citationissue.none.fl_str_mv 53
dc.rights.eng.fl_str_mv © Copyright 2024 Elsevier B.V., All rights reserved.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© Copyright 2024 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Associacao Iberica de Sistemas e Tecnologias de Informacao (AISTI)
dc.publisher.place.none.fl_str_mv Portugal
publisher.none.fl_str_mv Associacao Iberica de Sistemas e Tecnologias de Informacao (AISTI)
dc.source.none.fl_str_mv https://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso&tlng=es
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/62330a39-4768-47e9-93d8-96aa46e08781/download
https://repositorio.cuc.edu.co/bitstreams/c58f9237-0cca-4a62-9428-0ec3768161d0/download
https://repositorio.cuc.edu.co/bitstreams/0fc9906e-6df4-4ce8-b54b-b6909f9453ba/download
https://repositorio.cuc.edu.co/bitstreams/55bacab9-c0d0-494b-a98e-9e86f0e96ab4/download
bitstream.checksum.fl_str_mv d98942854545ea35ad6688b1a8bc4709
73a5432e0b76442b22b026844140d683
26aeaeabad50c9906a20cf787719dd85
57a0d9504ec225e450d2b1be107fc23a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166797261537280
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© Copyright 2024 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martinez, Jorge Luis DiazSalcedo, DixonMercado, TeobaldisQuiñonez, YadiraDe la Hoz, Andrés Mejia2025-01-20T17:05:04Z2025-01-20T17:05:04Z2024-03MARTINEZ, Jorge Luis Diaz; SALCEDO, Dixon; MERCADO, Teobaldis e QUINONEZ, Yadira. Internet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipo. RISTI [online]. 2024, n.53 [citado 2025-01-20], pp.106-121. Disponível em: <http://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso>. Epub 30-Abr-2024. ISSN 1646-9895. https://doi.org/10.17013/risti.53.106-121.1646-9895https://hdl.handle.net/11323/13920Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/El sector agrícola se encuentra entre los más beneficiados por la expansión del Internet de las Cosas (IoT), ya que permite recopilar y gestionar una gran cantidad de datos sobre el entorno de un cultivo. Este artículo presenta los resultados del diseño y la prueba de un prototipo de sistema de monitoreo de variables agrícolas, las cuales pueden almacenarse y consultarse en la nube. Se utilizaron sensores y sistemas de procesamiento de bajo costo y fácilmente adaptables a entornos agrícolas. Los resultados obtenidos confirman la viabilidad de implementar estos sistemas sin recurrir a herramientas tecnológicas y computacionales complejas.The agricultural sector is among the most benefited by the Internet of Things (IoT) expansion since it allows collecting and managing a large amount of data about a crop's environment. This article presents the results of designing and testing a prototype monitoring system for agricultural variables, which can be stored and consulted in the cloud. Low-cost sensors and processing systems were easily adaptable to agricultural environments. The results confirmed the viability of implementing this system without resorting to complex technological and computational tools.16 páginasapplication/pdfspaAssociacao Iberica de Sistemas e Tecnologias de Informacao (AISTI)Portugalhttps://scielo.pt/scielo.php?script=sci_arttext&pid=S1646-98952024000100106&lng=pt&nrm=iso&tlng=esInternet de las cosas aplicado a la agricultura: estado actual y su aplicación mediante un prototipoArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85RISTI - Revista Iberica de Sistemas e Tecnologias de InformacaoAbd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8, 190194-190230. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ]Aguilar, J., García, R., Toro, M., Pinto, A., & Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105826 [ Links ]Alfred, R., Obit, J. H., Chin, C. P. Y., Haviluddin, H., & Lim, Y. (2021). Towards paddy rice smart farming: A review on big data, machine learning, and rice production tasks. IEEE Access, 9. https://doi.org/10.1109/ACCESS.2021.3069449 [ Links ]Ali, J. (2012). Factors affecting the adoption of information and communication technologies (ICTs) for farming decisions. Journal of Agricultural and Food Information, 13(1), 78-96. https://doi.org/10.1080/10496505.2012.636980 [ Links ]Amanullah, M. A., Habeeb, R. A. A., Nasaruddin, F. H., Gani, A., Ahmed, E., Nainar, A. S. M., Akim, N. M., & Imran, M. (2020). Deep learning and big data technologies for IoT security. Computer Communications, 151. https://doi.org/10.1016/j.comcom.2020.01.016 [ Links ]Arsovski, Z., Lula, P., & Đorđević, A. (2016). Impact of ICT on quality of life. [ Links ]Bankole, F. O., Shirazi, F., & Brown, I. (2011). Investigating the impact of ICT investments on human development. In EJISDC (Vol. 48). http://www.ejisdc.org [ Links ]Bhatia, G., Joshi, N., Iyengar, S., Rajpal, S., & Mahadevan, K. (2021). Crop Prediction Based on Environmental Conditions and Disease Prediction. Smart Innovation, Systems and Technologies, 195. https://doi.org/10.1007/978-981-15-7078-0_31 [ Links ]Biradar, H. B., & Shabadi, L. (2017). Review on IOT based multidisciplinary models for smart farming. RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings, 2018-Janua, 1923-1926. https://doi.org/10.1109/RTEICT.2017.8256932 [ Links ]Bouachir, W., Ihou, K. E., Gueziri, H. E., Bouguila, N., & Belanger, N. (2019). Computer Vision System for Automatic Counting of Planting Microsites Using UAV Imagery. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2923765 [ Links ]Bula, A. (2020). Importancia de la Agricultura en el Desarrollo. [ Links ]Cecinati, F., Moreno-Ródenas, A. M., Rico-Ramirez, M. A., ten Veldhuis, M. C., & Langeveld, J. G. (2018). Considering rain gauge uncertainty using kriging for uncertain data. Atmosphere, 9(11). https://doi.org/10.3390/atmos9110446 [ Links ]de la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 146. https://doi.org/10.1016/j.isprsjprs.2018.10.018 [ Links ]Dobrescu, R., Merezeanu, D., & Mocanu, S. (2019). Context-aware control and monitoring system with IoT and cloud support. Computers and Electronics in Agriculture, 160. https://doi.org/10.1016/j.compag.2019.03.005 [ Links ]Gašparović, S. (2019). Impact of ICT on some segments of everyday life of highschool population of the city of Zagreb. IJRAR- International Journal of Research and Analytical Reviews, 6(2), 62-65. [ Links ]Ge, X. Y., Ding, J. L., Wang, J. Z., Sun, H. L., & Zhu, Z. Q. (2020). A New Method for Predicting Soil Moisture Based on UAV Hyperspectral Image. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 40(2). https://doi.org/10.3964/j.issn.1000-0593(2020)02-0602-08 [ Links ]Gopinath, R. (2023). Perception of ICT in farming practices with special reference to e-commerce in agriculture. IJRAR-International Journal of Research and Analytical Reviews, 6. http://ijrar.com/ [ Links ]Hernandez, R. M. (2017). Impact of ICT on education: Challenges and perspectives. Propósitos y Representaciones, 5(1), 325-347. https://doi.org/10.20511/pyr2017.v5n1.149 [ Links ]Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82. https://doi.org/10.1016/j.future.2017.11.022 [ Links ]Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences, 90-91(October), 100315. https://doi.org/10.1016/j.njas.2019.100315 [ Links ]Kocian, A., & Incrocci, L. (2020). Learning from Data to Optimize Control in Precision Farming. Stats, 3(3). https://doi.org/10.3390/stats3030018 [ Links ]Marwa, M. E., Mburu, J., Oburu, R. E. J., Mwai, O., & Kahumbu, S. (2020). Impact of ICT based extension services on dairy production and household welfare: The case of iCow service in Kenya. Journal of Agricultural Science, 12(3), 141. https://doi.org/10.5539/jas.v12n3p141 [ Links ]Miller, G. A., Hyslop, J. J., Barclay, D., Edwards, A., Thomson, W., & Duthie, C. A. (2019). Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00030 [ Links ]Minagricultura. (2018). Un Campo para la Equidad: Política Agropecuaria y de Desarrollo Rural. [ Links ]Mohammad El-Basioni, B. M., & Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3031634 [ Links ]Mohamad Noor, M. B., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148. https://doi.org/10.1016/j.comnet.2018.11.025 [ Links ]Newase, A. D., Sheetlani, J., Sai, S., & Patil, R. D. (2017). A literature review on impact of information and communication technology tools on rural society of India. Indian Journal of Computer Science and Engineering, 8(3), 235-240. [ Links ]Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. In Journal of King Saud University - Computer and Information Sciences, 30, (4). https://doi.org/10.1016/j.jksuci.2017.06.001 [ Links ]Panesar, G. S., Venkatesh, D., Rakhra, M., Jairath, K., & Shabaz, M. (2021). Agile software and business development using artificial intelligence. Annals of the Romanian Society for Cell Biology, 25(2). [ Links ]Parra-Peña, R., Puyana, R., & Yepes-Chica, F. (2021). Análisis de la productividad del sector agropecuario en Colombia y su impacto en temas como: encadenamientos productivos, sostenibilidad e internacionalización, en el marco del programa Colombia más competitiva. [ Links ]Punchihewa, D. J., & Wimalaratne, P. (2010). Towards an ICT enabled farming community. E-Governance in Practice, India (pp. 201-207). https://www.icta.lk [ Links ]Sidhu, S., Mohd, B. J., & Hayajneh, T. (2019). Hardware security in IoT devices with emphasis on hardware trojans. Journal of Sensor and Actuator Networks, 8(3). https://doi.org/10.3390/jsan8030042 [ Links ]Thangaraju, G., Agnes, X., & Rani, K. (2016). A study to improve the organic farming and the impact of ICT in organic agriculture with special reference to Perambalur district in Tamilnadu (Data analysis with K-means clustering algorithm in datamining). International Journal of Emerging Technology in Computer Science & Electronics, 20. [ Links ]UNGRD. (2021). Sistema de Alerta Temprana. Retrieved from http://portal.gestiondelriesgo.gov.co/Paginas/SAT.aspx [ Links ]Unal, Z. (2020). Smart farming becomes even smarter with deep learning - A bibliographical analysis. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3000175 [ Links ]Vergara-Díaz, O., Kefauver, S., Araus, J. L., & Aranjuelo, I. (2020). Development of novel technological approaches for a reliable crop characterization under changing environmental conditions. NIR News, 31(7-8). https://doi.org/10.1177/096033602097874 [ Links ]Wei, H. E., Grafton, M., Bretherton, M., Irwin, M., & Sandoval, E. (2021). Evaluation of point hyperspectral reflectance and multivariate regression models for grapevine water status estimation. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163198 [ Links ]12110653Precision agricultureDashboardESP32IoTSensorsCloud monitoringAgricultura de precisiónSensoresMonitoreo en la nubePublicationORIGINALInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdfInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdfapplication/pdf770824https://repositorio.cuc.edu.co/bitstreams/62330a39-4768-47e9-93d8-96aa46e08781/downloadd98942854545ea35ad6688b1a8bc4709MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/c58f9237-0cca-4a62-9428-0ec3768161d0/download73a5432e0b76442b22b026844140d683MD52TEXTInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.txtInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.txtExtracted texttext/plain40343https://repositorio.cuc.edu.co/bitstreams/0fc9906e-6df4-4ce8-b54b-b6909f9453ba/download26aeaeabad50c9906a20cf787719dd85MD53THUMBNAILInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.jpgInternet of Things (IoT) applied to agriculture current state and its application through a prototype.pdf.jpgGenerated Thumbnailimage/jpeg12153https://repositorio.cuc.edu.co/bitstreams/55bacab9-c0d0-494b-a98e-9e86f0e96ab4/download57a0d9504ec225e450d2b1be107fc23aMD5411323/13920oai:repositorio.cuc.edu.co:11323/139202025-01-21 04:02:35.794https://creativecommons.org/licenses/by-nc-nd/4.0/© Copyright 2024 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K