Typing pattern analysis for fake profile detection in social Media
Nowadays, interaction with fake profiles of a genuine user in social media is a common problem. General users may not easily identify profiles created by fake users. Although various research works are going on all over the world to detect fake profiles in social media, focus of this paper is to rem...
- Autores:
-
Bhattasali, Tapalina
Saeed, Khalid
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8831
- Acceso en línea:
- https://hdl.handle.net/11323/8831
https://repositorio.cuc.edu.co/
- Palabra clave:
- typing pattern
keystroke
mouse click
touch stroke
fake profile
deep_ID
social media
- Rights
- closedAccess
- License
- CC0 1.0 Universal
id |
RCUC2_343c99aaba1262a97cc040f08a1a971a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8831 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Typing pattern analysis for fake profile detection in social Media |
title |
Typing pattern analysis for fake profile detection in social Media |
spellingShingle |
Typing pattern analysis for fake profile detection in social Media typing pattern keystroke mouse click touch stroke fake profile deep_ID social media |
title_short |
Typing pattern analysis for fake profile detection in social Media |
title_full |
Typing pattern analysis for fake profile detection in social Media |
title_fullStr |
Typing pattern analysis for fake profile detection in social Media |
title_full_unstemmed |
Typing pattern analysis for fake profile detection in social Media |
title_sort |
Typing pattern analysis for fake profile detection in social Media |
dc.creator.fl_str_mv |
Bhattasali, Tapalina Saeed, Khalid |
dc.contributor.author.spa.fl_str_mv |
Bhattasali, Tapalina Saeed, Khalid |
dc.subject.spa.fl_str_mv |
typing pattern keystroke mouse click touch stroke fake profile deep_ID social media |
topic |
typing pattern keystroke mouse click touch stroke fake profile deep_ID social media |
description |
Nowadays, interaction with fake profiles of a genuine user in social media is a common problem. General users may not easily identify profiles created by fake users. Although various research works are going on all over the world to detect fake profiles in social media, focus of this paper is to remove additional efforts in detection procedure. Behavioral biometrics like typing pattern of users can be considered to classify genuine profile and fake profile without disrupting normal activities of the users. In this paper, DEEP_ID model is designed to detect fake profiles in Facebook like social media considering typing patterns like keystroke, mouse-click, and touch stroke. Proposed model can silently detect the profiles created by fake users when they type or click in social media from desktop, laptop, or touch devices. DEEP_ID model can also identify whether genuine profiles have been hacked by fake users or not in the middle of the session. The objective of proposed work is to demonstrate the hypothesis that user recognition algorithms applied to raw data can perform better if requirement for feature extraction can be avoided, which in turn can remove the problem of inappropriate attribute selection. Proposed DEEP_ID model is based on multi-view deep neural network, where network layers can learn data representation for user recognition based on raw data of typing pattern without feature selection and extraction. Proposed DEEP_ID model has achieved better results compared to traditional machine learning classifiers. It provides strong evidence that the stated hypothesis is valid. Evaluation results indicate that Deep_ID model is highly accurate in profile detection and efficient enough to perform fast detection. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-03T14:23:36Z |
dc.date.available.none.fl_str_mv |
2021-11-03T14:23:36Z |
dc.date.issued.none.fl_str_mv |
2021-09-17 |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
03029743 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8831 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/978-3-030-84340-3_2 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
03029743 10.1007/978-3-030-84340-3_2 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8831 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006) Cruz, M.A.D.S., Goldschmidt, R.R.: Deep neural networks applied to user recognition based on keystroke dynamics: learning from raw data. In: Proceedings of the XV Brazilian Symposium on Information Systems. Article No.: 35, pp. 1–8 (2019) Sun, L., Wang, Y., Cao, B., Yu, P.S., Srisa-an, W., Leow, A.D.: Sequential keystroke behavioral biometrics for mobile user identification via multi-view deep learning. In: Altun, Y., Das, K., Mielikäinen, T., Malerba, D., Stefanowski, J., Read, J., Žitnik, M., Ceci, M., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 228–240. Springer, Cham (2017). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-71273-4_19 Zhong, Y., Deng, Y.: A survey on keystroke dynamics biometrics: approaches, advances, and evaluations. In: Recent Advances in User Authentication Using Keystroke Dynamics Biometrics, pp. 1–22 (2015) Baynath, P., Soyjaudah, K.M S., Khan, M.H-M.: Implementation of a secure keystroke dynamics using ant colony optimization. In: Proceedings of International Conference on Communications, Computer Science and Information Technology (2016) Liu, F., Deng, Y.: Determine the number of unknown targets in open world based on elbow method. IEEE Trans. Fuzzy Syst. 29(5), 986–995 (2021) Lever, J., Krzywinski, M., Altman, N.: Points of Significance: principal component analysis. Nat. Methods 14(7), 641–642 (2017) Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404, 132306 (2020) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997) Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1110–1118 (2015) Obaidat, M.S., Sadoun, B.: Verification of computer users using keystroke dynamics. IEEE Trans. Syst. Man Cybern. B Cybern. 27(2), 261–269 (1997) Zhao, X., Feng, T., Shi, W.: Continuous mobile authentication using a novel graphic touch gesture feature. In: Proceedings of IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2013) Abramson, M., Gore, S.: Associative patterns of web browsing behavior. In: AAAIFall Symposium Series (2013) Zhang, H., Yan, Z., Yang, J., Tapia, E.M., Crandall, D.J.: Mfingerprint: privacy-preserving user modeling with multimodal mobile device footprints. In: Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 195–203. Springer, Cham (2014). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-05579-4_24 Ahmed, A.A., Traore, I.: Biometric recognition based on free-text keystroke dynamics. IEEE Trans, Cybern. 44(4), 458–472 (2014) Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for keystroke dynamics. In: Proceedings of IEEE/IFIP International Conference Dependable Systems & Networks, pp. 125–134 (2009) Killourhy, K.S., Kevin, S., Maxion, R.A., Roy, A.: Free vs. transcribed text for keystroke-dynamics evaluations. In: Proceedings of Workshop: Learning from Authoritative Security Experiment Results, pp. 1–8 (2012) Bhattasali, T., Saeed, K.: Two factor remote authentication in healthcare. In: Proceedings of IEEE International Conference on Advances in Computing, Communications and Informatics, pp. 380–381 (2014) Bhattasali, T., Saeed, K., Chaki, N., Chaki, R.: Bio-authentication for layered remote health monitor framework. J. Med. Inform. Technol. 23, 131–140 (2014) Maxion, R., Killourhy, K.: Keystroke biometrics with number-pad input. In: Proceedings of IEEE International Conference on Dependable Systems & Networks, pp. 201–210 (2010) Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via touch biometrics: an experimental study on smartphones. In: Proceedings of Symposium on Usable Privacy and Security, pp. 187–198 (2014) Feng, T., et al.: Continuous mobile authentication using touchscreen gestures. In: Proceedings of IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 451–456 (2013) Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication. In: IEEE Transactions on Information Forensics and Security, vol. 8, pp. 136–148 (2013) Bhattasali, T., Panasiuk, P., Saeed, K., Chaki, N., Chaki, R.: Modular logic of authentication using dynamic keystroke pattern analysis”. In: Proceedings of ICNAAM, vol. 1738, p. 180012. AIP Publishing, American Institute of Physics (2016) Bhattasali, T., Chaki, N., Saeed, K., Chaki, R.: U-stroke pattern modeling for end user identity verification through ubiquitous input device. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 219–230. Springer, Cham (2015). |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Computer Information Systems and Industrial Management |
dc.source.spa.fl_str_mv |
International Conference on Computer Information Systems and Industrial Management CISIM 2021 |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-030-84340-3_2 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/042ac97a-2ef8-4eaf-a29d-96a5e3d56575/download https://repositorio.cuc.edu.co/bitstreams/9b6eb7d5-a990-4b48-be61-f84457b3bbca/download https://repositorio.cuc.edu.co/bitstreams/cea6a92e-4a6f-4d25-9608-691287bd6a2e/download https://repositorio.cuc.edu.co/bitstreams/5c53acd5-cb7e-4db8-9150-4c2403fcc3ff/download https://repositorio.cuc.edu.co/bitstreams/b93bcbe2-65f3-4ae3-b89b-d532f8af5e3f/download https://repositorio.cuc.edu.co/bitstreams/2c1b46a0-375c-4f64-91c4-97c53eb096f4/download |
bitstream.checksum.fl_str_mv |
8e972398f89a1fc331a6f06c399df913 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 4bfdc0a0aa1b9621d3b860581cbeed97 4bfdc0a0aa1b9621d3b860581cbeed97 ff11da8448da077890bad4eead457a7e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760716025167872 |
spelling |
Bhattasali, TapalinaSaeed, Khalid2021-11-03T14:23:36Z2021-11-03T14:23:36Z2021-09-1703029743https://hdl.handle.net/11323/883110.1007/978-3-030-84340-3_2Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays, interaction with fake profiles of a genuine user in social media is a common problem. General users may not easily identify profiles created by fake users. Although various research works are going on all over the world to detect fake profiles in social media, focus of this paper is to remove additional efforts in detection procedure. Behavioral biometrics like typing pattern of users can be considered to classify genuine profile and fake profile without disrupting normal activities of the users. In this paper, DEEP_ID model is designed to detect fake profiles in Facebook like social media considering typing patterns like keystroke, mouse-click, and touch stroke. Proposed model can silently detect the profiles created by fake users when they type or click in social media from desktop, laptop, or touch devices. DEEP_ID model can also identify whether genuine profiles have been hacked by fake users or not in the middle of the session. The objective of proposed work is to demonstrate the hypothesis that user recognition algorithms applied to raw data can perform better if requirement for feature extraction can be avoided, which in turn can remove the problem of inappropriate attribute selection. Proposed DEEP_ID model is based on multi-view deep neural network, where network layers can learn data representation for user recognition based on raw data of typing pattern without feature selection and extraction. Proposed DEEP_ID model has achieved better results compared to traditional machine learning classifiers. It provides strong evidence that the stated hypothesis is valid. Evaluation results indicate that Deep_ID model is highly accurate in profile detection and efficient enough to perform fast detection.Bhattasali, Tapalina-will be generated-orcid-0000-0001-7799-2720-600Saeed, Khalid-will be generated-orcid-0000-0002-7741-7045-600application/pdfengComputer Information Systems and Industrial ManagementCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbInternational Conference on Computer Information Systems and Industrial Management CISIM 2021https://link.springer.com/chapter/10.1007/978-3-030-84340-3_2typing patternkeystrokemouse clicktouch strokefake profiledeep_IDsocial mediaTyping pattern analysis for fake profile detection in social MediaCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/acceptedVersionHinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)Cruz, M.A.D.S., Goldschmidt, R.R.: Deep neural networks applied to user recognition based on keystroke dynamics: learning from raw data. In: Proceedings of the XV Brazilian Symposium on Information Systems. Article No.: 35, pp. 1–8 (2019)Sun, L., Wang, Y., Cao, B., Yu, P.S., Srisa-an, W., Leow, A.D.: Sequential keystroke behavioral biometrics for mobile user identification via multi-view deep learning. In: Altun, Y., Das, K., Mielikäinen, T., Malerba, D., Stefanowski, J., Read, J., Žitnik, M., Ceci, M., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 228–240. Springer, Cham (2017). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-71273-4_19Zhong, Y., Deng, Y.: A survey on keystroke dynamics biometrics: approaches, advances, and evaluations. In: Recent Advances in User Authentication Using Keystroke Dynamics Biometrics, pp. 1–22 (2015)Baynath, P., Soyjaudah, K.M S., Khan, M.H-M.: Implementation of a secure keystroke dynamics using ant colony optimization. In: Proceedings of International Conference on Communications, Computer Science and Information Technology (2016)Liu, F., Deng, Y.: Determine the number of unknown targets in open world based on elbow method. IEEE Trans. Fuzzy Syst. 29(5), 986–995 (2021)Lever, J., Krzywinski, M., Altman, N.: Points of Significance: principal component analysis. Nat. Methods 14(7), 641–642 (2017)Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404, 132306 (2020)Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton based action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1110–1118 (2015)Obaidat, M.S., Sadoun, B.: Verification of computer users using keystroke dynamics. IEEE Trans. Syst. Man Cybern. B Cybern. 27(2), 261–269 (1997)Zhao, X., Feng, T., Shi, W.: Continuous mobile authentication using a novel graphic touch gesture feature. In: Proceedings of IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2013)Abramson, M., Gore, S.: Associative patterns of web browsing behavior. In: AAAIFall Symposium Series (2013)Zhang, H., Yan, Z., Yang, J., Tapia, E.M., Crandall, D.J.: Mfingerprint: privacy-preserving user modeling with multimodal mobile device footprints. In: Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, pp. 195–203. Springer, Cham (2014). https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-05579-4_24Ahmed, A.A., Traore, I.: Biometric recognition based on free-text keystroke dynamics. IEEE Trans, Cybern. 44(4), 458–472 (2014)Killourhy, K.S., Maxion, R.A.: Comparing anomaly-detection algorithms for keystroke dynamics. In: Proceedings of IEEE/IFIP International Conference Dependable Systems & Networks, pp. 125–134 (2009)Killourhy, K.S., Kevin, S., Maxion, R.A., Roy, A.: Free vs. transcribed text for keystroke-dynamics evaluations. In: Proceedings of Workshop: Learning from Authoritative Security Experiment Results, pp. 1–8 (2012)Bhattasali, T., Saeed, K.: Two factor remote authentication in healthcare. In: Proceedings of IEEE International Conference on Advances in Computing, Communications and Informatics, pp. 380–381 (2014)Bhattasali, T., Saeed, K., Chaki, N., Chaki, R.: Bio-authentication for layered remote health monitor framework. J. Med. Inform. Technol. 23, 131–140 (2014)Maxion, R., Killourhy, K.: Keystroke biometrics with number-pad input. In: Proceedings of IEEE International Conference on Dependable Systems & Networks, pp. 201–210 (2010)Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via touch biometrics: an experimental study on smartphones. In: Proceedings of Symposium on Usable Privacy and Security, pp. 187–198 (2014)Feng, T., et al.: Continuous mobile authentication using touchscreen gestures. In: Proceedings of IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 451–456 (2013)Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication. In: IEEE Transactions on Information Forensics and Security, vol. 8, pp. 136–148 (2013)Bhattasali, T., Panasiuk, P., Saeed, K., Chaki, N., Chaki, R.: Modular logic of authentication using dynamic keystroke pattern analysis”. In: Proceedings of ICNAAM, vol. 1738, p. 180012. AIP Publishing, American Institute of Physics (2016)Bhattasali, T., Chaki, N., Saeed, K., Chaki, R.: U-stroke pattern modeling for end user identity verification through ubiquitous input device. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 219–230. Springer, Cham (2015).PublicationORIGINALTyping Pattern Analysis for Fake Profile Detection in Social Media.pdfTyping Pattern Analysis for Fake Profile Detection in Social Media.pdfapplication/pdf400497https://repositorio.cuc.edu.co/bitstreams/042ac97a-2ef8-4eaf-a29d-96a5e3d56575/download8e972398f89a1fc331a6f06c399df913MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9b6eb7d5-a990-4b48-be61-f84457b3bbca/download42fd4ad1e89814f5e4a476b409eb708cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/cea6a92e-4a6f-4d25-9608-691287bd6a2e/downloade30e9215131d99561d40d6b0abbe9badMD54THUMBNAILTyping Pattern Analysis for Fake Profile Detection in Social Media.pdf.jpgTyping Pattern Analysis for Fake Profile Detection in Social Media.pdf.jpgimage/jpeg51638https://repositorio.cuc.edu.co/bitstreams/5c53acd5-cb7e-4db8-9150-4c2403fcc3ff/download4bfdc0a0aa1b9621d3b860581cbeed97MD55THUMBNAILTyping Pattern Analysis for Fake Profile Detection in Social Media.pdf.jpgTyping Pattern Analysis for Fake Profile Detection in Social Media.pdf.jpgimage/jpeg51638https://repositorio.cuc.edu.co/bitstreams/b93bcbe2-65f3-4ae3-b89b-d532f8af5e3f/download4bfdc0a0aa1b9621d3b860581cbeed97MD55TEXTTyping Pattern Analysis for Fake Profile Detection in Social Media.pdf.txtTyping Pattern Analysis for Fake Profile Detection in Social Media.pdf.txttext/plain1983https://repositorio.cuc.edu.co/bitstreams/2c1b46a0-375c-4f64-91c4-97c53eb096f4/downloadff11da8448da077890bad4eead457a7eMD5611323/8831oai:repositorio.cuc.edu.co:11323/88312024-09-17 10:46:44.584http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |