Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines

This paper presents a novel non-invasive monitoring method, based on a Liénard-type model (LTM) to diagnose single and sequential leaks in liquid pipelines. The LTM describes the fluid behavior in a pipeline and is given only in terms of the flow rate. Our method was conceived to be applied in pipel...

Full description

Autores:
Jiménez-Cabas, Javier
Torres, Lizeth
López Estrada, Francisco Ronay
DE LOS SANTOS RUIZ, ILDEBERTO
Manrique-Morelos, Fabián
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7238
Acceso en línea:
https://hdl.handle.net/11323/7238
https://repositorio.cuc.edu.co/
Palabra clave:
Leak diagnosis in pipelines
Non-invasive monitoring method
Liénard-type model
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_341cc982df2c534f83c98a471f9699e0
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7238
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
title Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
spellingShingle Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
Leak diagnosis in pipelines
Non-invasive monitoring method
Liénard-type model
title_short Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
title_full Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
title_fullStr Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
title_full_unstemmed Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
title_sort Development of non-invasive monitoring approach to diagnose leaks in liquid pipelines
dc.creator.fl_str_mv Jiménez-Cabas, Javier
Torres, Lizeth
López Estrada, Francisco Ronay
DE LOS SANTOS RUIZ, ILDEBERTO
Manrique-Morelos, Fabián
dc.contributor.author.spa.fl_str_mv Jiménez-Cabas, Javier
Torres, Lizeth
López Estrada, Francisco Ronay
DE LOS SANTOS RUIZ, ILDEBERTO
Manrique-Morelos, Fabián
dc.subject.spa.fl_str_mv Leak diagnosis in pipelines
Non-invasive monitoring method
Liénard-type model
topic Leak diagnosis in pipelines
Non-invasive monitoring method
Liénard-type model
description This paper presents a novel non-invasive monitoring method, based on a Liénard-type model (LTM) to diagnose single and sequential leaks in liquid pipelines. The LTM describes the fluid behavior in a pipeline and is given only in terms of the flow rate. Our method was conceived to be applied in pipelines mono-instrumented with flowmeters or in conjunction with pressure sensors that are temporarily unavailable. The approach conception starts with the discretization of the LTM spatial domain into a prescribed number of sections. Such discretization is performed to obtain a lumped model capable of providing a solution (an internal flow rate) for every section. From this lumped model, a set of algebraic equations (known as residuals) are deduced as the difference between the internal discrete flows and the nominal flow (the mean of the flow rate calculated before the leak). Once the residuals are calculated a principal component analysis (PCA) is carried out to detect a leak occurrence. In the presence of a leak, the residual closest to zero will indicate the section where a leak is occurring. Some simulation-based tests in PipelineStudio® and experimental tests in a lab-pipeline illustrating the suitability of our method are shown at the end of this article.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-10T20:48:48Z
dc.date.available.none.fl_str_mv 2020-11-10T20:48:48Z
dc.date.issued.none.fl_str_mv 2020-06
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0453-2198
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7238
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0453-2198
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7238
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] R. P. API, “1130: Computational Pipeline Monitoring for Liquids.” American petroleum institute, 2007.
[2] C. Sandberg, J. Holmes, K. McCoy, and H. Koppitsch, “The application of a continuous leak detection system to pipelines and associated equipment,” IEEE Trans. Ind. Appl., vol. 25, no. 5, pp. 906–909, 1989.
[3] W. J. Reddy III, “Capacitance measuring circuit and method for liquid leak detection by measuring charging time.” Google Patents, 1992.
[4] R. K. Miller et al., “The development of acoustic emission for leak detection and location in liquidfilled, buried pipelines,” in Acoustic Emission: Standards and Technology Update, ASTM International, 1999.
[5] J. Campuzano-Cervantes, F. Meléndez-Pertuz, B. Núñez-Perez, and J. Simancas-Garc\’\ia, “Sistema de Monitoreo Electrónico de Desplazamiento de Tubos de Extensión para Junta Expansiva,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 14, no. 3, pp. 268–278, 2017.
[6] S. R. Reddy, “System and method for detecting leaks in a vapor handling system.” Google Patents, 1993.
[7] V. V Spirin, M. G. Shlyagin, S. V Miridonov, F. J. M. Jimenez, and R. M. L. Gutierrez, “Fiber Bragg grating sensor for petroleum hydrocarbon leak detection,” Opt. Lasers Eng., vol. 32, no. 5, pp. 497– 503, 1999.
[8] N. Kasai, C. Tsuchiya, T. Fukuda, K. Sekine, T. Sano, and T. Takehana, “Propane gas leak detection by infrared absorption using carbon infrared emitter and infrared camera,” NDT E Int., vol. 44, no. 1, pp. 57–60, 2011.
[9] C. Verde, “Multi-leak detection and isolation in fluid pipelines,” Control Eng. Pract., vol. 9, no. 6, pp. 673–682, 2001.
[10] L. Torres, G. Besancon, and D. Georges, “A collocation model for water-hammer dynamics with application to leak detection,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, 2008, pp. 3890–3894, doi: 10.1109/CDC.2008.4739304.
[11] S. Verde, Cristina and Visairo, Nancy and Gentil, “Two leaks Isolation in a pipeline by transient response,” Adv. Water Resour., vol. 30, no. 8, pp. 1711--1721, 2007.
[12] J. Jiménez, L. Torres, I. Rubio, and M. Sanjuan, “Auxiliary Signal Design and Liénard-type Models for Identifying Pipeline Parameters,” in Modeling and Monitoring of Pipelines and Networks, Springer, 2017, pp. 99–124.
[13] J. Jiménez, L. Torres, C. Verde, and M. Sanjuán, “Friction estimation of pipelines with extractions by using state observers,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5361–5366, 2017.
[14] N. R. Bellahsene, M. Mostefai, and E. K. A. Oum, “Extended Kalman observer based sensor fault detection.,” Int. J. Electr. Comput. Eng. (2088- 8708), vol. 9, no. 3, 2019.
[15] M. Brunone, Bruno and Ferrante, “Detecting leaks in pressurised pipes by means of transients,” J. Hydraul. Res., vol. 39, no. 5, pp. 539–547, 2001.
[16] B. W. Colombo, Andrew F and Lee, Pedro and Karney, “A selective literature review of transientbased leak detection methods,” J. Hydro-environment Res., vol. 2, no. 4, pp. 212–227, 2009.
[17] U.S. Department of Transportation, “Pipeline and Hazardous Materials Safety Administration: Pipeline Significant Incident 20 Year Trend.” 2019.
[18] J. C. P. Liou, “Leak detection by mass balance effective for Norman wells line,” Oil gas J., vol. 94, no. 17, 1996.
[19] J. C. P. Lion, “Leak Detection: A Transient Flow Simulation Approach,” in Pipeline Engineering AME Petroleum Division Publication PD V60, 1994 Proceedings of the Energy Source Technology Conference, 1995.
[20] P. Ostapkowicz, “Leak detection in liquid transmission pipelines using simplified pressure analysis techniques employing a minimum of standard and non-standard measuring devices,” Eng. Struct., vol. 113, pp. 194–205, 2016.
[21] R. A. Silva, C. M. Buiatti, S. L. Cruz, and J. A. F. R. Pereira, “Pressure wave behaviour and leak detection in pipelines,” Comput. Chem. Eng., vol. 20, pp. S491--S496, 1996.
[22] E. Farmer, “System for monitoring pipelines.” Google Patents, 1989.
[23] R. Isermann, “Process fault detection based on modeling and estimation methods-A survey,” automatica, vol. 20, no. 4, pp. 387–404, 1984.
[24] L. Billmann and R. Isermann, “Leak detection methods for pipelines,” Automatica, vol. 23, no. 3, pp. 381–385, 1987.
[25] L. Torres, G. Besançon, and C. Verde, “Liénard type model of fluid flow in pipelines: Application to estimation,” in 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2015, pp. 1–6.
[26] L. Torres, J. A. D. Aguiñaga, G. Besançon, C. Verde, and O. Begovich, “Equivalent Liénard-type models for a fluid transmission line,” Comptes Rendus Mécanique, 2016.
[27] M. H. Chaudhry, Applied Hydraulic Transients. Springer New York, 2013.
[28] J. Jimenez Cabas and J. D. Ruiz Ariza, “Modeling and Simulation of a Pipeline Transportation Process,” vol. 13, no. 9, 2018.
[29] A. C. Yunus and J. M. Cimbala, “Fluid mechanics fundamentals and applications,” McGraw-Hill Publ., 2006.
[30] L. F. Moody, “Friction factors for pipe flow,” Trans Asme, vol. 66, pp. 671–684, 1944.
[31] D. Brkić, “Review of explicit approximations to the Colebrook relation for flow friction,” J. Pet. Sci. Eng., vol. 77, no. 1, pp. 34–48, 2011.
[32] J. Jiménez, L. Torres, C. Verde, and M. Sanjuán, “Friction estimation of pipelines with extractions by using state observers,” IFAC-PapersOnLine, vol. 50, no. 1, 2017, doi: 10.1016/j.ifacol.2017.08.942.
[33] J. Jiménez-Cabas, E. Romero-Fandiño, L. Torres, M. Sanjuan, and F. R. López-Estrada, “Localization of Leaks in Water Distribution Networks using Flow Readings,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 922–928, 2018.
[34] L. Torres, J. A. D. Aguiñaga, G. Besançon, C. Verde, and O. Begovich, “Equivalent Li{é}nard-type models for a fluid transmission line,” Comptes Rendus M{é}canique, vol. 344, no. 8, pp. 582–595, 2016.
[35] I. Portnoy, K. Melendez, H. Pinzon, and M. Sanjuan, “An improved weighted recursive PCA algorithm for adaptive fault detection,” Control Eng. Pract., vol. 50, pp. 69–83, 2016.
[36] J. E. Jackson and G. S. Mudholkar, “Control procedures for residuals associated with principal component analysis,” Technometrics, vol. 21, no. 3, pp. 341–349, 1979.
[37] W. R. Zwick and W. F. Velicer, “Comparison of five rules for determining the number of components to retain.,” Psychol. Bull., vol. 99, no. 3, p. 432, 1986.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Technology Reports of Kansai University
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.researchgate.net/publication/343615641_Development_of_Non-Invasive_Monitoring_Approach_to_Diagnose_Leaks_in_Liquid_Pipelines
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7238/1/Development%20of%20Non-Invasive%20Monitoring%20Approach.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7238/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7238/3/license.txt
bitstream.checksum.fl_str_mv 59f4ea5c4164649013f12eb198d35c26
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400078054883328
spelling Jiménez-Cabas, Javierab65972567cfb7a5fa089d3aa18ed292Torres, Lizethcd076d7acbc9394032fadec6d03c56acLópez Estrada, Francisco Ronay5d9285df8c22f7a298fcfb2a267f6b63DE LOS SANTOS RUIZ, ILDEBERTOd9e4624cbb80caebec8e260294b813c6Manrique-Morelos, Fabián3fdf9bc3f1848649f57edb352e56045d2020-11-10T20:48:48Z2020-11-10T20:48:48Z2020-060453-2198https://hdl.handle.net/11323/7238Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a novel non-invasive monitoring method, based on a Liénard-type model (LTM) to diagnose single and sequential leaks in liquid pipelines. The LTM describes the fluid behavior in a pipeline and is given only in terms of the flow rate. Our method was conceived to be applied in pipelines mono-instrumented with flowmeters or in conjunction with pressure sensors that are temporarily unavailable. The approach conception starts with the discretization of the LTM spatial domain into a prescribed number of sections. Such discretization is performed to obtain a lumped model capable of providing a solution (an internal flow rate) for every section. From this lumped model, a set of algebraic equations (known as residuals) are deduced as the difference between the internal discrete flows and the nominal flow (the mean of the flow rate calculated before the leak). Once the residuals are calculated a principal component analysis (PCA) is carried out to detect a leak occurrence. In the presence of a leak, the residual closest to zero will indicate the section where a leak is occurring. Some simulation-based tests in PipelineStudio® and experimental tests in a lab-pipeline illustrating the suitability of our method are shown at the end of this article.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Technology Reports of Kansai Universityhttps://www.researchgate.net/publication/343615641_Development_of_Non-Invasive_Monitoring_Approach_to_Diagnose_Leaks_in_Liquid_PipelinesLeak diagnosis in pipelinesNon-invasive monitoring methodLiénard-type modelDevelopment of non-invasive monitoring approach to diagnose leaks in liquid pipelinesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] R. P. API, “1130: Computational Pipeline Monitoring for Liquids.” American petroleum institute, 2007.[2] C. Sandberg, J. Holmes, K. McCoy, and H. Koppitsch, “The application of a continuous leak detection system to pipelines and associated equipment,” IEEE Trans. Ind. Appl., vol. 25, no. 5, pp. 906–909, 1989.[3] W. J. Reddy III, “Capacitance measuring circuit and method for liquid leak detection by measuring charging time.” Google Patents, 1992.[4] R. K. Miller et al., “The development of acoustic emission for leak detection and location in liquidfilled, buried pipelines,” in Acoustic Emission: Standards and Technology Update, ASTM International, 1999.[5] J. Campuzano-Cervantes, F. Meléndez-Pertuz, B. Núñez-Perez, and J. Simancas-Garc\’\ia, “Sistema de Monitoreo Electrónico de Desplazamiento de Tubos de Extensión para Junta Expansiva,” Rev. Iberoam. Automática e Informática Ind. RIAI, vol. 14, no. 3, pp. 268–278, 2017.[6] S. R. Reddy, “System and method for detecting leaks in a vapor handling system.” Google Patents, 1993.[7] V. V Spirin, M. G. Shlyagin, S. V Miridonov, F. J. M. Jimenez, and R. M. L. Gutierrez, “Fiber Bragg grating sensor for petroleum hydrocarbon leak detection,” Opt. Lasers Eng., vol. 32, no. 5, pp. 497– 503, 1999.[8] N. Kasai, C. Tsuchiya, T. Fukuda, K. Sekine, T. Sano, and T. Takehana, “Propane gas leak detection by infrared absorption using carbon infrared emitter and infrared camera,” NDT E Int., vol. 44, no. 1, pp. 57–60, 2011.[9] C. Verde, “Multi-leak detection and isolation in fluid pipelines,” Control Eng. Pract., vol. 9, no. 6, pp. 673–682, 2001.[10] L. Torres, G. Besancon, and D. Georges, “A collocation model for water-hammer dynamics with application to leak detection,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, 2008, pp. 3890–3894, doi: 10.1109/CDC.2008.4739304.[11] S. Verde, Cristina and Visairo, Nancy and Gentil, “Two leaks Isolation in a pipeline by transient response,” Adv. Water Resour., vol. 30, no. 8, pp. 1711--1721, 2007.[12] J. Jiménez, L. Torres, I. Rubio, and M. Sanjuan, “Auxiliary Signal Design and Liénard-type Models for Identifying Pipeline Parameters,” in Modeling and Monitoring of Pipelines and Networks, Springer, 2017, pp. 99–124.[13] J. Jiménez, L. Torres, C. Verde, and M. Sanjuán, “Friction estimation of pipelines with extractions by using state observers,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5361–5366, 2017.[14] N. R. Bellahsene, M. Mostefai, and E. K. A. Oum, “Extended Kalman observer based sensor fault detection.,” Int. J. Electr. Comput. Eng. (2088- 8708), vol. 9, no. 3, 2019.[15] M. Brunone, Bruno and Ferrante, “Detecting leaks in pressurised pipes by means of transients,” J. Hydraul. Res., vol. 39, no. 5, pp. 539–547, 2001.[16] B. W. Colombo, Andrew F and Lee, Pedro and Karney, “A selective literature review of transientbased leak detection methods,” J. Hydro-environment Res., vol. 2, no. 4, pp. 212–227, 2009.[17] U.S. Department of Transportation, “Pipeline and Hazardous Materials Safety Administration: Pipeline Significant Incident 20 Year Trend.” 2019.[18] J. C. P. Liou, “Leak detection by mass balance effective for Norman wells line,” Oil gas J., vol. 94, no. 17, 1996.[19] J. C. P. Lion, “Leak Detection: A Transient Flow Simulation Approach,” in Pipeline Engineering AME Petroleum Division Publication PD V60, 1994 Proceedings of the Energy Source Technology Conference, 1995.[20] P. Ostapkowicz, “Leak detection in liquid transmission pipelines using simplified pressure analysis techniques employing a minimum of standard and non-standard measuring devices,” Eng. Struct., vol. 113, pp. 194–205, 2016.[21] R. A. Silva, C. M. Buiatti, S. L. Cruz, and J. A. F. R. Pereira, “Pressure wave behaviour and leak detection in pipelines,” Comput. Chem. Eng., vol. 20, pp. S491--S496, 1996.[22] E. Farmer, “System for monitoring pipelines.” Google Patents, 1989.[23] R. Isermann, “Process fault detection based on modeling and estimation methods-A survey,” automatica, vol. 20, no. 4, pp. 387–404, 1984.[24] L. Billmann and R. Isermann, “Leak detection methods for pipelines,” Automatica, vol. 23, no. 3, pp. 381–385, 1987.[25] L. Torres, G. Besançon, and C. Verde, “Liénard type model of fluid flow in pipelines: Application to estimation,” in 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2015, pp. 1–6.[26] L. Torres, J. A. D. Aguiñaga, G. Besançon, C. Verde, and O. Begovich, “Equivalent Liénard-type models for a fluid transmission line,” Comptes Rendus Mécanique, 2016.[27] M. H. Chaudhry, Applied Hydraulic Transients. Springer New York, 2013.[28] J. Jimenez Cabas and J. D. Ruiz Ariza, “Modeling and Simulation of a Pipeline Transportation Process,” vol. 13, no. 9, 2018.[29] A. C. Yunus and J. M. Cimbala, “Fluid mechanics fundamentals and applications,” McGraw-Hill Publ., 2006.[30] L. F. Moody, “Friction factors for pipe flow,” Trans Asme, vol. 66, pp. 671–684, 1944.[31] D. Brkić, “Review of explicit approximations to the Colebrook relation for flow friction,” J. Pet. Sci. Eng., vol. 77, no. 1, pp. 34–48, 2011.[32] J. Jiménez, L. Torres, C. Verde, and M. Sanjuán, “Friction estimation of pipelines with extractions by using state observers,” IFAC-PapersOnLine, vol. 50, no. 1, 2017, doi: 10.1016/j.ifacol.2017.08.942.[33] J. Jiménez-Cabas, E. Romero-Fandiño, L. Torres, M. Sanjuan, and F. R. López-Estrada, “Localization of Leaks in Water Distribution Networks using Flow Readings,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 922–928, 2018.[34] L. Torres, J. A. D. Aguiñaga, G. Besançon, C. Verde, and O. Begovich, “Equivalent Li{é}nard-type models for a fluid transmission line,” Comptes Rendus M{é}canique, vol. 344, no. 8, pp. 582–595, 2016.[35] I. Portnoy, K. Melendez, H. Pinzon, and M. Sanjuan, “An improved weighted recursive PCA algorithm for adaptive fault detection,” Control Eng. Pract., vol. 50, pp. 69–83, 2016.[36] J. E. Jackson and G. S. Mudholkar, “Control procedures for residuals associated with principal component analysis,” Technometrics, vol. 21, no. 3, pp. 341–349, 1979.[37] W. R. Zwick and W. F. Velicer, “Comparison of five rules for determining the number of components to retain.,” Psychol. Bull., vol. 99, no. 3, p. 432, 1986.ORIGINALDevelopment of Non-Invasive Monitoring Approach.pdfDevelopment of Non-Invasive Monitoring Approach.pdfapplication/pdf1242924https://repositorio.cuc.edu.co/bitstream/11323/7238/1/Development%20of%20Non-Invasive%20Monitoring%20Approach.pdf59f4ea5c4164649013f12eb198d35c26MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/7238/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7238/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open access11323/7238oai:repositorio.cuc.edu.co:11323/72382023-12-14 13:07:24.927CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==