Evaluation of diatomaceous earth in the removal of crystal violet dye in solution

In this research, the adsorption capacity of diatomaceous earth in the removal of the crystal violet dye (CV) in aqueous solution was evaluated. The experimental methodology began with the determination of the texture properties by adsorption-desorption isotherms with N2 a 77 K, the identification o...

Full description

Autores:
Castellar-Ortega, Grey C.
Cely-Bautista, María M.
Cardozo-Arrieta, Beatriz M.
Jaramillo-Colpas, Javier E.
Moreno-Aldana, Luis C.
Valencia-Ríos, Jesús S.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10941
Acceso en línea:
https://hdl.handle.net/11323/10941
https://repositorio.cuc.edu.co/
Palabra clave:
Diatomaceous earth
Crystal violet
Adsorption isotherms
Adsorption capacity
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_33aa83cfdb83f18e3b04f9428886a1c4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10941
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
title Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
spellingShingle Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
Diatomaceous earth
Crystal violet
Adsorption isotherms
Adsorption capacity
title_short Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
title_full Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
title_fullStr Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
title_full_unstemmed Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
title_sort Evaluation of diatomaceous earth in the removal of crystal violet dye in solution
dc.creator.fl_str_mv Castellar-Ortega, Grey C.
Cely-Bautista, María M.
Cardozo-Arrieta, Beatriz M.
Jaramillo-Colpas, Javier E.
Moreno-Aldana, Luis C.
Valencia-Ríos, Jesús S.
dc.contributor.author.none.fl_str_mv Castellar-Ortega, Grey C.
Cely-Bautista, María M.
Cardozo-Arrieta, Beatriz M.
Jaramillo-Colpas, Javier E.
Moreno-Aldana, Luis C.
Valencia-Ríos, Jesús S.
dc.subject.proposal.eng.fl_str_mv Diatomaceous earth
Crystal violet
Adsorption isotherms
Adsorption capacity
topic Diatomaceous earth
Crystal violet
Adsorption isotherms
Adsorption capacity
description In this research, the adsorption capacity of diatomaceous earth in the removal of the crystal violet dye (CV) in aqueous solution was evaluated. The experimental methodology began with the determination of the texture properties by adsorption-desorption isotherms with N2 a 77 K, the identification of functional groups by Fourier transform infrared spectrophotometry (FTIR), morphology by scanning electron microscopy (SEM) and, the pH of the isoelectric point by the point of zero charge (PZC). A categorical multifactorial design was developed with factors such as the initial concentration of the dye, the temperature and the initial pH of the solution. The maximum adsorption capacity was of 96.1 mg/g up 30ºC and pH 8, satisfactorily fitting the experimental data to the Langmuir isotherm model, suggesting a monolayer adsorption mechanism on a homogeneous surface. In conclusion, diatomaceous earth can be considered as an efficient adsorbent in the removal of CV in aqueous solution.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-04-04T20:03:06Z
dc.date.available.none.fl_str_mv 2024-04-04T20:03:06Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv CASTELLAR-ORTEGA, Grey C. et al. Evaluation of diatomaceous earth in the removal of crystal violet dye in solution. J. appl. res. technol [online]. 2022, vol.20, n.4, pp.387-398. Epub 05-Mayo-2023. ISSN 2448-6736. https://doi.org/10.22201/icat.24486736e.2022.20.4.1524.
dc.identifier.issn.spa.fl_str_mv 1665-6423
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10941
dc.identifier.doi.none.fl_str_mv 10.22201/icat.24486736e.2022.20.4.1524
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv CASTELLAR-ORTEGA, Grey C. et al. Evaluation of diatomaceous earth in the removal of crystal violet dye in solution. J. appl. res. technol [online]. 2022, vol.20, n.4, pp.387-398. Epub 05-Mayo-2023. ISSN 2448-6736. https://doi.org/10.22201/icat.24486736e.2022.20.4.1524.
1665-6423
10.22201/icat.24486736e.2022.20.4.1524
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10941
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Applied Research and Technology
dc.relation.references.spa.fl_str_mv AbdEl-Salam, A. H., Ewais, H. A., & Basaleh, A. S. (2017). Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. Journal of Molecular Liquids, 248, 833–841. https://doi.org/10.1016/j.molliq.2017.10.109
Abdelrahman, E. A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, 72–82. https://doi.org/10.1016/j.molliq.2018.01.038
Alardhi, S. M., Albayati, T. M., & Alrubaye, J. M. (2020). Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column. Heliyon, 6(1), e03253. https://doi.org/10.1016/j.heliyon.2020.e03253
Awasthi, A., & Datta, D. (2019). Application of Amberlite XAD7HP resin impregnated with Aliquat 336 for the removal of Reactive Blue - 13 dye: Batch and fixed-bed column studies. Journal of Environmental Chemical Engineering, 7(6), 103502. https://doi.org/10.1016/j.jece.2019.103502
Bentahar, Y., Draoui, K., Hurel, C., Ajouyed, O., Khairoun, S., & Marmier, N. (2019). Physico-chemical characterization and valorization of swelling and non-swelling Moroccan clays in basic dye removal from aqueous solutions. Journal of African Earth Sciences, 154, 80–88. https://doi.org/10.1016/j.jafrearsci.2019.03.017
Bilińska, L., Blus, K., Gmurek, M., & Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992–1001. https://doi.org/10.1016/j.cej.2018.10.093
Caliskan, N., Kul, A. R., Alkan, S., Sogut, E. G., & Alacabey, I. (2011). Adsorption of Zinc(II) on diatomite and manganeseoxide-modified diatomite: A kinetic and equilibrium study. Journal of Hazardous Materials, 193, 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058
Castellar-Ortega, G. C., Cely-Bautista, M. M., Cardozo-Arrieta, B. M., Angulo-Mercado, E. R., de Jesús Mendoza-Colina, E., ZambranoArevalo, A. M., Jaramillo-Colpas, J. E., & Rosales-Díaz, C. L. (2020). Removal of the direct navy-blue dye on modified coffee bean. Tecnología y Ciencias del Agua, 11(4), 1–26. https://doi.org/10.24850/j-tyca-2020-04-01
Charola, S., Yadav, R., Das, P., & Maiti, S. (2018). Fixed-bed adsorption of Reactive Orange 84 dye onto activated carbon prepared from empty cotton flower agro-waste. Sustainable Environment Research, 28(6), 298–308. https://doi.org/10.1016/j.serj.2018.09.003
Chen, B., Long, F., Chen, S., Cao, Y., & Pan, X. (2020). Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater. Chemical Engineering Journal, 385, 123926. https://doi.org/10.1016/j.cej.2019.123926
Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, 1–11. https://doi.org/10.1016/j.sciaf.2019.e00116
Cychosz, K. A., & Thommes, M. (2018). Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 4(4), 559–566. https://doi.org/10.1016/j.eng.2018.06.001
da Silva, D. C. C., & Pietrobelli, J. M. T. D. A. (2019). Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: Characterization, kinetic, thermodynamic and isotherm studies. Journal of Environmental Chemical Engineering, 7(2), 103008. https://doi.org/10.1016/j.jece.2019.103008 da Silva, P. M. M., Camparotto, N. G., Lira, K. T. G., Picone, C. S. F., & Prediger, P. (2020). Adsorptive removal of basic dye onto sustainable chitosan beads: Equilibrium, kinetics, stability, continuous-mode adsorption and mechanism. Sustainable Chemistry and Pharmacy, 18, 100318. https://doi.org/10.1016/j.scp.2020.100318
Daoud, M., Benturki, O., Girods, P., Donnot, A., & Fontana, S. (2019). Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchemical Journal, 148(January), 493–502. https://doi.org/10.1016/j.microc.2019.05.022
Dutta, A. K., Ghorai, U. K., Chattopadhyay, K. K., & Banerjee, D. (2018). Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis. Physica E: Low-Dimensional Systems and Nanostructures, 99, 6–15. https://doi.org/10.1016/j.physe.2018.01.008
Elsagh, A., Moradi, O., Fakhri, A., Najafi, F., Alizadeh, R., & Haddadi, V. (2017). Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces. Arabian Journal of Chemistry, 10, S2862–S2869. https://doi.org/10.1016/j.arabjc.2013.11.013
Humelnicu, I., Băiceanu, A., Ignat, M. E., & Dulman, V. (2017). The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics. Process Safety and Environmental Protection, 105, 274–287. https://doi.org/10.1016/j.psep.2016.11.016
Jawad, A. H., & Abdulhameed, A. S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18, 100422. https://doi.org/10.1016/j.surfin.2019.100422
Jia, Z., Li, Z., Ni, T., & Li, S. (2017). Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: Kinetics, isotherms and thermodynamic studies. Journal of Molecular Liquids, 229, 285–292. https://doi.org/10.1016/j.molliq.2016.12.059
Khalilzadeh Shirazi, E., Metzger, J. W., Fischer, K., & Hassani, A. H. (2020). Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 598, 124807. https://doi.org/10.1016/j.colsurfa.2020.124807
Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., & Ahmad, M. N. (2005). Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39(5), 922–932. https://doi.org/10.1016/j.watres.2004.12.008
Kittappa, S., Jais, F. M., Ramalingam, M., & Ibrahim, S. (2020). Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes. Journal of Environmental Chemical Engineering, 8(5), 104081. https://doi.org/10.1016/j.jece.2020.104081
Lipatova, I. M., Makarova, L. I., & Yusova, A. A. (2018). Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier. Chemosphere, 212, 1155–1162. https://doi.org/10.1016/j.chemosphere.2018.08.158
Liu, H., Zhao, Y., Zhou, Y., Chang, L., & Zhang, J. (2019). Removal of gaseous elemental mercury by modified diatomite. Science of the Total Environment, 652, 651–659. https://doi.org/10.1016/j.scitotenv.2018.10.291
Mohamed, E. A., Selim, A. Q., Zayed, A. M., Komarneni, S., Mobarak, M., & Seliem, M. K. (2019). Enhancing adsorption capacity of Egyptian diatomaceous earth by thermo-chemical purification: Methylene blue uptake. Journal of Colloid and Interface Science, 534, 408–419. https://doi.org/10.1016/j.jcis.2018.09.024
Mu, Y., Cui, M., Zhang, S., Zhao, J., Meng, C., & Sun, Q. (2018). Comparison study between a series of new type functional diatomite on methane adsorption performance. Microporous and Mesoporous Materials, 267, 203–211. https://doi.org/10.1016/j.micromeso.2018.03.037
Muedas-Taipe, G., Mejía, I. M. M., Santillán, F. A., Velásquez, C. J., & Asencios, Y. J. (2020). Removal of azo dyes in aqueous solutions using magnetized and chemically modified chitosan beads. Materials Chemistry and Physics, 256, 123595. https://doi.org/10.1016/j.matchemphys.2020.123595
Naushad, M., Alqadami, A. A., AlOthman, Z. A., Alsohaimi, I. H., Algamdi, M. S., & Aldawsari, A. M. (2019). Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. Journal of Molecular Liquids, 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442
Pal, A., Pan, S., & Saha, S. (2013). Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chemical Engineering Journal, 217, 426–434. https://doi.org/10.1016/j.cej.2012.11.120
Patel, V. R., Khan, R., & Bhatt, N. (2020). Cost-effective in-situ remediation technologies for complete mineralization of dyes contaminated soils. Chemosphere, 243, 125253. https://doi.org/10.1016/j.chemosphere.2019.125253
Patra, C., Gupta, R., Bedadeep, D., & Narayanasamy, S. (2020). Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight. Environmental Pollution, 266, 115102. https://doi.org/10.1016/j.envpol.2020.115102
Rashid, T., Iqbal, D., Hazafa, A., Hussain, S., Sher, F., & Sher, F. (2020). Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. Journal of Environmental Chemical Engineering, 8(4), 104023. https://doi.org/10.1016/j.jece.2020.104023
Saeed, M., Munir, M., Nafees, M., Shah, S. S. A., Ullah, H., & Waseem, A. (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 291, 109697. https://doi.org/10.1016/j.micromeso.2019.109697
Santos, S. S. G., França, D. B., Castellano, L. R. C., Trigueiro, P., Silva Filho, E. C., Santos, I. M. G., & Fonseca, M. G. (2020). Novel modified bentonites applied to the removal of an anionic azodye from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124152. https://doi.org/10.1016/j.colsurfa.2019.124152
Saxena, M., Sharma, N., & Saxena, R. (2020). Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surfaces and Interfaces, 21, 100639. https://doi.org/10.1016/j.surfin.2020.100639
Semião, M. A., Haminiuk, C. W. I., & Maciel, G. M. (2020). Residual diatomaceous earth as a potential and cost effective biosorbent of the azo textile dye Reactive Blue 160. Journal of Environmental Chemical Engineering, 8(1), 103617. https://doi.org/10.1016/j.jece.2019.103617
Senthilkumaar, S., Kalaamani, P., & Subburaam, C. V. (2006). Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of Hazardous Materials, 136(3), 800–808. https://doi.org/10.1016/j.jhazmat.2006.01.045
Sheshdeh, R. K., Nikou, M. R. K., Badii, K., Limaee, N. Y., & Golkarnarenji, G. (2014). Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1792–1802. https://doi.org/10.1016/j.jtice.2014.02.020
Šljivić, M., Smičiklas, I., Pejanović, S., & Plećaš, I. (2009). Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science, 43(1), 33–40. https://doi.org/10.1016/j.clay.2008.07.009
Sriram, G., Kigga, M., Uthappa, U. T., Rego, R. M., Thendral, V., Kumeria, T., Jung, H. Y., & Kurkuri, M. D. (2020). Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Advances in Colloid and Interface Science, 282, 102198. https://doi.org/10.1016/j.cis.2020.102198
Sriram, G., Kigga, M., Uthappa, U. T., Rego, R. M., Thendral, V., Kumeria, T., Jung, H. Y., & Kurkuri, M. D. (2020). Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Advances in Colloid and Interface Science, 282, 102198. https://doi.org/10.1016/j.cis.2020.102198
Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. International Journal of Biological Macromolecules, 94, 210–220. https://doi.org/10.1016/j.ijbiomac.2016.10.013
Thirumoorthy, K., & Krishna, S. K. (2020). Removal of cationic and anionic dyes from aqueous phase by Ball clay - Manganese dioxide nanocomposites. Journal of Environmental Chemical Engineering, 8(1), 103582. https://doi.org/10.1016/j.jece.2019.103582
Vithalkar, S. H., & Jugade, R. M. (2020). Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Materials Today: Proceedings, 29, 1025–1032. https://doi.org/10.1016/j.matpr.2020.04.705
Xia, K., Liu, X., Chen, Z., Fang, L., Du, H., & Zhang, X. (2020). Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite. Journal of the Taiwan Institute of Chemical Engineers, 000, 1–8. https://doi.org/10.1016/j.jtice.2020.07.020
Yakout, S. M., Hassan, M. R., Abdeltawab, A. A., & Aly, M. I. (2019). Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal. Journal of Cleaner Production, 234, 124–131. https://doi.org/10.1016/j.jclepro.2019.06.164
Yan, S., Huo, W., Yang, J., Zhang, X., Wang, Q., Wang, L., Pan, Y., & Huang, Y. (2018). Green synthesis and influence of calcined temperature on the formation of novel porous diatomite microspheres for efficient adsorption of dyes. Powder Technology, 329, 260–269. https://doi.org/10.1016/j.powtec.2018.01.090
Zhang, J., Ping, Q., Niu, M., Shi, H., & Li, N. (2013). Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide. Applied Clay Science, 83–84, 12–16. https://doi.org/10.1016/j.clay.2013.08.008
UPME, Unidad de Planeación Minero Energética (2019). Ministerio de Minas y Energía. https://www1.upme.gov.co/simco/CifrasSectoriales/Paginas/arcillas.aspx.
dc.relation.citationendpage.spa.fl_str_mv 398
dc.relation.citationstartpage.spa.fl_str_mv 387
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationvolume.spa.fl_str_mv 20
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico
dc.publisher.place.spa.fl_str_mv Mexico
dc.source.spa.fl_str_mv https://www.scielo.org.mx/scielo.php?pid=S1665-64232022000400387&script=sci_abstract
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/3ffd0457-447d-4cc7-b6f7-bda7a353db23/download
https://repositorio.cuc.edu.co/bitstreams/49519f9f-ffc3-40da-a25f-8e469d28c807/download
https://repositorio.cuc.edu.co/bitstreams/443c683b-d31d-4a24-971e-31be9fbecb0d/download
https://repositorio.cuc.edu.co/bitstreams/9045a52f-5e38-4109-a427-bd31e57eafdf/download
bitstream.checksum.fl_str_mv 5b73b22c16475c8409eac7d204c3ecb3
2f9959eaf5b71fae44bbf9ec84150c7a
30092c44aee0758a5dc32d4320dec1be
dbead8845b76377a000fed91c5e2d710
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760787561119744
spelling Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellar-Ortega, Grey C.Cely-Bautista, María M.Cardozo-Arrieta, Beatriz M.Jaramillo-Colpas, Javier E.Moreno-Aldana, Luis C.Valencia-Ríos, Jesús S.2024-04-04T20:03:06Z2024-04-04T20:03:06Z2022CASTELLAR-ORTEGA, Grey C. et al. Evaluation of diatomaceous earth in the removal of crystal violet dye in solution. J. appl. res. technol [online]. 2022, vol.20, n.4, pp.387-398. Epub 05-Mayo-2023. ISSN 2448-6736. https://doi.org/10.22201/icat.24486736e.2022.20.4.1524.1665-6423https://hdl.handle.net/11323/1094110.22201/icat.24486736e.2022.20.4.1524Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/In this research, the adsorption capacity of diatomaceous earth in the removal of the crystal violet dye (CV) in aqueous solution was evaluated. The experimental methodology began with the determination of the texture properties by adsorption-desorption isotherms with N2 a 77 K, the identification of functional groups by Fourier transform infrared spectrophotometry (FTIR), morphology by scanning electron microscopy (SEM) and, the pH of the isoelectric point by the point of zero charge (PZC). A categorical multifactorial design was developed with factors such as the initial concentration of the dye, the temperature and the initial pH of the solution. The maximum adsorption capacity was of 96.1 mg/g up 30ºC and pH 8, satisfactorily fitting the experimental data to the Langmuir isotherm model, suggesting a monolayer adsorption mechanism on a homogeneous surface. In conclusion, diatomaceous earth can be considered as an efficient adsorbent in the removal of CV in aqueous solution.12 páginasapplication/pdfengCentro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de MexicoMexicohttps://www.scielo.org.mx/scielo.php?pid=S1665-64232022000400387&script=sci_abstractEvaluation of diatomaceous earth in the removal of crystal violet dye in solutionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Applied Research and TechnologyAbdEl-Salam, A. H., Ewais, H. A., & Basaleh, A. S. (2017). Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. Journal of Molecular Liquids, 248, 833–841. https://doi.org/10.1016/j.molliq.2017.10.109Abdelrahman, E. A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, 72–82. https://doi.org/10.1016/j.molliq.2018.01.038Alardhi, S. M., Albayati, T. M., & Alrubaye, J. M. (2020). Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column. Heliyon, 6(1), e03253. https://doi.org/10.1016/j.heliyon.2020.e03253Awasthi, A., & Datta, D. (2019). Application of Amberlite XAD7HP resin impregnated with Aliquat 336 for the removal of Reactive Blue - 13 dye: Batch and fixed-bed column studies. Journal of Environmental Chemical Engineering, 7(6), 103502. https://doi.org/10.1016/j.jece.2019.103502Bentahar, Y., Draoui, K., Hurel, C., Ajouyed, O., Khairoun, S., & Marmier, N. (2019). Physico-chemical characterization and valorization of swelling and non-swelling Moroccan clays in basic dye removal from aqueous solutions. Journal of African Earth Sciences, 154, 80–88. https://doi.org/10.1016/j.jafrearsci.2019.03.017Bilińska, L., Blus, K., Gmurek, M., & Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chemical Engineering Journal, 358, 992–1001. https://doi.org/10.1016/j.cej.2018.10.093Caliskan, N., Kul, A. R., Alkan, S., Sogut, E. G., & Alacabey, I. (2011). Adsorption of Zinc(II) on diatomite and manganeseoxide-modified diatomite: A kinetic and equilibrium study. Journal of Hazardous Materials, 193, 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058Castellar-Ortega, G. C., Cely-Bautista, M. M., Cardozo-Arrieta, B. M., Angulo-Mercado, E. R., de Jesús Mendoza-Colina, E., ZambranoArevalo, A. M., Jaramillo-Colpas, J. E., & Rosales-Díaz, C. L. (2020). Removal of the direct navy-blue dye on modified coffee bean. Tecnología y Ciencias del Agua, 11(4), 1–26. https://doi.org/10.24850/j-tyca-2020-04-01Charola, S., Yadav, R., Das, P., & Maiti, S. (2018). Fixed-bed adsorption of Reactive Orange 84 dye onto activated carbon prepared from empty cotton flower agro-waste. Sustainable Environment Research, 28(6), 298–308. https://doi.org/10.1016/j.serj.2018.09.003Chen, B., Long, F., Chen, S., Cao, Y., & Pan, X. (2020). Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater. Chemical Engineering Journal, 385, 123926. https://doi.org/10.1016/j.cej.2019.123926Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, 1–11. https://doi.org/10.1016/j.sciaf.2019.e00116Cychosz, K. A., & Thommes, M. (2018). Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, 4(4), 559–566. https://doi.org/10.1016/j.eng.2018.06.001da Silva, D. C. C., & Pietrobelli, J. M. T. D. A. (2019). Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: Characterization, kinetic, thermodynamic and isotherm studies. Journal of Environmental Chemical Engineering, 7(2), 103008. https://doi.org/10.1016/j.jece.2019.103008 da Silva, P. M. M., Camparotto, N. G., Lira, K. T. G., Picone, C. S. F., & Prediger, P. (2020). Adsorptive removal of basic dye onto sustainable chitosan beads: Equilibrium, kinetics, stability, continuous-mode adsorption and mechanism. Sustainable Chemistry and Pharmacy, 18, 100318. https://doi.org/10.1016/j.scp.2020.100318Daoud, M., Benturki, O., Girods, P., Donnot, A., & Fontana, S. (2019). Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater. Microchemical Journal, 148(January), 493–502. https://doi.org/10.1016/j.microc.2019.05.022Dutta, A. K., Ghorai, U. K., Chattopadhyay, K. K., & Banerjee, D. (2018). Removal of textile dyes by carbon nanotubes: A comparison between adsorption and UV assisted photocatalysis. Physica E: Low-Dimensional Systems and Nanostructures, 99, 6–15. https://doi.org/10.1016/j.physe.2018.01.008Elsagh, A., Moradi, O., Fakhri, A., Najafi, F., Alizadeh, R., & Haddadi, V. (2017). Evaluation of the potential cationic dye removal using adsorption by graphene and carbon nanotubes as adsorbents surfaces. Arabian Journal of Chemistry, 10, S2862–S2869. https://doi.org/10.1016/j.arabjc.2013.11.013Humelnicu, I., Băiceanu, A., Ignat, M. E., & Dulman, V. (2017). The removal of Basic Blue 41 textile dye from aqueous solution by adsorption onto natural zeolitic tuff: Kinetics and thermodynamics. Process Safety and Environmental Protection, 105, 274–287. https://doi.org/10.1016/j.psep.2016.11.016Jawad, A. H., & Abdulhameed, A. S. (2020). Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study. Surfaces and Interfaces, 18, 100422. https://doi.org/10.1016/j.surfin.2019.100422Jia, Z., Li, Z., Ni, T., & Li, S. (2017). Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: Kinetics, isotherms and thermodynamic studies. Journal of Molecular Liquids, 229, 285–292. https://doi.org/10.1016/j.molliq.2016.12.059Khalilzadeh Shirazi, E., Metzger, J. W., Fischer, K., & Hassani, A. H. (2020). Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 598, 124807. https://doi.org/10.1016/j.colsurfa.2020.124807Khraisheh, M. A. M., Al-Ghouti, M. A., Allen, S. J., & Ahmad, M. N. (2005). Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Research, 39(5), 922–932. https://doi.org/10.1016/j.watres.2004.12.008Kittappa, S., Jais, F. M., Ramalingam, M., & Ibrahim, S. (2020). Functionalized magnetic mesoporous palm shell activated carbon for enhanced removal of azo dyes. Journal of Environmental Chemical Engineering, 8(5), 104081. https://doi.org/10.1016/j.jece.2020.104081Lipatova, I. M., Makarova, L. I., & Yusova, A. A. (2018). Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier. Chemosphere, 212, 1155–1162. https://doi.org/10.1016/j.chemosphere.2018.08.158Liu, H., Zhao, Y., Zhou, Y., Chang, L., & Zhang, J. (2019). Removal of gaseous elemental mercury by modified diatomite. Science of the Total Environment, 652, 651–659. https://doi.org/10.1016/j.scitotenv.2018.10.291Mohamed, E. A., Selim, A. Q., Zayed, A. M., Komarneni, S., Mobarak, M., & Seliem, M. K. (2019). Enhancing adsorption capacity of Egyptian diatomaceous earth by thermo-chemical purification: Methylene blue uptake. Journal of Colloid and Interface Science, 534, 408–419. https://doi.org/10.1016/j.jcis.2018.09.024Mu, Y., Cui, M., Zhang, S., Zhao, J., Meng, C., & Sun, Q. (2018). Comparison study between a series of new type functional diatomite on methane adsorption performance. Microporous and Mesoporous Materials, 267, 203–211. https://doi.org/10.1016/j.micromeso.2018.03.037Muedas-Taipe, G., Mejía, I. M. M., Santillán, F. A., Velásquez, C. J., & Asencios, Y. J. (2020). Removal of azo dyes in aqueous solutions using magnetized and chemically modified chitosan beads. Materials Chemistry and Physics, 256, 123595. https://doi.org/10.1016/j.matchemphys.2020.123595Naushad, M., Alqadami, A. A., AlOthman, Z. A., Alsohaimi, I. H., Algamdi, M. S., & Aldawsari, A. M. (2019). Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. Journal of Molecular Liquids, 293, 111442. https://doi.org/10.1016/j.molliq.2019.111442Pal, A., Pan, S., & Saha, S. (2013). Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads. Chemical Engineering Journal, 217, 426–434. https://doi.org/10.1016/j.cej.2012.11.120Patel, V. R., Khan, R., & Bhatt, N. (2020). Cost-effective in-situ remediation technologies for complete mineralization of dyes contaminated soils. Chemosphere, 243, 125253. https://doi.org/10.1016/j.chemosphere.2019.125253Patra, C., Gupta, R., Bedadeep, D., & Narayanasamy, S. (2020). Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: A detail insight. Environmental Pollution, 266, 115102. https://doi.org/10.1016/j.envpol.2020.115102Rashid, T., Iqbal, D., Hazafa, A., Hussain, S., Sher, F., & Sher, F. (2020). Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. Journal of Environmental Chemical Engineering, 8(4), 104023. https://doi.org/10.1016/j.jece.2020.104023Saeed, M., Munir, M., Nafees, M., Shah, S. S. A., Ullah, H., & Waseem, A. (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 291, 109697. https://doi.org/10.1016/j.micromeso.2019.109697Santos, S. S. G., França, D. B., Castellano, L. R. C., Trigueiro, P., Silva Filho, E. C., Santos, I. M. G., & Fonseca, M. G. (2020). Novel modified bentonites applied to the removal of an anionic azodye from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 585, 124152. https://doi.org/10.1016/j.colsurfa.2019.124152Saxena, M., Sharma, N., & Saxena, R. (2020). Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surfaces and Interfaces, 21, 100639. https://doi.org/10.1016/j.surfin.2020.100639Semião, M. A., Haminiuk, C. W. I., & Maciel, G. M. (2020). Residual diatomaceous earth as a potential and cost effective biosorbent of the azo textile dye Reactive Blue 160. Journal of Environmental Chemical Engineering, 8(1), 103617. https://doi.org/10.1016/j.jece.2019.103617Senthilkumaar, S., Kalaamani, P., & Subburaam, C. V. (2006). Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of Hazardous Materials, 136(3), 800–808. https://doi.org/10.1016/j.jhazmat.2006.01.045Sheshdeh, R. K., Nikou, M. R. K., Badii, K., Limaee, N. Y., & Golkarnarenji, G. (2014). Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1792–1802. https://doi.org/10.1016/j.jtice.2014.02.020Šljivić, M., Smičiklas, I., Pejanović, S., & Plećaš, I. (2009). Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Applied Clay Science, 43(1), 33–40. https://doi.org/10.1016/j.clay.2008.07.009Sriram, G., Kigga, M., Uthappa, U. T., Rego, R. M., Thendral, V., Kumeria, T., Jung, H. Y., & Kurkuri, M. D. (2020). Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Advances in Colloid and Interface Science, 282, 102198. https://doi.org/10.1016/j.cis.2020.102198Sriram, G., Kigga, M., Uthappa, U. T., Rego, R. M., Thendral, V., Kumeria, T., Jung, H. Y., & Kurkuri, M. D. (2020). Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Advances in Colloid and Interface Science, 282, 102198. https://doi.org/10.1016/j.cis.2020.102198Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for Crystal Violet adsorption. International Journal of Biological Macromolecules, 94, 210–220. https://doi.org/10.1016/j.ijbiomac.2016.10.013Thirumoorthy, K., & Krishna, S. K. (2020). Removal of cationic and anionic dyes from aqueous phase by Ball clay - Manganese dioxide nanocomposites. Journal of Environmental Chemical Engineering, 8(1), 103582. https://doi.org/10.1016/j.jece.2019.103582Vithalkar, S. H., & Jugade, R. M. (2020). Adsorptive removal of crystal violet from aqueous solution by cross-linked chitosan coated bentonite. Materials Today: Proceedings, 29, 1025–1032. https://doi.org/10.1016/j.matpr.2020.04.705Xia, K., Liu, X., Chen, Z., Fang, L., Du, H., & Zhang, X. (2020). Efficient and sustainable treatment of anionic dye wastewaters using porous cationic diatomite. Journal of the Taiwan Institute of Chemical Engineers, 000, 1–8. https://doi.org/10.1016/j.jtice.2020.07.020Yakout, S. M., Hassan, M. R., Abdeltawab, A. A., & Aly, M. I. (2019). Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal. Journal of Cleaner Production, 234, 124–131. https://doi.org/10.1016/j.jclepro.2019.06.164Yan, S., Huo, W., Yang, J., Zhang, X., Wang, Q., Wang, L., Pan, Y., & Huang, Y. (2018). Green synthesis and influence of calcined temperature on the formation of novel porous diatomite microspheres for efficient adsorption of dyes. Powder Technology, 329, 260–269. https://doi.org/10.1016/j.powtec.2018.01.090Zhang, J., Ping, Q., Niu, M., Shi, H., & Li, N. (2013). Kinetics and equilibrium studies from the methylene blue adsorption on diatomite treated with sodium hydroxide. Applied Clay Science, 83–84, 12–16. https://doi.org/10.1016/j.clay.2013.08.008UPME, Unidad de Planeación Minero Energética (2019). Ministerio de Minas y Energía. https://www1.upme.gov.co/simco/CifrasSectoriales/Paginas/arcillas.aspx.398387420Diatomaceous earthCrystal violetAdsorption isothermsAdsorption capacityPublicationORIGINALEvaluation of diatomaceous earth in the removal of crystal violet dye in solution.pdfEvaluation of diatomaceous earth in the removal of crystal violet dye in solution.pdfArtículoapplication/pdf1094025https://repositorio.cuc.edu.co/bitstreams/3ffd0457-447d-4cc7-b6f7-bda7a353db23/download5b73b22c16475c8409eac7d204c3ecb3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/49519f9f-ffc3-40da-a25f-8e469d28c807/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTEvaluation of diatomaceous earth in the removal of crystal violet dye in solution.pdf.txtEvaluation of diatomaceous earth in the removal of crystal violet dye in solution.pdf.txtExtracted texttext/plain45006https://repositorio.cuc.edu.co/bitstreams/443c683b-d31d-4a24-971e-31be9fbecb0d/download30092c44aee0758a5dc32d4320dec1beMD53THUMBNAILEvaluation of diatomaceous earth in the removal of crystal violet dye in solution.pdf.jpgEvaluation of diatomaceous earth in the removal of crystal violet dye in solution.pdf.jpgGenerated Thumbnailimage/jpeg11021https://repositorio.cuc.edu.co/bitstreams/9045a52f-5e38-4109-a427-bd31e57eafdf/downloaddbead8845b76377a000fed91c5e2d710MD5411323/10941oai:repositorio.cuc.edu.co:11323/109412024-09-17 11:09:16.938https://creativecommons.org/licenses/by/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=