Análisis no-lineal de nudos de concreto sin refuerzo.
Introducción- El Sistema estructural Pórticos de Concreto Reforzado (PCR) constituye una parte significativa del inventario de edificaciones en zonas sísmicamente activas en el mundo. Muchas de las edificaciones construidas antes de la década de los 80’s fueron diseñadas y construidas con poca, o ni...
- Autores:
-
Salinas Guayacundo, Daniel Ricardo
Leon Saenz, Roberto Tomas
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12219
- Palabra clave:
- nonlinear analysis
older-type construction
reinforced concrete frames
unreinforced beam-column joints
análisis no-lineal
pórticos de gravedad
pórticos de concreto reforzado
nudos de concreto no-reforzados
- Rights
- openAccess
- License
- INGE CUC - 2020
id |
RCUC2_3370cfdc5c0eb3220b03fec0d79a5503 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12219 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis no-lineal de nudos de concreto sin refuerzo. |
dc.title.translated.eng.fl_str_mv |
Nonlinear analysis of unreinforced beam-column joints |
title |
Análisis no-lineal de nudos de concreto sin refuerzo. |
spellingShingle |
Análisis no-lineal de nudos de concreto sin refuerzo. nonlinear analysis older-type construction reinforced concrete frames unreinforced beam-column joints análisis no-lineal pórticos de gravedad pórticos de concreto reforzado nudos de concreto no-reforzados |
title_short |
Análisis no-lineal de nudos de concreto sin refuerzo. |
title_full |
Análisis no-lineal de nudos de concreto sin refuerzo. |
title_fullStr |
Análisis no-lineal de nudos de concreto sin refuerzo. |
title_full_unstemmed |
Análisis no-lineal de nudos de concreto sin refuerzo. |
title_sort |
Análisis no-lineal de nudos de concreto sin refuerzo. |
dc.creator.fl_str_mv |
Salinas Guayacundo, Daniel Ricardo Leon Saenz, Roberto Tomas |
dc.contributor.author.spa.fl_str_mv |
Salinas Guayacundo, Daniel Ricardo Leon Saenz, Roberto Tomas |
dc.subject.eng.fl_str_mv |
nonlinear analysis older-type construction reinforced concrete frames unreinforced beam-column joints |
topic |
nonlinear analysis older-type construction reinforced concrete frames unreinforced beam-column joints análisis no-lineal pórticos de gravedad pórticos de concreto reforzado nudos de concreto no-reforzados |
dc.subject.spa.fl_str_mv |
análisis no-lineal pórticos de gravedad pórticos de concreto reforzado nudos de concreto no-reforzados |
description |
Introducción- El Sistema estructural Pórticos de Concreto Reforzado (PCR) constituye una parte significativa del inventario de edificaciones en zonas sísmicamente activas en el mundo. Muchas de las edificaciones construidas antes de la década de los 80’s fueron diseñadas y construidas con poca, o ninguna consideración de cargas sísmicas. Cuando el nudo de concreto reforzado no se ha diseñado competentemente puede convertirse en el eslabón débil del sistemas de PCR. La presencia de nudos sin refuerzo, aun es común en países emergentes localizados en Asia y América Latina. Los nudos tienen un impacto significativo en el comportamiento de PCR. Las metodologías relacionadas con el análisis de nudos de concreto pueden catalogarse como aproximadas, o muy complejas, o de enfoque fenomenológico. Desafortunadamente la mayoría de ellas carece de la simplicidad, estabilidad, y practicidad requerida para evaluar el comportamiento de los nudos en PCR.  Este artículo presenta una alternativa analítica aplicable a este tipo de elementos estructurales. Objetivo- El propósito del presente artículo es presentar un método analítico modificado aplicable al análisis no lineal de nudos no reforzados en estructuras de PCR. Metodología- El método presentado se basa en el trabajo analítico y experimental encontrado en [1], el cual es modificado para seguir exactamente la nomenclatura de [2]. En el modelo analítico, el nudo es representado a través de: (1) elementos rígidos en cruz para idealizar la geometría del nudo, (2) un resorte rotacional con una curva empírica de comportamiento tetra-lineal localizado en la mitad de los elementos rígidos para representar el comportamiento en cortante del nudo, y (3) las vigas y columnas que llegan al nudos, son modeladas con análisis seccional basado en fibras, con 5 puntos de integración; con la finalidad de incorporar el comportamiento no-lineal de los elementos que llegan al nudo. El modelo propuesto fue implementado en la plataforma OpenSEES y al mismo tiempo se validó con el resultado de 13 ensayos de laboratorio encontrados en la literatura de nudos carentes de acero de refuerzo. Resultados- El modelo propuesto puede capturar adecuadamente la capacidad a cortante del nudo. Al comparar los resultados analíticos con 13 resultados de nudos de concreto encontrados en la literatura, se encontró una diferencia en la capacidad del 2% con una desviación estándar del 11%. En relación al comportamiento del nudo ante carga cíclica se observó que se captura en forma adecuada: la rigidez inicial, resistencia, degradación de la resistencia, rigidez de recarga y capacidad antes y después del pico de resistencia. Conclusiones- El método propuesto presenta una adecuada correlación con los resultados de laboratorio estudiados. La metodología propuesta competentemente captura la capacidad del nudo a cortante, a pesar de las modificaciones incorporadas, sin mencionar las incertidumbres asociadas a los materiales, resultados de laboratorio, y tolerancias. Se espera que el procedimiento presentado en el presente documento contribuya, de una forma práctica, en la incorporación de la flexibilidad del nudo en PCR diseñados primariamente para cargas gravitacionales. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-27 00:00:00 2024-04-09T20:15:17Z |
dc.date.available.none.fl_str_mv |
2020-01-27 00:00:00 2024-04-09T20:15:17Z |
dc.date.issued.none.fl_str_mv |
2020-01-27 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12219 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.16.1.2020.09 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.16.1.2020.09 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.16.1.2020.09 2382-4700 |
url |
https://hdl.handle.net/11323/12219 https://doi.org/10.17981/ingecuc.16.1.2020.09 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
S. Park & K. Mosalam, “Simulation of Reinforced Concrete Frames with Nonductile Beam-Column Joints,” Earthq Spectra, vol. 29, pp. 233–257, Feb. 2013. [Online . https://doi.org/10.1193/1.4000100 ACI-ASCE Committe 352, Recommendations for design of beam-column connections in monolithic reinforced concrete structures, ACI 352R-02, Farmingtn Hls, USA: ACI, 1991. ACI-ASCE Committe 318, Building Code Requirements for Structural Concrete, ACI-318-89, Farmington Hills, USA: ACI, 1989. R. Clough, K. Benuska & E. Wilson, “Inelastic earthquake response of tall buildings,” in Proceedings of the Third World Conference on Earthquake Engineering, WCEE, Auckland, NZL, 1965, pp. II-68 to II-89. T. Takeda, M. A. Sozen & N. N. Nielsen, “Reinforced concrete response to simulated earthquakes”, Ohbayashi-Gumi Tech. Rsrch. TYO, JP, Rep, no. 5, Jan. 1970. M. Saiidi & M. Sozen, “Simple and complex models for nonlinear seismic response of reinforced concrete structures”, Struct. Rsrch. Ser, no. 465, Aug. 1979. A. Ilki & N. Kumbasar, “Theoretical and experimental energy dissipation of reinforced concrete,” in Proceedings of the 3rd Japan-Turkey Workshop on Earthquake Engineering, JICA, Istanbul, TR, 2000, vol. 1, pp. 167–177. H. L. Feghali, “Seismic performance of flexible concrete structures,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 1999. R. W. Clough & S. B. Johnston, Effect of Stiffness Degradation on Earthquake Ductility Requirements. Hoboken, USA: Wiley, 1966. L. F. Ibarra, R. A. Medina & H. Krawinkler, “Hysteretic models that incorporate strength and stiffness deterioration”, Earthq. Eng. Struct. D, vol. 34, pp. 1489–1511, Jan. 2005. https://doi.org/10.1002/eqe.495 D. G. Lignos & H. Krawinkler, “Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading,” J. Struct. Eng, ASCE, vol. 137, no. 11, pp. 1291–1302, Nov. 2011. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376 M. F. Giberson, “The response of nonlinear multi-story structures subjected to earthquake excitation,” Dissertation Ph.D, Caltech, Pasadena, CA, 1969. S. Otani, “Behavior of Multistory Reinforced Concrete Frames During Earthquakes,” Dissertation Thesis, Croquet UMI Dissertations, Ann Arbours, MI, 1973. J. C. Anderson & W. H. Townsend, “Models for RC Frames with Degrading Stiffness,” J. Struct. Div, vol. 103, no. 2, pp. 236–2376, Jan. 1977. F. C. Filippou, E. P. Popov & V. V. Bertero, “Modeling of R/C Joints under Cyclic Excitations,” J. Struct. Eng, vol. 109, no. 11, pp. 2666–2684, 1983. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:11(2666) S. E. El-Metwally & W. F. Chen, “Moment-rotation modeling of reinforced concrete beam-column connections,” ACI Struct. J, vol. 85, no. 4, pp. 384–394, May. 1988. https://doi.org/10.14359/2656 M. T. De Risi, P. Ricci & G. M. Verderame, “Modelling exterior unreinforced beam-column joints in seismic analysis of non-ductile RC frames,” Earthq. Eng. Struct. D, vol. 46, pp. 899–923, Nov. 2016. https://doi.org/10.1002/eqe.2835 N. Mitra, “An analytical study of reinforced concrete beam-column joint behavior under seismic loading,” Dissertation Thesis, UW, WA, USA, 2007. A. Sharma, R. Eligehausen & G. R. Reddy, “A New Model to Simulate Joint Shear Behavior of Poorly Detailed Beam–Column Connections in RC Structures under Seismic Loads, Part I: Exterior Joints,” Eng. Struct, vol. 33, no. 3, pp. 1034–1051, Mar. 2011. https://doi.org/10.1016/j.engstruct.2010.12.026 A. Ghobarah & A. Biddah, “Dynamic analysis of reinforced concrete frames including joint shear deformation,” Eng. Struct, vol. 21, no. 11, pp. 971–987, Jan. 1999. https://doi.org/10.1016/S0141-0296(98)00052-2 T. Hsu, “Softened truss model theory for shear and torsion,” ACI Struct. J, vol. 85, no. 6, pp. 624–634, May. 1988. https://doi.org/10.14359/2740 T. Kaku & S. Morita, “Bond behavior of beam bars in the joint of reinforced concrete frame,” in Annual Meeting of the Architectural Institute of Japan, AIJ, TYO, JP, Sep. 1978, pp. 1777–1778. F. J. Vecchio & M. P. Collins, “The modified compression-field theory for reinforced concrete elements subjected to shear,” ACI, vol. 83, no. 2, pp. 219–231, Mar. 1986. https://doi.org/10.14359/10416 Y. S. Chung, C. Meyer & M. Shinozuka, “Seismic damage assessment of reinforced concrete members”. SUNY at Buffalo, Buffalo, NY, USA, Tech. Rep. NCEER-87-0022, Oct. 1987. A. Biddah & A. Ghobarah, “Modeling of shear deformation and bond slip in reinforced concrete joints”, Struct. Eng. Mech, vol 7, no. 4, pp. 413–432, Apr. 1999. https://doi.org/10.12989/sem.1999.7.4.413 R. Eligehausen, E. Popov & V. Bertero, “Local bond stress slip relationship of deformed bars under generalized excitations”, PEER, CALTECH, Covina, USA, Tech. Rep. UCB/EERC, 1983. F. Filippou, “A simple model for reinforcing bar anchorages under cyclic excitations,” J. Struct. Eng. ASCE, vol. 112, no. 7, pp. 1639–1659, Feb. 1986. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1639) M. Elmorsi, M. R. Kianoush & W. K. Tso, “Modeling bond-slip deformations in reinforced concrete beam-column joints,” Can. J Cit. Eng, vol. 27, no. 3, pp. 490–505, Jun. 2000. https://doi.org/10.1139/l99-085 E. Giuriani, G. Plizzari & C. Schumm, “Role of stirrups and residual tensile strength of cracked concrete on bond,” J. Struct. Eng. ASCE, vol. 117, no. 1, pp. 1–18, Jan. 1969. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(1) D. Kent & R. Park, “Flexural members with confined concrete,” J. Struct. Div, ASCE, vol. 113, no. 10, pp. 2160–2173, Aug. 1971. M. Youssef & A. Ghobarah, “Modelling of RC beam-column joints and structural walls,” J. Earthq. Eng, vol. 5, no. 1, pp. 93–111, Jan. 2001. https://doi.org/10.1080/13632460109350387 Y. Park & A. Ang, “Seismic damage analysis of reinforced concrete buildings,” J. Struct. Eng, vol. 111, no. 4, pp. 740–757, Apr. 1985. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740) L. N. Lowes & A. Altoontash, “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading,” J. Struct. Eng, vol. 129, no. 12, pp. 1686–1697, Dic. 2003. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686) M. Rahnama & H. Krawinkler, “Effects of soft soil and hysteresis model on seismic demands,” John A. Blume Earthquake Engineering Center, SU, USA, BLUME-108, 1993. A. Altoontash, “Simulation and damage models for performance assessment of reinforced concrete beam-column joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, Aug. 2004. S. Morita & T. Kaku, “Bond slip relationship under repeated loading,” Transactions of the AIJ, vol. 229, pp. 15–24, Jan. 1975. https://doi.org/10.3130/aijsaxx.229.0_15 R. Park, M. Priestley & W. Gill, “Ductility of square confined reinforced concrete columns,” J. Struct. Div. ASCE, vol. 108, pp. 929–950, Jan. 1982. J. LaFave & M. Shin, “Discussion of “Modeling reinforced concrete beam-column joints subjected to cyclic loading” by L. N. Lowes & A. Altoontash,” J. Struct. Eng. ASCE, vol. 131, no. 6, pp. 992–993, Jun. 2005. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(992) S. Tajiri, H. Shiohara & F. Kusuhara, “A new macroelement of reinforced concrete beam column joint for elasto-plastic plane frame analysis,” in 8th National Conference of Earthquake Engineering, NCEE, SFO, USA, 2006, no. 1. F. McKenna, “OpenSees: A Framework for Earthquake Engineering Simulation,” Comp. Sci. Eng., vol. 13, no. 4, pp. 58–66, Jun. 2011. https://doi.org/10.1109/MCSE.2011.66 P. Shin & J. LaFave, “Testing and Modeling For Cyclic Joint Shear Deformations in RC Beam-Column Connections,” in 13th World Conference on Earthquake Engineering, WCEE, Vancouver, CA, Aug. 2004, Paper 0301. F. Kusuhara, H. Shiohara & S. Tajiri, “A New Macro Element of Reinforced Concrete Beam-Column Joint for Elasto-Plastic Plane Frame Analysis,” in 8th U.S. National Conference on Earthquake Engineering, NCEE, SFO, USA, Apr. 2006, Paper 674. T. Saito & M. Kikuchi, “A New Analytical Model for Reinforced Concrete Beam-Column Joints Subjected to Cyclic Loading” in 15th World Conference on Earthquake Engineering, WCEE, Lisboa, PT, Sep. 2012. P. Zhang, S. Hou & J. Ou, “A beam–column joint element for analysis of reinforced concrete frame structures,” Eng. Struct, vol. 118, pp. 125–136, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.03.030 L. N. Lowes, A. Altoontash & N. Mitra, “Closure to “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading” by Laura N. Lowes and Arash Altoontash,” J. Struct Eng, vol. 131, no. 6, pp. 993–994, Dec. 2003. O. C. Celik, “Probabilistic Assessment of Non-Ductile Reinforced Concrete Frames Susceptible to Mid-America Ground Motions,” Dissertation Thesis, Georgia Tech, Atlanta, GA, USA, 2007. O. C. Celik & B. R. Ellingwood, “Seismic fragilities for non-ductile reinforced concrete frames - Role of aleatoric and epistemic uncertainties,” Struct. Saf, vol. 32, no. 1, pp. 1–12, Jan. 2010. https://doi.org/10.1016/j.strusafe.2009.04.003 W. M. Hassan, “Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings,” Dissertation Thesis, UCB, Berkeley, CA, USA, 2011. J. S. Jeon, R. DesRoches, I. Brilakis & L. Lowes, “Modeling and Fragility Analysis of Non-Ductile Reinforced Concrete Buildings in Low-to-Moderate Seismic Zones,” in ASCE Structures Congress, ASCE, Chicago, USA, 2012, vol. 2199. https://doi.org/10.1061/9780784412367.193 S. Park & K. Mosalam, “Analytical Model for Predicting Shear Strength of Unreinforced Exterior Beam-Column Joints,” ACI Struct J, vol. 109, no. 2, pp. 149–159, Mar. 2012. https://doi.org/10.14359/51683626 F. Charney & R. Johnson, “The Effect of the Joint Deformations on the Drift of the Steel Frame Structures,” KKBNA, Inc., Consulting Engineers, Oct. 1986. A. C. Birely, L. N. Lowes & D. E. Lehman, “A model for the practical nonlinear analysis of reinforced-concrete frames including joint flexibility,” Eng. Struct, vol. 34, no. 1, pp. 455–465, Jan. 2012. https://doi.org/10.1016/j.engstruct.2011.09.003 S. Park & K. Mosalam, “Parameters for shear strength prediction of exterior beam–column joints without transverse reinforcement,” Eng. Struct, vol. 36, pp. 198–209, Mar. 2012. https://doi.org/10.1016/j.engstruct.2011.11.017 H. F. Wong, “Shear strength and seismic performance of non-seismically designed reinforced concrete beam-column joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 2005. S. Park, “Experimental and Analytical Studies on Old Reinforced Concrete Buildings with Seismically Vulnerable Beam-Column Joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 2010. ASCE 41, Seismic Rehabilitation of Existing Buildings. Reston, USA: ASCE, 2006. |
dc.relation.citationendpage.none.fl_str_mv |
140 |
dc.relation.citationstartpage.none.fl_str_mv |
129 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
16 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2009/2579 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2009/3490 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2009/3515 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2020 : (Enero-Junio) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2020 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2020 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/2009 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e13807b1-34b5-4f7d-8671-7d8dcd34bacb/download |
bitstream.checksum.fl_str_mv |
2dd23461b6a49788515fbecf0fb9c66c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760801725284352 |
spelling |
Salinas Guayacundo, Daniel RicardoLeon Saenz, Roberto Tomas2020-01-27 00:00:002024-04-09T20:15:17Z2020-01-27 00:00:002024-04-09T20:15:17Z2020-01-270122-6517https://hdl.handle.net/11323/12219https://doi.org/10.17981/ingecuc.16.1.2020.0910.17981/ingecuc.16.1.2020.092382-4700Introducción- El Sistema estructural Pórticos de Concreto Reforzado (PCR) constituye una parte significativa del inventario de edificaciones en zonas sísmicamente activas en el mundo. Muchas de las edificaciones construidas antes de la década de los 80’s fueron diseñadas y construidas con poca, o ninguna consideración de cargas sísmicas. Cuando el nudo de concreto reforzado no se ha diseñado competentemente puede convertirse en el eslabón débil del sistemas de PCR. La presencia de nudos sin refuerzo, aun es común en países emergentes localizados en Asia y América Latina. Los nudos tienen un impacto significativo en el comportamiento de PCR. Las metodologías relacionadas con el análisis de nudos de concreto pueden catalogarse como aproximadas, o muy complejas, o de enfoque fenomenológico. Desafortunadamente la mayoría de ellas carece de la simplicidad, estabilidad, y practicidad requerida para evaluar el comportamiento de los nudos en PCR.  Este artículo presenta una alternativa analítica aplicable a este tipo de elementos estructurales. Objetivo- El propósito del presente artículo es presentar un método analítico modificado aplicable al análisis no lineal de nudos no reforzados en estructuras de PCR. Metodología- El método presentado se basa en el trabajo analítico y experimental encontrado en [1], el cual es modificado para seguir exactamente la nomenclatura de [2]. En el modelo analítico, el nudo es representado a través de: (1) elementos rígidos en cruz para idealizar la geometría del nudo, (2) un resorte rotacional con una curva empírica de comportamiento tetra-lineal localizado en la mitad de los elementos rígidos para representar el comportamiento en cortante del nudo, y (3) las vigas y columnas que llegan al nudos, son modeladas con análisis seccional basado en fibras, con 5 puntos de integración; con la finalidad de incorporar el comportamiento no-lineal de los elementos que llegan al nudo. El modelo propuesto fue implementado en la plataforma OpenSEES y al mismo tiempo se validó con el resultado de 13 ensayos de laboratorio encontrados en la literatura de nudos carentes de acero de refuerzo. Resultados- El modelo propuesto puede capturar adecuadamente la capacidad a cortante del nudo. Al comparar los resultados analíticos con 13 resultados de nudos de concreto encontrados en la literatura, se encontró una diferencia en la capacidad del 2% con una desviación estándar del 11%. En relación al comportamiento del nudo ante carga cíclica se observó que se captura en forma adecuada: la rigidez inicial, resistencia, degradación de la resistencia, rigidez de recarga y capacidad antes y después del pico de resistencia. Conclusiones- El método propuesto presenta una adecuada correlación con los resultados de laboratorio estudiados. La metodología propuesta competentemente captura la capacidad del nudo a cortante, a pesar de las modificaciones incorporadas, sin mencionar las incertidumbres asociadas a los materiales, resultados de laboratorio, y tolerancias. Se espera que el procedimiento presentado en el presente documento contribuya, de una forma práctica, en la incorporación de la flexibilidad del nudo en PCR diseñados primariamente para cargas gravitacionales.Introduction- Reinforced Concrete Frames (RCF) constitute a significant portion of the building stock in areas with seismic hazard. Many older buildings of this type were designed and constructed with little or no consideration of lateral load effects. When not properly designed, the Beam-Column Joints (BCJ) can be the weak links in the RCF. Unreinforced BCJ are still quite prevalent in older-type construction especially in Asia and Latin America. The unreinforced BCJ are key components that have a significant impact on the structure’s behavior of RCF. Regarding the analytical approaches applicable to BCJ, the approaches range from simplified to more elaborate and phenomenological-oriented. Unfortunately, most of them lack of simplicity, numerical stability and practicality to robustly evaluate the performance of unreinforced BCJ. This paper presents an analytical approach to modeling unreinforced BCJ. Objective- The aim of this paper is to present a modified modeling approach to simulate the nonlinear behavior of unreinforced BCJ in RCF structures. Method- The approach presented is based on the model presented in [1]. The model was modified to follow the same nomenclature of the [2]. In the proposed approach, the BCJ subassembly is represented by (1) a set of rigid links placed in cross-shape are used to represent the joint geometry, (2) a zero-length element with an empirical quad-backbone curve, placed at the middle point of the rigid links, to represent the joint shear behavior, and (3) columns and beams elements modeled with fiber formulation and five integration points to capture the material nonlinearity of the elements that frame into the joint. The approach was implemented in the OpenSEES platform, and this was validated with 13 test results of unreinforced BCJ documented in the literature. Results- The proposed modelling approach can satisfactorily predict the joint shear capacity. A 2% difference and a standard deviation of about 11% were obtained when compared to 13 test results of unreinforced BCJ documented in the literature. In terms of cyclic behavior, the proposed modelling approach shown to adequately capture the initial stiffness, strength degradation, reloading stiffness, pre-capping, and post-capping capacity. Conclusions- The method proposed presents satisfactory agreement with the test results analyzed. Taking into account the minor modifications applied to the proposed method and the uncertainties associated with the materials, test measurements, test setup, and the tolerances, the proposed method can satisfactorily predict the unreinforced BCJ shear capacity in RCF structures. It is assumed that the procedures presented here will contribute in the incorporation of the unreinforced BCJ flexibility when modeling older-type RCF construction in a pragmatic manner.application/pdftext/htmlapplication/xmlengUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2009nonlinear analysisolder-type constructionreinforced concrete framesunreinforced beam-column jointsanálisis no-linealpórticos de gravedadpórticos de concreto reforzadonudos de concreto no-reforzadosAnálisis no-lineal de nudos de concreto sin refuerzo.Nonlinear analysis of unreinforced beam-column jointsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc S. Park & K. Mosalam, “Simulation of Reinforced Concrete Frames with Nonductile Beam-Column Joints,” Earthq Spectra, vol. 29, pp. 233–257, Feb. 2013. [Online . https://doi.org/10.1193/1.4000100 ACI-ASCE Committe 352, Recommendations for design of beam-column connections in monolithic reinforced concrete structures, ACI 352R-02, Farmingtn Hls, USA: ACI, 1991. ACI-ASCE Committe 318, Building Code Requirements for Structural Concrete, ACI-318-89, Farmington Hills, USA: ACI, 1989. R. Clough, K. Benuska & E. Wilson, “Inelastic earthquake response of tall buildings,” in Proceedings of the Third World Conference on Earthquake Engineering, WCEE, Auckland, NZL, 1965, pp. II-68 to II-89. T. Takeda, M. A. Sozen & N. N. Nielsen, “Reinforced concrete response to simulated earthquakes”, Ohbayashi-Gumi Tech. Rsrch. TYO, JP, Rep, no. 5, Jan. 1970. M. Saiidi & M. Sozen, “Simple and complex models for nonlinear seismic response of reinforced concrete structures”, Struct. Rsrch. Ser, no. 465, Aug. 1979. A. Ilki & N. Kumbasar, “Theoretical and experimental energy dissipation of reinforced concrete,” in Proceedings of the 3rd Japan-Turkey Workshop on Earthquake Engineering, JICA, Istanbul, TR, 2000, vol. 1, pp. 167–177. H. L. Feghali, “Seismic performance of flexible concrete structures,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 1999. R. W. Clough & S. B. Johnston, Effect of Stiffness Degradation on Earthquake Ductility Requirements. Hoboken, USA: Wiley, 1966. L. F. Ibarra, R. A. Medina & H. Krawinkler, “Hysteretic models that incorporate strength and stiffness deterioration”, Earthq. Eng. Struct. D, vol. 34, pp. 1489–1511, Jan. 2005. https://doi.org/10.1002/eqe.495 D. G. Lignos & H. Krawinkler, “Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading,” J. Struct. Eng, ASCE, vol. 137, no. 11, pp. 1291–1302, Nov. 2011. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376 M. F. Giberson, “The response of nonlinear multi-story structures subjected to earthquake excitation,” Dissertation Ph.D, Caltech, Pasadena, CA, 1969. S. Otani, “Behavior of Multistory Reinforced Concrete Frames During Earthquakes,” Dissertation Thesis, Croquet UMI Dissertations, Ann Arbours, MI, 1973. J. C. Anderson & W. H. Townsend, “Models for RC Frames with Degrading Stiffness,” J. Struct. Div, vol. 103, no. 2, pp. 236–2376, Jan. 1977. F. C. Filippou, E. P. Popov & V. V. Bertero, “Modeling of R/C Joints under Cyclic Excitations,” J. Struct. Eng, vol. 109, no. 11, pp. 2666–2684, 1983. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:11(2666) S. E. El-Metwally & W. F. Chen, “Moment-rotation modeling of reinforced concrete beam-column connections,” ACI Struct. J, vol. 85, no. 4, pp. 384–394, May. 1988. https://doi.org/10.14359/2656 M. T. De Risi, P. Ricci & G. M. Verderame, “Modelling exterior unreinforced beam-column joints in seismic analysis of non-ductile RC frames,” Earthq. Eng. Struct. D, vol. 46, pp. 899–923, Nov. 2016. https://doi.org/10.1002/eqe.2835 N. Mitra, “An analytical study of reinforced concrete beam-column joint behavior under seismic loading,” Dissertation Thesis, UW, WA, USA, 2007. A. Sharma, R. Eligehausen & G. R. Reddy, “A New Model to Simulate Joint Shear Behavior of Poorly Detailed Beam–Column Connections in RC Structures under Seismic Loads, Part I: Exterior Joints,” Eng. Struct, vol. 33, no. 3, pp. 1034–1051, Mar. 2011. https://doi.org/10.1016/j.engstruct.2010.12.026 A. Ghobarah & A. Biddah, “Dynamic analysis of reinforced concrete frames including joint shear deformation,” Eng. Struct, vol. 21, no. 11, pp. 971–987, Jan. 1999. https://doi.org/10.1016/S0141-0296(98)00052-2 T. Hsu, “Softened truss model theory for shear and torsion,” ACI Struct. J, vol. 85, no. 6, pp. 624–634, May. 1988. https://doi.org/10.14359/2740 T. Kaku & S. Morita, “Bond behavior of beam bars in the joint of reinforced concrete frame,” in Annual Meeting of the Architectural Institute of Japan, AIJ, TYO, JP, Sep. 1978, pp. 1777–1778. F. J. Vecchio & M. P. Collins, “The modified compression-field theory for reinforced concrete elements subjected to shear,” ACI, vol. 83, no. 2, pp. 219–231, Mar. 1986. https://doi.org/10.14359/10416 Y. S. Chung, C. Meyer & M. Shinozuka, “Seismic damage assessment of reinforced concrete members”. SUNY at Buffalo, Buffalo, NY, USA, Tech. Rep. NCEER-87-0022, Oct. 1987. A. Biddah & A. Ghobarah, “Modeling of shear deformation and bond slip in reinforced concrete joints”, Struct. Eng. Mech, vol 7, no. 4, pp. 413–432, Apr. 1999. https://doi.org/10.12989/sem.1999.7.4.413 R. Eligehausen, E. Popov & V. Bertero, “Local bond stress slip relationship of deformed bars under generalized excitations”, PEER, CALTECH, Covina, USA, Tech. Rep. UCB/EERC, 1983. F. Filippou, “A simple model for reinforcing bar anchorages under cyclic excitations,” J. Struct. Eng. ASCE, vol. 112, no. 7, pp. 1639–1659, Feb. 1986. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1639) M. Elmorsi, M. R. Kianoush & W. K. Tso, “Modeling bond-slip deformations in reinforced concrete beam-column joints,” Can. J Cit. Eng, vol. 27, no. 3, pp. 490–505, Jun. 2000. https://doi.org/10.1139/l99-085 E. Giuriani, G. Plizzari & C. Schumm, “Role of stirrups and residual tensile strength of cracked concrete on bond,” J. Struct. Eng. ASCE, vol. 117, no. 1, pp. 1–18, Jan. 1969. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(1) D. Kent & R. Park, “Flexural members with confined concrete,” J. Struct. Div, ASCE, vol. 113, no. 10, pp. 2160–2173, Aug. 1971. M. Youssef & A. Ghobarah, “Modelling of RC beam-column joints and structural walls,” J. Earthq. Eng, vol. 5, no. 1, pp. 93–111, Jan. 2001. https://doi.org/10.1080/13632460109350387 Y. Park & A. Ang, “Seismic damage analysis of reinforced concrete buildings,” J. Struct. Eng, vol. 111, no. 4, pp. 740–757, Apr. 1985. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(740) L. N. Lowes & A. Altoontash, “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading,” J. Struct. Eng, vol. 129, no. 12, pp. 1686–1697, Dic. 2003. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1686) M. Rahnama & H. Krawinkler, “Effects of soft soil and hysteresis model on seismic demands,” John A. Blume Earthquake Engineering Center, SU, USA, BLUME-108, 1993. A. Altoontash, “Simulation and damage models for performance assessment of reinforced concrete beam-column joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, Aug. 2004. S. Morita & T. Kaku, “Bond slip relationship under repeated loading,” Transactions of the AIJ, vol. 229, pp. 15–24, Jan. 1975. https://doi.org/10.3130/aijsaxx.229.0_15 R. Park, M. Priestley & W. Gill, “Ductility of square confined reinforced concrete columns,” J. Struct. Div. ASCE, vol. 108, pp. 929–950, Jan. 1982. J. LaFave & M. Shin, “Discussion of “Modeling reinforced concrete beam-column joints subjected to cyclic loading” by L. N. Lowes & A. Altoontash,” J. Struct. Eng. ASCE, vol. 131, no. 6, pp. 992–993, Jun. 2005. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(992) S. Tajiri, H. Shiohara & F. Kusuhara, “A new macroelement of reinforced concrete beam column joint for elasto-plastic plane frame analysis,” in 8th National Conference of Earthquake Engineering, NCEE, SFO, USA, 2006, no. 1. F. McKenna, “OpenSees: A Framework for Earthquake Engineering Simulation,” Comp. Sci. Eng., vol. 13, no. 4, pp. 58–66, Jun. 2011. https://doi.org/10.1109/MCSE.2011.66 P. Shin & J. LaFave, “Testing and Modeling For Cyclic Joint Shear Deformations in RC Beam-Column Connections,” in 13th World Conference on Earthquake Engineering, WCEE, Vancouver, CA, Aug. 2004, Paper 0301. F. Kusuhara, H. Shiohara & S. Tajiri, “A New Macro Element of Reinforced Concrete Beam-Column Joint for Elasto-Plastic Plane Frame Analysis,” in 8th U.S. National Conference on Earthquake Engineering, NCEE, SFO, USA, Apr. 2006, Paper 674. T. Saito & M. Kikuchi, “A New Analytical Model for Reinforced Concrete Beam-Column Joints Subjected to Cyclic Loading” in 15th World Conference on Earthquake Engineering, WCEE, Lisboa, PT, Sep. 2012. P. Zhang, S. Hou & J. Ou, “A beam–column joint element for analysis of reinforced concrete frame structures,” Eng. Struct, vol. 118, pp. 125–136, Jul. 2016. https://doi.org/10.1016/j.engstruct.2016.03.030 L. N. Lowes, A. Altoontash & N. Mitra, “Closure to “Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading” by Laura N. Lowes and Arash Altoontash,” J. Struct Eng, vol. 131, no. 6, pp. 993–994, Dec. 2003. O. C. Celik, “Probabilistic Assessment of Non-Ductile Reinforced Concrete Frames Susceptible to Mid-America Ground Motions,” Dissertation Thesis, Georgia Tech, Atlanta, GA, USA, 2007. O. C. Celik & B. R. Ellingwood, “Seismic fragilities for non-ductile reinforced concrete frames - Role of aleatoric and epistemic uncertainties,” Struct. Saf, vol. 32, no. 1, pp. 1–12, Jan. 2010. https://doi.org/10.1016/j.strusafe.2009.04.003 W. M. Hassan, “Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings,” Dissertation Thesis, UCB, Berkeley, CA, USA, 2011. J. S. Jeon, R. DesRoches, I. Brilakis & L. Lowes, “Modeling and Fragility Analysis of Non-Ductile Reinforced Concrete Buildings in Low-to-Moderate Seismic Zones,” in ASCE Structures Congress, ASCE, Chicago, USA, 2012, vol. 2199. https://doi.org/10.1061/9780784412367.193 S. Park & K. Mosalam, “Analytical Model for Predicting Shear Strength of Unreinforced Exterior Beam-Column Joints,” ACI Struct J, vol. 109, no. 2, pp. 149–159, Mar. 2012. https://doi.org/10.14359/51683626 F. Charney & R. Johnson, “The Effect of the Joint Deformations on the Drift of the Steel Frame Structures,” KKBNA, Inc., Consulting Engineers, Oct. 1986. A. C. Birely, L. N. Lowes & D. E. Lehman, “A model for the practical nonlinear analysis of reinforced-concrete frames including joint flexibility,” Eng. Struct, vol. 34, no. 1, pp. 455–465, Jan. 2012. https://doi.org/10.1016/j.engstruct.2011.09.003 S. Park & K. Mosalam, “Parameters for shear strength prediction of exterior beam–column joints without transverse reinforcement,” Eng. Struct, vol. 36, pp. 198–209, Mar. 2012. https://doi.org/10.1016/j.engstruct.2011.11.017 H. F. Wong, “Shear strength and seismic performance of non-seismically designed reinforced concrete beam-column joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 2005. S. Park, “Experimental and Analytical Studies on Old Reinforced Concrete Buildings with Seismically Vulnerable Beam-Column Joints,” Dissertation Thesis, ProQuest UMI Dissertations, Ann Arbor, MI, 2010.ASCE 41, Seismic Rehabilitation of Existing Buildings. Reston, USA: ASCE, 2006.140129116https://revistascientificas.cuc.edu.co/ingecuc/article/download/2009/2579https://revistascientificas.cuc.edu.co/ingecuc/article/download/2009/3490https://revistascientificas.cuc.edu.co/ingecuc/article/download/2009/3515Núm. 1 , Año 2020 : (Enero-Junio)PublicationOREORE.xmltext/xml2548https://repositorio.cuc.edu.co/bitstreams/e13807b1-34b5-4f7d-8671-7d8dcd34bacb/download2dd23461b6a49788515fbecf0fb9c66cMD5111323/12219oai:repositorio.cuc.edu.co:11323/122192024-09-17 12:46:02.395http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |