Experimental analysis of fire resistance of mortar coatings on structural masonry walls

The discussion on fire safety is necessary in Brazilian buildings. Current legislation requires construction with compartmentalized areas separated by walls with structural ceramic blocks capable of resisting fire for an amount of time pre-determined in norm NBR 14432 (ABNT, 2001). However, a lack o...

Full description

Autores:
Prager, Gustavo
Périco, Rodrigo
Poleto, Giovana
Bolina Longhi, Fabrício
Tutikian, Bernardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7931
Acceso en línea:
https://hdl.handle.net/11323/7931
https://repositorio.cuc.edu.co/
Palabra clave:
Fire resistance
Fire safety
Lime
Polypropylene fiber
Resistente al fuego
Seguridad contra incendios
Lima
Fibra de polipropileno
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_331fd378677789b252027190d64ffe7d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7931
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Experimental analysis of fire resistance of mortar coatings on structural masonry walls
dc.title.translated.spa.fl_str_mv Análisis experimental de resistencia al fuego de revestimientos de mortero en muros de mampostería estructural
title Experimental analysis of fire resistance of mortar coatings on structural masonry walls
spellingShingle Experimental analysis of fire resistance of mortar coatings on structural masonry walls
Fire resistance
Fire safety
Lime
Polypropylene fiber
Resistente al fuego
Seguridad contra incendios
Lima
Fibra de polipropileno
title_short Experimental analysis of fire resistance of mortar coatings on structural masonry walls
title_full Experimental analysis of fire resistance of mortar coatings on structural masonry walls
title_fullStr Experimental analysis of fire resistance of mortar coatings on structural masonry walls
title_full_unstemmed Experimental analysis of fire resistance of mortar coatings on structural masonry walls
title_sort Experimental analysis of fire resistance of mortar coatings on structural masonry walls
dc.creator.fl_str_mv Prager, Gustavo
Périco, Rodrigo
Poleto, Giovana
Bolina Longhi, Fabrício
Tutikian, Bernardo
dc.contributor.author.spa.fl_str_mv Prager, Gustavo
Périco, Rodrigo
Poleto, Giovana
Bolina Longhi, Fabrício
Tutikian, Bernardo
dc.subject.spa.fl_str_mv Fire resistance
Fire safety
Lime
Polypropylene fiber
Resistente al fuego
Seguridad contra incendios
Lima
Fibra de polipropileno
topic Fire resistance
Fire safety
Lime
Polypropylene fiber
Resistente al fuego
Seguridad contra incendios
Lima
Fibra de polipropileno
description The discussion on fire safety is necessary in Brazilian buildings. Current legislation requires construction with compartmentalized areas separated by walls with structural ceramic blocks capable of resisting fire for an amount of time pre-determined in norm NBR 14432 (ABNT, 2001). However, a lack of building standards requires experimental tests according to NBR 5628 (ABNT, 2001) to determine the necessary configuration to achieve fire resistance. For this purpose, this study analyzed the effect of fire on structural walls covered with a mortar coating. Experiments were conducted in real scale in a standardized vertical oven and the fire growth curve of ISO 834 (ISO, 1999). Three types of walls were tested, each with a different mortar coating: (a) lime; (b) 0.6 kg/m3 polypropylene fiber and 1.2 kg/m3 polypropylene fiber. The mortar coatings were 1.5 cm thick on the side facing the fire and 2.5 cm thick in the outside. The wall was composed of structural blocks measuring 14 cm x 19 cm x 29 cm. Fire experiments evaluated the structure stability, impermeability to hot gases and smoke and thermal insulation of each sample. Results showed that the structural system with 1.2 kg/m3 polypropylene fiber mortar coating obtained the best thermal insulation effect with the longest fire resistance time of 176 min.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-02-26T16:01:05Z
dc.date.available.none.fl_str_mv 2021-02-26T16:01:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 07177925
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7931
dc.identifier.doi.spa.fl_str_mv 10.7764/RDLC.19.3.311
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 07177925
10.7764/RDLC.19.3.311
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7931
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Andrade, J.&Tutikian, B. (2011). Resistência mecânica do concreto. In: ISAIA, GeraldoCechella. Concreto: Ciência e Tecnologia. São Paulo: IBRACON, Brazil. Ch. 17. p. 615-651.
Associação Nacional Da Indústria Cerâmica. (2015).ANICER. Retrieved from: <http://www.anicer.com.br>. Date viewed: 24 nov. 2015.
Associação Brasileiras De Normas Técnicas.(2001).NBR 5628: Componentes construtivos estruturais -Determinação da resistência ao fogo. Rio de Janeiro.
Associação Brasileiras De Normas Técnicas.(2013). NBR 15575: Edificações habitacionais –Desempenho. Parte 4: Requisitos para os sistemas de vedações verticais internas e externas -SVVIE. Rio de Janeiro.
Associação Brasileiras De Normas Técnicas.(2005). NBR 15259: Argamassa para assentamento e revestimento de paredes e tetos –Determinação da absorção de água por capilaridade e do coeficiente de capilaridade. Rio de Janeiro.
Associação Brasileiras De Normas Técnicas.(2002). NBR NM 47: Concreto -determinação do teor de ar em concretos frescos –Método pressométrico. Rio de Janeiro
Associação Brasileiras De Normas Técnicas.(2016). NBR 13276: Argamassa para assentamento e revestimento de paredes e tetos –Determinação do índice de consistência. Rio de Janeiro
Associação Brasileiras De Normas Técnicas. (2005). NBR 13278: Argamassa para assentamento de paredes e revestimento de paredes e tetos –Determinação da densidade de massa e do teor de ar incorporado. Rio de Janeiro.
Associação Brasileiras De Normas Técnicas.(2005). NBR 13279: Argamassa para assentamento de paredes e revestimento de paredes e tetos –Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro
Associação Brasileiras De Normas Técnicas.(2005). NBR 13280: Argamassapara assentamento e revestimento de paredes e tetos –Determinação da densidade de massa aparente no estado endurecido. Rio de Janeiro
Associação Brasileiras De Normas Técnicas.(2005).NBR 13281: Argamassa para assentamento de paredes e revestimento de paredes e tetos –Requisitos. Rio de Janeiro.
Associação Brasileiras De Normas Técnicas. (2005). NBR 9778: Argamassa e concreto endurecidos –Determinação da absorção de água, índices de vazios e massa específica. Rio de Janeiro
Agopyan, V.,Souza, U. E. L.,Paliari, J. C.,&Andrade, A. C. (2009). Alternativas para redução do desperdício de materiais nos canteiros de obra
Al-Hadhrami, L. M. &Ahmad, A. (2009). Assessment of thermal performance of different types of masonry bricks used in Saudi Arabia. Applied Thermal Engineering, 29.
Amaral, E. C.,Botelho, R. A.,Lameiras, F. S.,Reis, S. C.&Tolentino, E. (2012).O efeito do tratamento térmico a 300 °C na conectividade da estrutura de poros de argamassas de cimento Portland reforçadas por fibras de polipropileno. Órgão oficial da associação brasileira de cerâmica -ano lviii -v. 58, 346 -abr/mai/jun 2012.
Arandigoyen, M.&Alvarez, J. I. (2007). Pore structure and mechanical properties of cement–lime mortars. Cement and Concrete Research, 37(5), 767-775.
Ayala, F. R. R. (2010). Mechanical properties and structural behaviour of masonry at elevated temperatures, Ph.D. Thesis, University of Manchester.
Bendjillali, K,; Goual, M. S.,Chemrouk, M.&Damene, Z. (2011). Study of the reinforcement of limestone mortars by polypropylene fibers waste. Physics Procedia 21, 42-46.
Camacho, J. S. (2006). Projeto de edifícios de alvenaria estrutural. Núcleo de Ensino e Pesquisa da Alvenaria Estrutural -NEPAE, Ilha Solteira, São Paulo.
Centofante, G.&Dagostini, C. M. (2014). Análise das propriedades de argamassa de revestimento com adição de fibras de polipropileno. Joaçaba: Unoesc & Ciência -Acet
Comité Européen de Normalisation (Cen). (2005).EN 1996-1-1: Eurocode 6 -Design of masonry structures -Part 1-2: General rules -Structural fire design. Brussels
Costa, C. N.&Silva, V. P. (2006). Revisão histórica das curvas padronizadas de incêndio. In: Seminário Internacional NUTAU: Tecnologia de Durabilidade, 2006, São Paulo. Resumos. São Paulo: NUTAU-USP
Dawood, E. T.&Ramli, M. (2011). Contribution of hybrid fibers on the properties of high strength concrete having high workability. ProcediaEngineering, 14, 814-820.
Ezziane, M.,Kadri, T.,Molez, L.,Jauberthie, R.&Belhacen, A. (2015). High temperature behaviour of polypropylene fibres reinforced mortars. Fire Safety Journal71,324-331.
Gil, A., Pacheco, F., Christ, R., Bolina, F., Khayat, K. H., & Tutikian, B. (2017). Comparative study of concrete panels’ fire resistance. ACI Materials Journal, 114(5), doi:https://doi.org/10.14359/51689715
Ingham, J. (2009). Forensic Engineering of Fire-Damaged Structures. ICE, 162, 12-17
International Organization For Standardization (ISO). (1999). ISO 834: fire resistance tests –Elements of building construction. Geneva
Karahan, O. (2011). Residual compressive strength of fire-damaged mortar after post-fire-air-curing. Fire and Material, 35(8), 561-567
Metha, P. K.&Monteiro, P. J. M. (2014).Concreto: microestrutura, propriedades e materiais. 3. ed. São Paulo: IBRACON.
Monte, R.,Barros, M.&Figueiredo, A. (2012). Avaliação da influência de fibras de polipropileno na resistência de aderência de revestimentos de argamassa. São Paulo,Brazil.12 p
Morsy, M. S.,Al-Salloum, Y.A.,Abbas, H.&Alsayed, S. H. (2012). Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures. Construction and Building Materials.35, 900–905.
Nguyen, T. D.&Meftah, F.(2012). Behavior of clay hollow-brick masonry walls during fire. Part1: experimental analysis.Fire Safety Journal, 52,55-64.
Oliveira, M. L. L. (2001). Influência da adição de fibras de polipropileno em argamassas. 2001. Master’s Thesis. Pós-Graduação em Engenharia Civil. Universidade Federal de Santa Catarina, Florianópolis.Brazil
Pacheco, F., Christ, R., Quinino, U., & Tutikian, B. F. (2018). Effects of fiber hybridization in advanced cementitious composites durability in humid and aggressive environments. Revista Materia,23.doi: https://doi.org/10.1590/s1517-707620180003.0505.
Pacheco, F.Christ, R.Gil, A.M. &Tutikian, B.F (2016).SEM and 3D microtomography application to investigate the distribution of fibers in advanced cimenticious composites. Revista Ibracon de Estruturas e Materiais,9,824-832, doi:10.1590/s1983-41952016000600002
Pachta, V.,Triantafyllaki, S.&Stefanidou, M. (2018). Performance of lime-based mortars at elevated temperatures. Construction and Building Materials,189, 576-584.
Pinheiro, B. C. A.&Holanda, J. N. F. (2010). Efeito da temperatura de queima em algumas propriedades mecânicas de cerâmica vermelha. Universidade Estadual do Norte Fluminense, CCT-LAMAV, Grupo de Materiais Cerâmicos.Brazil.
Rigão, A. O. (2012). Comportamento de pequenas paredes de alvenaria estrutural frente a altas temperaturas. Master’s Thesis in Civil Engineering. Universidade Federal de Santa Maria, Santa Maria, RS.Brazil.
Russo, S.&Sciarretta, F. (2012). Experimental and theoretical investigation on masonry after high temperature exposure.Experimental Mechanics, 52(4), 341-359.
Silva, R. P.&Barros, M. M. S. B. (2007). Revestimentos de argamassa com fibras de polipropileno. Revista Téchne. São Paulo, n. 127. Retrieved from: <http://techne.pini.com.br/engenharia-civil/127/artigo287483-1.aspx>. Date viewed: 14 may 2017
Souza, R. P. (2017). Avaliação da influência da espessura do revestimento argamassado e do carregamento no comportamento de alvenaria frente a altas temperaturas. São Leopoldo, 2017. 133p. Dissertação (Mestrado em Engenharia Civil) –Programa de Pós-Graduação em Engenharia Civil, Unisinos, São Leopoldo.
Tiscoski, B. L.,&Antunes, E. G. P. (2007).Análise do efeito da adição de fibras de polipropileno da resistência de aderência à tração em argamassa de revestimento. Undergraduate Thesis in Civil Engineering, UNESC –Universidade do Extremo SulCatarinense
Yazici, S., Sezer, G. I., &Sengul, H. (2012). The effect of high temperature on the compressive strength of mortars. Construction and Building Materials. 35, 97–100.
Zhang, H.,Liu, Y.,Sun, H.&Shoufeng, W. (2016). Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading.Construction and Building Materials,111, 30-42.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Revista de la Construccion
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85100138568&doi=10.7764%2fRDLC.19.3.311&origin=inward&txGid=3c23848123d420801907609acd5ae05b
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/38737a00-f81a-4305-826e-4f30e3274c30/download
https://repositorio.cuc.edu.co/bitstreams/72d617d2-d6e3-4d6b-8947-06ac543d60b5/download
https://repositorio.cuc.edu.co/bitstreams/0bfe0721-b7cc-498f-83db-8fcd4cba79f8/download
https://repositorio.cuc.edu.co/bitstreams/1001933a-eb4e-4fa2-a38b-f00369c0f5dd/download
https://repositorio.cuc.edu.co/bitstreams/5b7f0b47-5f27-4c7c-8455-851f4f5ecfe9/download
bitstream.checksum.fl_str_mv cdb301cce2fe435e1b0cc6306561b545
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
73025a9f6d19d4d1ec4ce11da006c7b8
2752805dd937de5728d9c59d219e5194
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166836455211008
spelling Prager, GustavoPérico, RodrigoPoleto, GiovanaBolina Longhi, FabrícioTutikian, Bernardo2021-02-26T16:01:05Z2021-02-26T16:01:05Z202007177925https://hdl.handle.net/11323/793110.7764/RDLC.19.3.311Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The discussion on fire safety is necessary in Brazilian buildings. Current legislation requires construction with compartmentalized areas separated by walls with structural ceramic blocks capable of resisting fire for an amount of time pre-determined in norm NBR 14432 (ABNT, 2001). However, a lack of building standards requires experimental tests according to NBR 5628 (ABNT, 2001) to determine the necessary configuration to achieve fire resistance. For this purpose, this study analyzed the effect of fire on structural walls covered with a mortar coating. Experiments were conducted in real scale in a standardized vertical oven and the fire growth curve of ISO 834 (ISO, 1999). Three types of walls were tested, each with a different mortar coating: (a) lime; (b) 0.6 kg/m3 polypropylene fiber and 1.2 kg/m3 polypropylene fiber. The mortar coatings were 1.5 cm thick on the side facing the fire and 2.5 cm thick in the outside. The wall was composed of structural blocks measuring 14 cm x 19 cm x 29 cm. Fire experiments evaluated the structure stability, impermeability to hot gases and smoke and thermal insulation of each sample. Results showed that the structural system with 1.2 kg/m3 polypropylene fiber mortar coating obtained the best thermal insulation effect with the longest fire resistance time of 176 min.La discusión sobre seguridad contra incendios es necesaria en los edificios brasileños. La legislación actual exige la construcción con áreas compartimentadas separadas por muros con bloques cerámicos estructurales capaces de resistir el fuego por un tiempo predeterminado en la norma NBR 14432 (ABNT, 2001). Sin embargo, la falta de estándares de construcción requiere pruebas experimentales según NBR 5628 (ABNT, 2001) para determinar la configuración necesaria para lograr la resistencia al fuego. Para ello, este estudio analizó el efecto del fuego en los muros estructurales revestidos con un revestimiento de mortero. Los experimentos se realizaron a escala real en un horno vertical estandarizado y la curva de crecimiento del fuego de ISO 834 (ISO, 1999). Se ensayaron tres tipos de muros, cada uno con un revestimiento de mortero diferente: (a) cal; b) 0,6 kg / m3 de fibra de polipropileno y 1,2 kg / m3 de fibra de polipropileno. Los revestimientos de mortero tenían 1,5 cm de espesor en el lado de cara al fuego y 2,5 cm de espesor en el exterior. El muro estaba compuesto por bloques estructurales de 14 cm x 19 cm x 29 cm. Los experimentos de fuego evaluaron la estabilidad de la estructura, la impermeabilidad a los gases calientes y el humo y el aislamiento térmico de cada muestra. Los resultados mostraron que el sistema estructural con revestimiento de mortero de fibra de polipropileno de 1,2 kg / m3 obtuvo el mejor efecto de aislamiento térmico con el tiempo de resistencia al fuego más largo de 176 min.Prager, Gustavo-will be generated-orcid-0000-0001-9917-3144-600Périco, RodrigoPoleto, GiovanaBolina Longhi, FabrícioTutikian, Bernardo-will be generated-orcid-0000-0003-1319-0547-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista de la Construccionhttps://www.scopus.com/record/display.uri?eid=2-s2.0-85100138568&doi=10.7764%2fRDLC.19.3.311&origin=inward&txGid=3c23848123d420801907609acd5ae05bFire resistanceFire safetyLimePolypropylene fiberResistente al fuegoSeguridad contra incendiosLimaFibra de polipropilenoExperimental analysis of fire resistance of mortar coatings on structural masonry wallsAnálisis experimental de resistencia al fuego de revestimientos de mortero en muros de mampostería estructuralArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAndrade, J.&Tutikian, B. (2011). Resistência mecânica do concreto. In: ISAIA, GeraldoCechella. Concreto: Ciência e Tecnologia. São Paulo: IBRACON, Brazil. Ch. 17. p. 615-651.Associação Nacional Da Indústria Cerâmica. (2015).ANICER. Retrieved from: <http://www.anicer.com.br>. Date viewed: 24 nov. 2015.Associação Brasileiras De Normas Técnicas.(2001).NBR 5628: Componentes construtivos estruturais -Determinação da resistência ao fogo. Rio de Janeiro.Associação Brasileiras De Normas Técnicas.(2013). NBR 15575: Edificações habitacionais –Desempenho. Parte 4: Requisitos para os sistemas de vedações verticais internas e externas -SVVIE. Rio de Janeiro.Associação Brasileiras De Normas Técnicas.(2005). NBR 15259: Argamassa para assentamento e revestimento de paredes e tetos –Determinação da absorção de água por capilaridade e do coeficiente de capilaridade. Rio de Janeiro.Associação Brasileiras De Normas Técnicas.(2002). NBR NM 47: Concreto -determinação do teor de ar em concretos frescos –Método pressométrico. Rio de JaneiroAssociação Brasileiras De Normas Técnicas.(2016). NBR 13276: Argamassa para assentamento e revestimento de paredes e tetos –Determinação do índice de consistência. Rio de JaneiroAssociação Brasileiras De Normas Técnicas. (2005). NBR 13278: Argamassa para assentamento de paredes e revestimento de paredes e tetos –Determinação da densidade de massa e do teor de ar incorporado. Rio de Janeiro.Associação Brasileiras De Normas Técnicas.(2005). NBR 13279: Argamassa para assentamento de paredes e revestimento de paredes e tetos –Determinação da resistência à tração na flexão e à compressão. Rio de JaneiroAssociação Brasileiras De Normas Técnicas.(2005). NBR 13280: Argamassapara assentamento e revestimento de paredes e tetos –Determinação da densidade de massa aparente no estado endurecido. Rio de JaneiroAssociação Brasileiras De Normas Técnicas.(2005).NBR 13281: Argamassa para assentamento de paredes e revestimento de paredes e tetos –Requisitos. Rio de Janeiro.Associação Brasileiras De Normas Técnicas. (2005). NBR 9778: Argamassa e concreto endurecidos –Determinação da absorção de água, índices de vazios e massa específica. Rio de JaneiroAgopyan, V.,Souza, U. E. L.,Paliari, J. C.,&Andrade, A. C. (2009). Alternativas para redução do desperdício de materiais nos canteiros de obraAl-Hadhrami, L. M. &Ahmad, A. (2009). Assessment of thermal performance of different types of masonry bricks used in Saudi Arabia. Applied Thermal Engineering, 29.Amaral, E. C.,Botelho, R. A.,Lameiras, F. S.,Reis, S. C.&Tolentino, E. (2012).O efeito do tratamento térmico a 300 °C na conectividade da estrutura de poros de argamassas de cimento Portland reforçadas por fibras de polipropileno. Órgão oficial da associação brasileira de cerâmica -ano lviii -v. 58, 346 -abr/mai/jun 2012.Arandigoyen, M.&Alvarez, J. I. (2007). Pore structure and mechanical properties of cement–lime mortars. Cement and Concrete Research, 37(5), 767-775.Ayala, F. R. R. (2010). Mechanical properties and structural behaviour of masonry at elevated temperatures, Ph.D. Thesis, University of Manchester.Bendjillali, K,; Goual, M. S.,Chemrouk, M.&Damene, Z. (2011). Study of the reinforcement of limestone mortars by polypropylene fibers waste. Physics Procedia 21, 42-46.Camacho, J. S. (2006). Projeto de edifícios de alvenaria estrutural. Núcleo de Ensino e Pesquisa da Alvenaria Estrutural -NEPAE, Ilha Solteira, São Paulo.Centofante, G.&Dagostini, C. M. (2014). Análise das propriedades de argamassa de revestimento com adição de fibras de polipropileno. Joaçaba: Unoesc & Ciência -AcetComité Européen de Normalisation (Cen). (2005).EN 1996-1-1: Eurocode 6 -Design of masonry structures -Part 1-2: General rules -Structural fire design. BrusselsCosta, C. N.&Silva, V. P. (2006). Revisão histórica das curvas padronizadas de incêndio. In: Seminário Internacional NUTAU: Tecnologia de Durabilidade, 2006, São Paulo. Resumos. São Paulo: NUTAU-USPDawood, E. T.&Ramli, M. (2011). Contribution of hybrid fibers on the properties of high strength concrete having high workability. ProcediaEngineering, 14, 814-820.Ezziane, M.,Kadri, T.,Molez, L.,Jauberthie, R.&Belhacen, A. (2015). High temperature behaviour of polypropylene fibres reinforced mortars. Fire Safety Journal71,324-331.Gil, A., Pacheco, F., Christ, R., Bolina, F., Khayat, K. H., & Tutikian, B. (2017). Comparative study of concrete panels’ fire resistance. ACI Materials Journal, 114(5), doi:https://doi.org/10.14359/51689715Ingham, J. (2009). Forensic Engineering of Fire-Damaged Structures. ICE, 162, 12-17International Organization For Standardization (ISO). (1999). ISO 834: fire resistance tests –Elements of building construction. GenevaKarahan, O. (2011). Residual compressive strength of fire-damaged mortar after post-fire-air-curing. Fire and Material, 35(8), 561-567Metha, P. K.&Monteiro, P. J. M. (2014).Concreto: microestrutura, propriedades e materiais. 3. ed. São Paulo: IBRACON.Monte, R.,Barros, M.&Figueiredo, A. (2012). Avaliação da influência de fibras de polipropileno na resistência de aderência de revestimentos de argamassa. São Paulo,Brazil.12 pMorsy, M. S.,Al-Salloum, Y.A.,Abbas, H.&Alsayed, S. H. (2012). Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures. Construction and Building Materials.35, 900–905.Nguyen, T. D.&Meftah, F.(2012). Behavior of clay hollow-brick masonry walls during fire. Part1: experimental analysis.Fire Safety Journal, 52,55-64.Oliveira, M. L. L. (2001). Influência da adição de fibras de polipropileno em argamassas. 2001. Master’s Thesis. Pós-Graduação em Engenharia Civil. Universidade Federal de Santa Catarina, Florianópolis.BrazilPacheco, F., Christ, R., Quinino, U., & Tutikian, B. F. (2018). Effects of fiber hybridization in advanced cementitious composites durability in humid and aggressive environments. Revista Materia,23.doi: https://doi.org/10.1590/s1517-707620180003.0505.Pacheco, F.Christ, R.Gil, A.M. &Tutikian, B.F (2016).SEM and 3D microtomography application to investigate the distribution of fibers in advanced cimenticious composites. Revista Ibracon de Estruturas e Materiais,9,824-832, doi:10.1590/s1983-41952016000600002Pachta, V.,Triantafyllaki, S.&Stefanidou, M. (2018). Performance of lime-based mortars at elevated temperatures. Construction and Building Materials,189, 576-584.Pinheiro, B. C. A.&Holanda, J. N. F. (2010). Efeito da temperatura de queima em algumas propriedades mecânicas de cerâmica vermelha. Universidade Estadual do Norte Fluminense, CCT-LAMAV, Grupo de Materiais Cerâmicos.Brazil.Rigão, A. O. (2012). Comportamento de pequenas paredes de alvenaria estrutural frente a altas temperaturas. Master’s Thesis in Civil Engineering. Universidade Federal de Santa Maria, Santa Maria, RS.Brazil.Russo, S.&Sciarretta, F. (2012). Experimental and theoretical investigation on masonry after high temperature exposure.Experimental Mechanics, 52(4), 341-359.Silva, R. P.&Barros, M. M. S. B. (2007). Revestimentos de argamassa com fibras de polipropileno. Revista Téchne. São Paulo, n. 127. Retrieved from: <http://techne.pini.com.br/engenharia-civil/127/artigo287483-1.aspx>. Date viewed: 14 may 2017Souza, R. P. (2017). Avaliação da influência da espessura do revestimento argamassado e do carregamento no comportamento de alvenaria frente a altas temperaturas. São Leopoldo, 2017. 133p. Dissertação (Mestrado em Engenharia Civil) –Programa de Pós-Graduação em Engenharia Civil, Unisinos, São Leopoldo.Tiscoski, B. L.,&Antunes, E. G. P. (2007).Análise do efeito da adição de fibras de polipropileno da resistência de aderência à tração em argamassa de revestimento. Undergraduate Thesis in Civil Engineering, UNESC –Universidade do Extremo SulCatarinenseYazici, S., Sezer, G. I., &Sengul, H. (2012). The effect of high temperature on the compressive strength of mortars. Construction and Building Materials. 35, 97–100.Zhang, H.,Liu, Y.,Sun, H.&Shoufeng, W. (2016). Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading.Construction and Building Materials,111, 30-42.PublicationORIGINAL13834-Article Text-62603-1-10-20201225.pdf13834-Article Text-62603-1-10-20201225.pdfapplication/pdf1298678https://repositorio.cuc.edu.co/bitstreams/38737a00-f81a-4305-826e-4f30e3274c30/downloadcdb301cce2fe435e1b0cc6306561b545MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/72d617d2-d6e3-4d6b-8947-06ac543d60b5/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0bfe0721-b7cc-498f-83db-8fcd4cba79f8/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL13834-Article Text-62603-1-10-20201225.pdf.jpg13834-Article Text-62603-1-10-20201225.pdf.jpgimage/jpeg50932https://repositorio.cuc.edu.co/bitstreams/1001933a-eb4e-4fa2-a38b-f00369c0f5dd/download73025a9f6d19d4d1ec4ce11da006c7b8MD54TEXT13834-Article Text-62603-1-10-20201225.pdf.txt13834-Article Text-62603-1-10-20201225.pdf.txttext/plain29331https://repositorio.cuc.edu.co/bitstreams/5b7f0b47-5f27-4c7c-8455-851f4f5ecfe9/download2752805dd937de5728d9c59d219e5194MD5511323/7931oai:repositorio.cuc.edu.co:11323/79312024-09-17 14:16:09.308http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==