Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode

Square-wave adsorptive stripping voltammetry (SWAdSV) was used to determine iron in ethanol and biodiesel using a bismuth-film electrode (BiFE) prepared onto the surface of a glassy carbon electrode (GCE) by electrochemical deposition to promote the reduction of Fe (III) previously complexed with 1-...

Full description

Autores:
Almeida, Joseany
P. Ribeiro, Ana Beatriz
Toloza Toloza, Carlos
Braga Alves, Ismael Carlos
N. Santos, José Ribamar
Martiniano de Azevedo, Lorena
Q. Aucélio, Ricardo
B. Marques, Aldaléa L.
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9179
Acceso en línea:
https://hdl.handle.net/11323/9179
https://doi.org/10.1080/00032719.2022.2053701
https://repositorio.cuc.edu.co/
Palabra clave:
Fe (III)-1-(2-piridylazo)-2-naphthol
Tetramethylammonium hydroxide
Bismuth-film electrode
Square-wave adsorptive stripping voltammetry
Ethanol
Biodiesel
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_32f5ed2350ed9bbb96c8036a7878580d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9179
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
title Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
spellingShingle Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
Fe (III)-1-(2-piridylazo)-2-naphthol
Tetramethylammonium hydroxide
Bismuth-film electrode
Square-wave adsorptive stripping voltammetry
Ethanol
Biodiesel
title_short Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
title_full Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
title_fullStr Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
title_full_unstemmed Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
title_sort Simple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrode
dc.creator.fl_str_mv Almeida, Joseany
P. Ribeiro, Ana Beatriz
Toloza Toloza, Carlos
Braga Alves, Ismael Carlos
N. Santos, José Ribamar
Martiniano de Azevedo, Lorena
Q. Aucélio, Ricardo
B. Marques, Aldaléa L.
dc.contributor.author.spa.fl_str_mv Almeida, Joseany
P. Ribeiro, Ana Beatriz
Toloza Toloza, Carlos
Braga Alves, Ismael Carlos
N. Santos, José Ribamar
Martiniano de Azevedo, Lorena
Q. Aucélio, Ricardo
B. Marques, Aldaléa L.
dc.subject.proposal.eng.fl_str_mv Fe (III)-1-(2-piridylazo)-2-naphthol
Tetramethylammonium hydroxide
Bismuth-film electrode
Square-wave adsorptive stripping voltammetry
Ethanol
Biodiesel
topic Fe (III)-1-(2-piridylazo)-2-naphthol
Tetramethylammonium hydroxide
Bismuth-film electrode
Square-wave adsorptive stripping voltammetry
Ethanol
Biodiesel
description Square-wave adsorptive stripping voltammetry (SWAdSV) was used to determine iron in ethanol and biodiesel using a bismuth-film electrode (BiFE) prepared onto the surface of a glassy carbon electrode (GCE) by electrochemical deposition to promote the reduction of Fe (III) previously complexed with 1-(2-pyridylazo)-2-naphthol (PAN) directly in the electrochemical cell. The supporting electrolyte was composed by mixture of acetate buffer (0.1 mol L−1, pH 4.5) and ethanol (40/60% v/v) into which 500 µL of a 0.1 mmol L−1 stock solution of PAN was added as complexing agent. The Fe (III)-PAN complex presented a well-defined current peak at −0.7 V. For biodiesel, a treatment with tetramethylammonium hydroxide (TMAH) was proposed as an efficient mean to minimized matrix interferences. A limit of detection of 6.0 × 10−8 mol L−1 (0.06 µmol L−1) and limit of quantification of 2.0 × 10−7 mol L−1 (0.2 µmol L−1) were obtained for Fe(III). Under the optimized conditions, there were no significant interferences from Cu(II), Al(III), Mn(II), Cr(III), Cd(II), Zn(II) and Ni(II) and Pb(II) while Ni(II) interfered significantly. The analytical curves produced linear responses with equations I (µA) = (-1.315 × 10−7 ± 5.158 × 10−8) + (-0.238 ± 0.01) [Fe (III)] (µmol L−1), R2 = 0.992 and I (µA) = (-6.836 × 10−7 ± 1.124 × 10−8) + (-0.408 ± 0.013) [Fe (III)] (µmol L−1), R2=0.998 for pure ethanol and biodiesel, respectively. The method produced satisfactory results in quantifying original quantities of Fe(III) in fuel ethanol (5.65 ± 0.71 µmol L−1) and biodiesel (1.28 ± 0.25 µmol L−1) at a 95% confidence limit (n = 3).
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-05-18T15:47:35Z
dc.date.available.none.fl_str_mv 2022-05-18T15:47:35Z
2023-03-28
dc.date.issued.none.fl_str_mv 2022-03-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0003-2719
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9179
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1080/00032719.2022.2053701
dc.identifier.doi.spa.fl_str_mv 10.1080/00032719.2022.2053701
dc.identifier.eissn.spa.fl_str_mv 1532-236X
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0003-2719
10.1080/00032719.2022.2053701
1532-236X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9179
https://doi.org/10.1080/00032719.2022.2053701
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Analytical Letters
dc.relation.references.spa.fl_str_mv 1. Almeida, J. M. S., R. M. Dornellas, S. Yotsumoto-Neto, M. Ghisi, J. G. C. Furtado, E. P. Marques, R. Q. Aucélio, and A. L. B. Marques. 2014. A simple electroanalytical procedure for the determination of calcium in biodiesel. Fuel 115:658–65. doi:https://doi.org/10.1016/j.fuel.2013.07.088.
2. Alves, V. N., R. Mosquetta, N. M. M. Coelho, J. N. Bianchin, K. C. P. Roux, E. Martendal, and E. Carasek. 2010. Determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line system coupled to FAAS. Talanta 80 (3):1133–8. doi:https://doi.org/10.1016/j.talanta.2009.08.040.
3. Amais, R. S., E. E. Garcia, M. R. Monteiro, A. R. A. Nogueira, and J. A. Nóbrega. 2010. Direct analysis of biodiesel microemulsions using an inductively coupled plasma mass spectrometry. Microchemical Journal 96 (1):146–50. doi:https://doi.org/10.1016/j.microc.2010.02.017.
4. Asan, A., R. Aydin, D. K. Semiz, V. Erci, and I. Isildak. 2013. A very sensitive flow-injection spectrophotometric determination method for iron (II) and total iron using 2', 3, 4', 5, 7-pentahydroxyflavone. Environmental Monitoring and Assessment 185 (3):2115–21. doi:https://doi.org/10.1007/s10661-012-2693-y.
5. ASTM. 2011. Standard specification for denatured fuel ethanol for blending with gasolines for use as automotive spark-ignition engine fuel. ASTM D4806.
6. ASTM. 2020. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM D6751, Revision 20A, August 1.
7. Bae, J.-H., H.-S. Jun, and H.-Y. Jang. 1993. Voltammetric determination of Cu (II) ion at a chemically modified carbon-paste electrode containing l-(2-pyridylazo)-2-naphthol. Journal of the Korean Chemical Society 37 (8):723–9. ISSN: 1017-2548/2234-8530.
8. Bobrowski, A., K. Nowak, and J. Zarebski. 2005. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(III)-TEA-BrO3- catalytic system. Analytical and Bioanalytical Chemistry 382 (7):1691–7. doi:https://doi.org/10.1007/s00216-005-3313-2.
9. BRASIL, Resolution ANP n. 19, of 15/04/2015. 2015. Establishes the minimum specifications to be observed for commercialization of ethanol fuel in whole Brazilian territory.
10. BS EN 14214:2012 + A2:2019. 2019. Liquid petroleum products. Fatty acid methyl esters (FAME) for use in diesel engines and heating applications. Requirements and test methods.
11. Croot, P. L, and M. Johansson. 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). Electroanalysis 12 (8):565–76. doi:https://doi.org/10.1002/(SICI)1521-4109(200005)12:8<565::AID-ELAN565>3.0.CO;2-L. [Crossref], [Web of Science ®],
12. De Quadros, D. P. C., E. S. Chaves, J. S. A. Silva, L. S. G. Teixeira, A. J. Curtius, and P. A. Pereira. 2011. Contaminantes em biodiesel e controle de qualidade. Revista Virtual de Química 3 (5):376–384. doi. https://doi.org/10.5935/1984-6835.20110042.
13. Divjak, B., M. Franko, and M. Novic. 1998. Determination of iron in complex matrices by ion chromatography with UV-Vis, thermal lens and amperometric detection using post-column reagents. Journal of Chromatography A 829 (1–2):167–74. doi:https://doi.org/10.1016/S0021-9673(98)00837-1.
14. do Prado, F. S. R. 2014. Preparação, caracterização e testes de eletrodo modificado com filme de bismuto para aplaicação na análise voltamétrica de metais pesados. São Carlos – São Paulo: Universidade de São Paulo, Instituto de Química de São Carlos.
15. Dong, K. L., L. Kryger, J. K. Christensen, and K. N. Thomsen. 1991. Preconcentration and determination of Bismuth (III) at a chemically modified electrode containing 1-(2-pyridylazo)-2-naphthol. Talanta 38 (1):101–5. doi:https://doi.org/10.1016/0039-9140(91)80015-R.
16. Doyle, A., A. Saavedra, M. L. B. Tristão, and R. Q. Aucelio. 2015. Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate. Fuel 162:39–46. doi:https://doi.org/10.1016/j.fuel.2015.08.072.
17. Figueiredo-Filho, L. C., B. Janegitz, O. Fatibelilo-Filho, L. H. Marcolino-Junior, and C. Banks. 2013. Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry. Analytical Methods.5 (1):202–7. doi:https://doi.org/10.1039/C2AY26078F.
18. Ghisi, M., E. S. Chaves, D. P. Quadros, E. P. Marques, A. J. Curtius, and A. L. B. Marques. 2011. Simple method for the determination of Cu and Fe by electrothermal atomic absorption spectrometry in biodiesel treated with tetramethylammonium hydroxide. Microchemical Journal 98 (1):62–5. doi:https://doi.org/10.1016/j.microc.2010.11.003.
19. Ghoneim, E. M. 2010. Simultaneous determination of Mn(II), Cu(II) and Fe(III) as 2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode. Talanta 82 (2):646–52. doi:https://doi.org/10.1016/j.talanta.2010.05.025.
20. Gun, J., P. Salaün, and C. M. G. Van Den Berg. 2006. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry. Analytica Chimica Acta 571 (1):86–92. doi:https://doi.org/10.1016/j.aca.2006.04.043.
21. Hawkes, J. A., M. Gledhill, D. P. Connelly, and E. P. Achterberg. 2013. Characterisation of iron binding ligands in seawater by reverse titration. Analytica Chimica Acta 766:53–60. doi:https://doi.org/10.1016/j.aca.2012.12.048.
22. Honeychurch, K. C., J. P. Hart, and D. C. Cowell. 2001. Voltammetric studies of lead at a 1-(2-pyridylazo)-2-naphthol modified screen-printed carbon electrode and its trace determination in water by stripping voltammetry. Analytica Chimica Acta 431 (1):89–99. doi:https://doi.org/10.1016/S0003-2670(00)01294-0.
23. Hutton, E. A., S. B. Hocevar, and B. Ogorevc. 2005. Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis. Analytica Chimica Acta 537 (1–2):285–92. doi:https://doi.org/10.1016/j.aca.2005.01.040.
24. Iqbal, J., W. A. Carney, S. Lacaze, and C. S. Theegala. 2010. Metals determination in biodiesel (b100) by icp-oes with microwave assisted acid digestion. The Open Analytical Chemistry Journal 4 (1):18–26. doi:https://doi.org/10.2174/1874065001004010018.
25. Kamarudin, M. Z. F., S. K. Kamarudin, M. S. Masdar, and W. R. W. Daud. 2013. Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy 38 (22):9438–53. doi:https://doi.org/10.1016/j.ijhydene.2012.07.059.
26. Karim-Nezhad, G., L. Saghatforoush, and S. Ershad. 2009. Simultaneous determination of copper and iron in biological samples with 1-(2-pyridylazo)-2-naphthol in anionic AOT micellar solution using derivative spectrophotometry. Asian Journal of Chemistry 21 (4):2565–72.
27. Khan, M. R, and S. B. Khoo. 1998. 1-(2-Pyridylazo)-2-naphthol modified carbon paste electrode for trace cobalt (II) determination by differential pulse cathodic voltammetry. The Analyst 123 (6):1351–7. doi:https://doi.org/10.1039/a707375e.
28. Khoo, S. B., M. K. Soh, Q. Cai, M. R. Khan, and S. X. Guo. 1997. Differential pulse cathodic stripping voltammetric determination of manganese (II) and manganese (VII) at the 1-(2-pyridylazo)-2-naphthol-modified carbon paste electrode. Electroanalysis 9 (1):45–51. doi:https://doi.org/10.1002/elan.1140090111.
29. Korn, M. G., D. S. S. Santos, B. Welz, M. G. R. Vale, A. P. Teixeira, D. C. Lima, and S. L. C. Ferreira. 2007. Atomic spectrometric methods for the determination of metals and metalloids in automotive fuels-a review. Talanta 73 (1):1–11. doi:https://doi.org/10.1016/j.talanta.2007.03.036.
30. Krolicka, A, and A. Bobrowski. 2004. Bismuth film electrode for adsorptive stripping voltammetry – electrochemical and microscopic study. Electrochemistry Communications 6 (2):99–104. doi:https://doi.org/10.1016/j.elecom.2003.10.025.
31. Królicka, A., J. Zarębski, and A. Bobrowski. 2021. Catalytic adsorptive stripping voltammetric determination of germanium employing the oxidizing properties of V(IV)-HEDTA complex and bismuth-modified carbon-based electrodes. Membranes 11 (7):524–14. doi:https://doi.org/10.3390/membranes11070524.
32. Lu, M, and R. G. Compton. 2013. Voltammetric determination of iron (III) in water. Electroanalysis 25 (5):1123–9. doi:https://doi.org/10.1002/elan.201200661.
33. Martins, P., D. Pozebon, V. L. Dressler, and G. A. Kemieciki. 2002. Determination of trace elements in biological materials using tetramethylammonium hydroxide for sample preparation. Analytica Chimica Acta 470 (2):195–204. doi:https://doi.org/10.1016/S0003-2670(02)00767-5.
34. Mattos, C. S., D. R. Carmo, M. F. Oliveira, and N. R. Stradiotto. 2008. Voltammetric determination of total iron in fuel ethanol using a 1,10 fenantroline/nafion carbon paste-modified electrode. International Journal of Electrochemical Science 3 (3):338–45. http://hdl.handle.net/11449/10145.
35. Monteiro, M. R., A. R. P. Ambrozin, L. M. Lião, and A. G. Ferreira. 2008. Critical review on analytical methods for biodiesel characterization. Talanta 77 (2):593–605. doi:https://doi.org/10.1016/j.talanta.2008.07.001.
36. National Petroleum Agency (Brazil), Natural Gas and Biofuels, Resolution n. 45 – DOU 26/08/2014 (nº 163, Section 1, pag. 68).
37. National Petroleum Agency, Natural Gas and Biofuels (ANP)- Biodiesel: Introduction. 2021. Accessed January 30, 2021. http://www.anp.gov.br/?pg=40787&m=&t1=&t2=&t3=&t4=&ar=&ps=&cachebust=1296084306559
38. Obata, H, and C. M. G. Van Den Berg. 2001. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry. Analytical Chemistry 73 (11):2522–8. doi:https://doi.org/10.1021/ac001495d.
39. Oliveira, M. F., V. R. Balbo, J. F. Andrade, A. A. Saczk, L. L. Okumura, and N. R. Stradiotto. 2008. Quantitative assay of copper, iron, nickel, and zinc in fuel ethanol samples by Flame Atomic Absorption Spectrometry. Chemistry and Technology of Fuels and Oils 44 (6):430–4. doi:https://doi.org/10.1007/s10553-009-0076-z.
40. Quadros, D. P. C., M. Rau, M. Idrees, E. S. Chaves, A. J. Curtius, and D. L. G. Borges. 2011. A simple and fast procedure for the determination of Al, Cu, Fe and Mn in biodiesel using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 66 (5):373–7. doi:https://doi.org/10.1016/j.sab.2011.04.002.
41. Rocha, M. S., M. F. Mesko, F. F. Silva, R. C. Sena, M. C. B. Quaresma, T. O. Araujo, and L. A. Reis. 2011. Determination of Cu and Fe in fuel ethanol by ICP OES using direct sample introduction by an ultrasonic nebulizer and membrane desolvator. Journal of Analytical Atomic Spectrometry 26 (2):456–61. doi:https://doi.org/10.1039/C0JA00096E.
42. Rodrigues, S. S. M., A. S. Lima, L. S. G. Teixeira, M. G. A. Korn, and J. L. M. Santos. 2014. Determination of iron in biodiesel based on fluorescence quenching of CdTe quantum dots. Fuel 117 (Part A):520–7. doi:https://doi.org/10.1016/j.fuel.2013.09.045.
43. Saeidi, M., R. Aboutalebi, and A. Darehkordi. 2013. A new spectrophotometric reagent for Fe (III): 2-(2,3-dihydroxy-4-oxocyclobut-2-enylidene) hydrozinecarbothiamide and its application in real samples. Journal of Chemistry 20132013 (3):1–6. doi:https://doi.org/10.1155/2013/628253.
44. Santos, A. L., R. M. Takeuchi, R. A. A. Muñoz, L. Angnes, and N. R. Stradiotto. 2012. Electrochemical determination of inorganic contaminants in automotive fuels. Electroanalysis 24 (8):n/a–1691. doi:https://doi.org/10.1002/elan.201200193.
45. Sarin, A., A. Rajneesh, N. P. Singh, M. Sharma, and R. K. Malhotra. 2009. Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 34 (9):1271–5. doi:https://doi.org/10.1016/j.energy.2009.05.018.
46. Segura, R., M. I. Toral, and V. Arancibia. 2008. Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphthol. Talanta 75 (4):973–7. doi:https://doi.org/10.1016/j.talanta.2007.12.038.
47. Silva, J. J., L. L. Paim, and N. R. Stradiotto. 2014. Simultaneous determination of iron and copper in ethanol fuel using nafion/carbon nanotubes electrode. Electroanalysis 26 (8):1794–800. doi:https://doi.org/10.1002/elan.201400136.
48. Tagliabue, S., A. Gasparoli, D. Bella, and P. Bondioli. 2005. Influence of metal contamination on biodiesel thermo-oxidation stability. Rivista Italiana delle Sostanze Grasse 82 (2):93–6.
49. Tashtoush, G., M. Al-Widyan, and M. Al-Jarrah. 2004. Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management 45 (17):2697–711. doi:https://doi.org/10.1016/j.enconman.2003.12.009.
50. Teixeira, L. S. G., E. S. Santos, and L. S. Nunes. 2012. Determination of copper, iron, nickel and zinc in ethanol fuel by energy dispersive X-ray fluorescence after pre-concentration on chromatography paper. Analytica Chimica Acta 722 (13):29–33. doi:https://doi.org/10.1016/j.aca.2012.02.014.
51. Teixeira, L., J. Brasileiro, M. Borges Jr, P. Cordeiro, S. Rocha, and A. S. Costa. 2006. Determinação espectrofotométrica simultânea de cobre e ferro em álcool etílico combustível com reagentes derivados da ferroína. Química Nova 29 (4):741–5. doi:https://doi.org/10.1590/S0100-40422006000400020.
52. Tian, Y., L. Hu, S. Han, Y. Yuan, J. Wang, and G. Xu. 2012. Electrodes with extremely high hydrogen overvoltages as substrate electrodes for stripping analysis based on bismuth-coated electrodes. Analytica Chimica Acta 738:41–4. doi:https://doi.org/10.1016/j.aca.2012.06.009.
53. Tokalioglu, S., H. Buyukbas, and S. Kartal. 2006. Preconcentration of trace elements by using 1-(2-Pyridylazo)-2-naphthol functionalized Amberlite XAD-1180 resin and their determination by FAAS. Journal of the Brazilian Chemical Society 17 (1):98–106. doi:https://doi.org/10.1590/S0103-50532006000100015.
54. Ugo, P., L. M. Moretto, D. Rudello, E. Birriel, and J. Chevalet. 2001. Trace iron determination by cyclic and multiple square-wave voltammetry at nafion coated electrodes. Application to pore-water analysis. Electroanalysis 13 (8–9):661–8. doi:https://doi.org/10.1002/1521-4109(200105)13:8/9<661::AID-ELAN661>3.0.CO;2-N.
55. Vakh, C. S., A. V. Bulatov, A. Y. Shishov, A. V. Zabrodin, and L. N. Moskvin. 2014. Determination of silicon, phosphorus, iron and aluminum in biodiesel by multicommutated stepwise injection analysis with classical least squares method. Fuel 135:198–204. doi:https://doi.org/10.1016/j.fuel.2014.06.059.
56. Viégas, H. D. C., J. M. S. Almeida, C. A. Lacerda, J. B. Silva, A. L. B. Marques, and E. P. Marques. 2017. A rapid and sensitive voltammetric determination of sulphur in biodiesel in samples no treated and treated with TMAH. Fuel 202:464–9. doi:https://doi.org/10.1016/j.fuel.2017.04.048.
57. Wang, J., J. Lu, J. Hocevar, and B. Ogorevc. 2001. Bismuth-coated screen-printed electrodes for stripping voltametric measurements of trace lead. Electroanalysis 13 (1):13–6. doi:https://doi.org/10.1002/1521-4109(200101)13:1<13::AID-ELAN13>3.0.CO;2-F.
58. Wang, Y., X. Wu, J. Sun, C. Wang, G. Zhu, L.-P. Bai, Z.-H. Jiang, and W. Zhang. 2022. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochemistry Communications 136 (107233):107233–6. doi:https://doi.org/10.1016/j.elecom.2022.107233.
59. Yokoi, K, and C. M. G. Van Den Berg. 1992. The determination of iron in seawater using catalytic- cathodic stripping voltammetry. Electroanalysis 4 (1):65–9. doi:https://doi.org/10.1002/elan.1140040113.
dc.relation.citationendpage.spa.fl_str_mv 22
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
©2022 Taylor & Francis Group, LLC
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
©2022 Taylor & Francis Group, LLC
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 22 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Ltd.
dc.publisher.place.spa.fl_str_mv United States
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/00032719.2022.2053701
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9179/1/Simple%20Voltammetric%20Determination%20of%20Iron%20in%20Ethanol%20and%20Biodiesel%20Using%20a%20Bismuth%20Film%20Coated%20Glassy%20Carbon%20Electrode.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9179/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9179/3/Simple%20Voltammetric%20Determination%20of%20Iron%20in%20Ethanol%20and%20Biodiesel%20Using%20a%20Bismuth%20Film%20Coated%20Glassy%20Carbon%20Electrode.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9179/4/Simple%20Voltammetric%20Determination%20of%20Iron%20in%20Ethanol%20and%20Biodiesel%20Using%20a%20Bismuth%20Film%20Coated%20Glassy%20Carbon%20Electrode.pdf.jpg
bitstream.checksum.fl_str_mv c67483c78eaed9626843fafb5a72541b
e30e9215131d99561d40d6b0abbe9bad
94c5e077f1a0884107b59549320b7374
324ef90ef68f794ef8b747a6b5933ad6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400179817086976
spelling Almeida, Joseanyede9a45a5d1fd29351fc12b8bf2107ff600P. Ribeiro, Ana Beatrizae59c9fddbdf814f7868ee046f7bcea1Toloza Toloza, Carlos3071dda13ce06e1b3640c7739658eed3600Braga Alves, Ismael Carlosc8aa14f3a0d760c5ff6f68a06f426283600N. Santos, José Ribamar5824c3c3a83682c85e0bf353cd5f3038Martiniano de Azevedo, Lorena11c71c591ae7d695ad1c1f2bcd95fb3b600Q. Aucélio, Ricardodc44953829f6975f6791646dc4a39e1fB. Marques, Aldaléa L.f339a7eabec61aedbc389468ff962eb22022-05-18T15:47:35Z2023-03-282022-05-18T15:47:35Z2022-03-280003-2719https://hdl.handle.net/11323/9179https://doi.org/10.1080/00032719.2022.205370110.1080/00032719.2022.20537011532-236XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Square-wave adsorptive stripping voltammetry (SWAdSV) was used to determine iron in ethanol and biodiesel using a bismuth-film electrode (BiFE) prepared onto the surface of a glassy carbon electrode (GCE) by electrochemical deposition to promote the reduction of Fe (III) previously complexed with 1-(2-pyridylazo)-2-naphthol (PAN) directly in the electrochemical cell. The supporting electrolyte was composed by mixture of acetate buffer (0.1 mol L−1, pH 4.5) and ethanol (40/60% v/v) into which 500 µL of a 0.1 mmol L−1 stock solution of PAN was added as complexing agent. The Fe (III)-PAN complex presented a well-defined current peak at −0.7 V. For biodiesel, a treatment with tetramethylammonium hydroxide (TMAH) was proposed as an efficient mean to minimized matrix interferences. A limit of detection of 6.0 × 10−8 mol L−1 (0.06 µmol L−1) and limit of quantification of 2.0 × 10−7 mol L−1 (0.2 µmol L−1) were obtained for Fe(III). Under the optimized conditions, there were no significant interferences from Cu(II), Al(III), Mn(II), Cr(III), Cd(II), Zn(II) and Ni(II) and Pb(II) while Ni(II) interfered significantly. The analytical curves produced linear responses with equations I (µA) = (-1.315 × 10−7 ± 5.158 × 10−8) + (-0.238 ± 0.01) [Fe (III)] (µmol L−1), R2 = 0.992 and I (µA) = (-6.836 × 10−7 ± 1.124 × 10−8) + (-0.408 ± 0.013) [Fe (III)] (µmol L−1), R2=0.998 for pure ethanol and biodiesel, respectively. The method produced satisfactory results in quantifying original quantities of Fe(III) in fuel ethanol (5.65 ± 0.71 µmol L−1) and biodiesel (1.28 ± 0.25 µmol L−1) at a 95% confidence limit (n = 3).22 páginasapplication/pdfengTaylor and Francis Ltd.United StatesAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)©2022 Taylor & Francis Group, LLChttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfSimple voltammetric determination of iron in ethanol and biodiesel using a bismuth film coated glassy carbon electrodeArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.tandfonline.com/doi/full/10.1080/00032719.2022.2053701Analytical Letters1. Almeida, J. M. S., R. M. Dornellas, S. Yotsumoto-Neto, M. Ghisi, J. G. C. Furtado, E. P. Marques, R. Q. Aucélio, and A. L. B. Marques. 2014. A simple electroanalytical procedure for the determination of calcium in biodiesel. Fuel 115:658–65. doi:https://doi.org/10.1016/j.fuel.2013.07.088.2. Alves, V. N., R. Mosquetta, N. M. M. Coelho, J. N. Bianchin, K. C. P. Roux, E. Martendal, and E. Carasek. 2010. Determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line system coupled to FAAS. Talanta 80 (3):1133–8. doi:https://doi.org/10.1016/j.talanta.2009.08.040.3. Amais, R. S., E. E. Garcia, M. R. Monteiro, A. R. A. Nogueira, and J. A. Nóbrega. 2010. Direct analysis of biodiesel microemulsions using an inductively coupled plasma mass spectrometry. Microchemical Journal 96 (1):146–50. doi:https://doi.org/10.1016/j.microc.2010.02.017.4. Asan, A., R. Aydin, D. K. Semiz, V. Erci, and I. Isildak. 2013. A very sensitive flow-injection spectrophotometric determination method for iron (II) and total iron using 2', 3, 4', 5, 7-pentahydroxyflavone. Environmental Monitoring and Assessment 185 (3):2115–21. doi:https://doi.org/10.1007/s10661-012-2693-y.5. ASTM. 2011. Standard specification for denatured fuel ethanol for blending with gasolines for use as automotive spark-ignition engine fuel. ASTM D4806.6. ASTM. 2020. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM D6751, Revision 20A, August 1.7. Bae, J.-H., H.-S. Jun, and H.-Y. Jang. 1993. Voltammetric determination of Cu (II) ion at a chemically modified carbon-paste electrode containing l-(2-pyridylazo)-2-naphthol. Journal of the Korean Chemical Society 37 (8):723–9. ISSN: 1017-2548/2234-8530.8. Bobrowski, A., K. Nowak, and J. Zarebski. 2005. Application of a bismuth film electrode to the voltammetric determination of trace iron using a Fe(III)-TEA-BrO3- catalytic system. Analytical and Bioanalytical Chemistry 382 (7):1691–7. doi:https://doi.org/10.1007/s00216-005-3313-2.9. BRASIL, Resolution ANP n. 19, of 15/04/2015. 2015. Establishes the minimum specifications to be observed for commercialization of ethanol fuel in whole Brazilian territory.10. BS EN 14214:2012 + A2:2019. 2019. Liquid petroleum products. Fatty acid methyl esters (FAME) for use in diesel engines and heating applications. Requirements and test methods.11. Croot, P. L, and M. Johansson. 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-thiazolylazo)-p-cresol (TAC). Electroanalysis 12 (8):565–76. doi:https://doi.org/10.1002/(SICI)1521-4109(200005)12:8<565::AID-ELAN565>3.0.CO;2-L. [Crossref], [Web of Science ®],12. De Quadros, D. P. C., E. S. Chaves, J. S. A. Silva, L. S. G. Teixeira, A. J. Curtius, and P. A. Pereira. 2011. Contaminantes em biodiesel e controle de qualidade. Revista Virtual de Química 3 (5):376–384. doi. https://doi.org/10.5935/1984-6835.20110042.13. Divjak, B., M. Franko, and M. Novic. 1998. Determination of iron in complex matrices by ion chromatography with UV-Vis, thermal lens and amperometric detection using post-column reagents. Journal of Chromatography A 829 (1–2):167–74. doi:https://doi.org/10.1016/S0021-9673(98)00837-1.14. do Prado, F. S. R. 2014. Preparação, caracterização e testes de eletrodo modificado com filme de bismuto para aplaicação na análise voltamétrica de metais pesados. São Carlos – São Paulo: Universidade de São Paulo, Instituto de Química de São Carlos.15. Dong, K. L., L. Kryger, J. K. Christensen, and K. N. Thomsen. 1991. Preconcentration and determination of Bismuth (III) at a chemically modified electrode containing 1-(2-pyridylazo)-2-naphthol. Talanta 38 (1):101–5. doi:https://doi.org/10.1016/0039-9140(91)80015-R.16. Doyle, A., A. Saavedra, M. L. B. Tristão, and R. Q. Aucelio. 2015. Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate. Fuel 162:39–46. doi:https://doi.org/10.1016/j.fuel.2015.08.072.17. Figueiredo-Filho, L. C., B. Janegitz, O. Fatibelilo-Filho, L. H. Marcolino-Junior, and C. Banks. 2013. Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry. Analytical Methods.5 (1):202–7. doi:https://doi.org/10.1039/C2AY26078F.18. Ghisi, M., E. S. Chaves, D. P. Quadros, E. P. Marques, A. J. Curtius, and A. L. B. Marques. 2011. Simple method for the determination of Cu and Fe by electrothermal atomic absorption spectrometry in biodiesel treated with tetramethylammonium hydroxide. Microchemical Journal 98 (1):62–5. doi:https://doi.org/10.1016/j.microc.2010.11.003.19. Ghoneim, E. M. 2010. Simultaneous determination of Mn(II), Cu(II) and Fe(III) as 2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode. Talanta 82 (2):646–52. doi:https://doi.org/10.1016/j.talanta.2010.05.025.20. Gun, J., P. Salaün, and C. M. G. Van Den Berg. 2006. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry. Analytica Chimica Acta 571 (1):86–92. doi:https://doi.org/10.1016/j.aca.2006.04.043.21. Hawkes, J. A., M. Gledhill, D. P. Connelly, and E. P. Achterberg. 2013. Characterisation of iron binding ligands in seawater by reverse titration. Analytica Chimica Acta 766:53–60. doi:https://doi.org/10.1016/j.aca.2012.12.048.22. Honeychurch, K. C., J. P. Hart, and D. C. Cowell. 2001. Voltammetric studies of lead at a 1-(2-pyridylazo)-2-naphthol modified screen-printed carbon electrode and its trace determination in water by stripping voltammetry. Analytica Chimica Acta 431 (1):89–99. doi:https://doi.org/10.1016/S0003-2670(00)01294-0.23. Hutton, E. A., S. B. Hocevar, and B. Ogorevc. 2005. Ex situ preparation of bismuth film microelectrode for use in electrochemical stripping microanalysis. Analytica Chimica Acta 537 (1–2):285–92. doi:https://doi.org/10.1016/j.aca.2005.01.040.24. Iqbal, J., W. A. Carney, S. Lacaze, and C. S. Theegala. 2010. Metals determination in biodiesel (b100) by icp-oes with microwave assisted acid digestion. The Open Analytical Chemistry Journal 4 (1):18–26. doi:https://doi.org/10.2174/1874065001004010018.25. Kamarudin, M. Z. F., S. K. Kamarudin, M. S. Masdar, and W. R. W. Daud. 2013. Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy 38 (22):9438–53. doi:https://doi.org/10.1016/j.ijhydene.2012.07.059.26. Karim-Nezhad, G., L. Saghatforoush, and S. Ershad. 2009. Simultaneous determination of copper and iron in biological samples with 1-(2-pyridylazo)-2-naphthol in anionic AOT micellar solution using derivative spectrophotometry. Asian Journal of Chemistry 21 (4):2565–72.27. Khan, M. R, and S. B. Khoo. 1998. 1-(2-Pyridylazo)-2-naphthol modified carbon paste electrode for trace cobalt (II) determination by differential pulse cathodic voltammetry. The Analyst 123 (6):1351–7. doi:https://doi.org/10.1039/a707375e.28. Khoo, S. B., M. K. Soh, Q. Cai, M. R. Khan, and S. X. Guo. 1997. Differential pulse cathodic stripping voltammetric determination of manganese (II) and manganese (VII) at the 1-(2-pyridylazo)-2-naphthol-modified carbon paste electrode. Electroanalysis 9 (1):45–51. doi:https://doi.org/10.1002/elan.1140090111.29. Korn, M. G., D. S. S. Santos, B. Welz, M. G. R. Vale, A. P. Teixeira, D. C. Lima, and S. L. C. Ferreira. 2007. Atomic spectrometric methods for the determination of metals and metalloids in automotive fuels-a review. Talanta 73 (1):1–11. doi:https://doi.org/10.1016/j.talanta.2007.03.036.30. Krolicka, A, and A. Bobrowski. 2004. Bismuth film electrode for adsorptive stripping voltammetry – electrochemical and microscopic study. Electrochemistry Communications 6 (2):99–104. doi:https://doi.org/10.1016/j.elecom.2003.10.025.31. Królicka, A., J. Zarębski, and A. Bobrowski. 2021. Catalytic adsorptive stripping voltammetric determination of germanium employing the oxidizing properties of V(IV)-HEDTA complex and bismuth-modified carbon-based electrodes. Membranes 11 (7):524–14. doi:https://doi.org/10.3390/membranes11070524.32. Lu, M, and R. G. Compton. 2013. Voltammetric determination of iron (III) in water. Electroanalysis 25 (5):1123–9. doi:https://doi.org/10.1002/elan.201200661.33. Martins, P., D. Pozebon, V. L. Dressler, and G. A. Kemieciki. 2002. Determination of trace elements in biological materials using tetramethylammonium hydroxide for sample preparation. Analytica Chimica Acta 470 (2):195–204. doi:https://doi.org/10.1016/S0003-2670(02)00767-5.34. Mattos, C. S., D. R. Carmo, M. F. Oliveira, and N. R. Stradiotto. 2008. Voltammetric determination of total iron in fuel ethanol using a 1,10 fenantroline/nafion carbon paste-modified electrode. International Journal of Electrochemical Science 3 (3):338–45. http://hdl.handle.net/11449/10145.35. Monteiro, M. R., A. R. P. Ambrozin, L. M. Lião, and A. G. Ferreira. 2008. Critical review on analytical methods for biodiesel characterization. Talanta 77 (2):593–605. doi:https://doi.org/10.1016/j.talanta.2008.07.001.36. National Petroleum Agency (Brazil), Natural Gas and Biofuels, Resolution n. 45 – DOU 26/08/2014 (nº 163, Section 1, pag. 68).37. National Petroleum Agency, Natural Gas and Biofuels (ANP)- Biodiesel: Introduction. 2021. Accessed January 30, 2021. http://www.anp.gov.br/?pg=40787&m=&t1=&t2=&t3=&t4=&ar=&ps=&cachebust=129608430655938. Obata, H, and C. M. G. Van Den Berg. 2001. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry. Analytical Chemistry 73 (11):2522–8. doi:https://doi.org/10.1021/ac001495d.39. Oliveira, M. F., V. R. Balbo, J. F. Andrade, A. A. Saczk, L. L. Okumura, and N. R. Stradiotto. 2008. Quantitative assay of copper, iron, nickel, and zinc in fuel ethanol samples by Flame Atomic Absorption Spectrometry. Chemistry and Technology of Fuels and Oils 44 (6):430–4. doi:https://doi.org/10.1007/s10553-009-0076-z.40. Quadros, D. P. C., M. Rau, M. Idrees, E. S. Chaves, A. J. Curtius, and D. L. G. Borges. 2011. A simple and fast procedure for the determination of Al, Cu, Fe and Mn in biodiesel using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 66 (5):373–7. doi:https://doi.org/10.1016/j.sab.2011.04.002.41. Rocha, M. S., M. F. Mesko, F. F. Silva, R. C. Sena, M. C. B. Quaresma, T. O. Araujo, and L. A. Reis. 2011. Determination of Cu and Fe in fuel ethanol by ICP OES using direct sample introduction by an ultrasonic nebulizer and membrane desolvator. Journal of Analytical Atomic Spectrometry 26 (2):456–61. doi:https://doi.org/10.1039/C0JA00096E.42. Rodrigues, S. S. M., A. S. Lima, L. S. G. Teixeira, M. G. A. Korn, and J. L. M. Santos. 2014. Determination of iron in biodiesel based on fluorescence quenching of CdTe quantum dots. Fuel 117 (Part A):520–7. doi:https://doi.org/10.1016/j.fuel.2013.09.045.43. Saeidi, M., R. Aboutalebi, and A. Darehkordi. 2013. A new spectrophotometric reagent for Fe (III): 2-(2,3-dihydroxy-4-oxocyclobut-2-enylidene) hydrozinecarbothiamide and its application in real samples. Journal of Chemistry 20132013 (3):1–6. doi:https://doi.org/10.1155/2013/628253.44. Santos, A. L., R. M. Takeuchi, R. A. A. Muñoz, L. Angnes, and N. R. Stradiotto. 2012. Electrochemical determination of inorganic contaminants in automotive fuels. Electroanalysis 24 (8):n/a–1691. doi:https://doi.org/10.1002/elan.201200193.45. Sarin, A., A. Rajneesh, N. P. Singh, M. Sharma, and R. K. Malhotra. 2009. Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 34 (9):1271–5. doi:https://doi.org/10.1016/j.energy.2009.05.018.46. Segura, R., M. I. Toral, and V. Arancibia. 2008. Determination of iron in water samples by adsorptive stripping voltammetry with a bismuth film electrode in the presence of 1-(2-piridylazo)-2-naphthol. Talanta 75 (4):973–7. doi:https://doi.org/10.1016/j.talanta.2007.12.038.47. Silva, J. J., L. L. Paim, and N. R. Stradiotto. 2014. Simultaneous determination of iron and copper in ethanol fuel using nafion/carbon nanotubes electrode. Electroanalysis 26 (8):1794–800. doi:https://doi.org/10.1002/elan.201400136.48. Tagliabue, S., A. Gasparoli, D. Bella, and P. Bondioli. 2005. Influence of metal contamination on biodiesel thermo-oxidation stability. Rivista Italiana delle Sostanze Grasse 82 (2):93–6.49. Tashtoush, G., M. Al-Widyan, and M. Al-Jarrah. 2004. Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management 45 (17):2697–711. doi:https://doi.org/10.1016/j.enconman.2003.12.009.50. Teixeira, L. S. G., E. S. Santos, and L. S. Nunes. 2012. Determination of copper, iron, nickel and zinc in ethanol fuel by energy dispersive X-ray fluorescence after pre-concentration on chromatography paper. Analytica Chimica Acta 722 (13):29–33. doi:https://doi.org/10.1016/j.aca.2012.02.014.51. Teixeira, L., J. Brasileiro, M. Borges Jr, P. Cordeiro, S. Rocha, and A. S. Costa. 2006. Determinação espectrofotométrica simultânea de cobre e ferro em álcool etílico combustível com reagentes derivados da ferroína. Química Nova 29 (4):741–5. doi:https://doi.org/10.1590/S0100-40422006000400020.52. Tian, Y., L. Hu, S. Han, Y. Yuan, J. Wang, and G. Xu. 2012. Electrodes with extremely high hydrogen overvoltages as substrate electrodes for stripping analysis based on bismuth-coated electrodes. Analytica Chimica Acta 738:41–4. doi:https://doi.org/10.1016/j.aca.2012.06.009.53. Tokalioglu, S., H. Buyukbas, and S. Kartal. 2006. Preconcentration of trace elements by using 1-(2-Pyridylazo)-2-naphthol functionalized Amberlite XAD-1180 resin and their determination by FAAS. Journal of the Brazilian Chemical Society 17 (1):98–106. doi:https://doi.org/10.1590/S0103-50532006000100015.54. Ugo, P., L. M. Moretto, D. Rudello, E. Birriel, and J. Chevalet. 2001. Trace iron determination by cyclic and multiple square-wave voltammetry at nafion coated electrodes. Application to pore-water analysis. Electroanalysis 13 (8–9):661–8. doi:https://doi.org/10.1002/1521-4109(200105)13:8/9<661::AID-ELAN661>3.0.CO;2-N.55. Vakh, C. S., A. V. Bulatov, A. Y. Shishov, A. V. Zabrodin, and L. N. Moskvin. 2014. Determination of silicon, phosphorus, iron and aluminum in biodiesel by multicommutated stepwise injection analysis with classical least squares method. Fuel 135:198–204. doi:https://doi.org/10.1016/j.fuel.2014.06.059.56. Viégas, H. D. C., J. M. S. Almeida, C. A. Lacerda, J. B. Silva, A. L. B. Marques, and E. P. Marques. 2017. A rapid and sensitive voltammetric determination of sulphur in biodiesel in samples no treated and treated with TMAH. Fuel 202:464–9. doi:https://doi.org/10.1016/j.fuel.2017.04.048.57. Wang, J., J. Lu, J. Hocevar, and B. Ogorevc. 2001. Bismuth-coated screen-printed electrodes for stripping voltametric measurements of trace lead. Electroanalysis 13 (1):13–6. doi:https://doi.org/10.1002/1521-4109(200101)13:1<13::AID-ELAN13>3.0.CO;2-F.58. Wang, Y., X. Wu, J. Sun, C. Wang, G. Zhu, L.-P. Bai, Z.-H. Jiang, and W. Zhang. 2022. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochemistry Communications 136 (107233):107233–6. doi:https://doi.org/10.1016/j.elecom.2022.107233.59. Yokoi, K, and C. M. G. Van Den Berg. 1992. The determination of iron in seawater using catalytic- cathodic stripping voltammetry. Electroanalysis 4 (1):65–9. doi:https://doi.org/10.1002/elan.1140040113.221Fe (III)-1-(2-piridylazo)-2-naphtholTetramethylammonium hydroxideBismuth-film electrodeSquare-wave adsorptive stripping voltammetryEthanolBiodieselORIGINALSimple Voltammetric Determination of Iron in Ethanol and Biodiesel Using a Bismuth Film Coated Glassy Carbon Electrode.pdfSimple Voltammetric Determination of Iron in Ethanol and Biodiesel Using a Bismuth Film Coated Glassy Carbon Electrode.pdfapplication/pdf2756167https://repositorio.cuc.edu.co/bitstream/11323/9179/1/Simple%20Voltammetric%20Determination%20of%20Iron%20in%20Ethanol%20and%20Biodiesel%20Using%20a%20Bismuth%20Film%20Coated%20Glassy%20Carbon%20Electrode.pdfc67483c78eaed9626843fafb5a72541bMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9179/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTSimple Voltammetric Determination of Iron in Ethanol and Biodiesel Using a Bismuth Film Coated Glassy Carbon Electrode.pdf.txtSimple Voltammetric Determination of Iron in Ethanol and Biodiesel Using a Bismuth Film Coated Glassy Carbon Electrode.pdf.txttext/plain65089https://repositorio.cuc.edu.co/bitstream/11323/9179/3/Simple%20Voltammetric%20Determination%20of%20Iron%20in%20Ethanol%20and%20Biodiesel%20Using%20a%20Bismuth%20Film%20Coated%20Glassy%20Carbon%20Electrode.pdf.txt94c5e077f1a0884107b59549320b7374MD53open accessTHUMBNAILSimple Voltammetric Determination of Iron in Ethanol and Biodiesel Using a Bismuth Film Coated Glassy Carbon Electrode.pdf.jpgSimple Voltammetric Determination of Iron in Ethanol and Biodiesel Using a Bismuth Film Coated Glassy Carbon Electrode.pdf.jpgimage/jpeg10139https://repositorio.cuc.edu.co/bitstream/11323/9179/4/Simple%20Voltammetric%20Determination%20of%20Iron%20in%20Ethanol%20and%20Biodiesel%20Using%20a%20Bismuth%20Film%20Coated%20Glassy%20Carbon%20Electrode.pdf.jpg324ef90ef68f794ef8b747a6b5933ad6MD54open access11323/9179oai:repositorio.cuc.edu.co:11323/91792023-12-14 15:55:54.817An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==0000-0003-3065-96933071dda13ce06e1b3640c7739658eed3600