Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints

The throughput of a finite-capacity queueing system is the mean number of clients served during a time interval. The COVID-19 outbreak has posed a serious challenge for many commercial establishments, including the retails, which have struggled to adapt to new working dynamics. Retails have been for...

Full description

Autores:
Calderón Ochoa, Andrés F.
Coronado-Hernandez, Jairo R.
Portnoy, Ivan
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9359
Acceso en línea:
https://hdl.handle.net/11323/9359
https://doi.org/10.1016/j.procs.2021.12.293
https://repositorio.cuc.edu.co/
Palabra clave:
Queuing theory
Jackson networks
Amazon go store
CONWIP
Throughput
COVID-19
Rights
openAccess
License
© 2021 The Authors. Published by Elsevier B.V.
id RCUC2_32d2f0a992e827ce28feeac78a34047f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9359
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
title Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
spellingShingle Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
Queuing theory
Jackson networks
Amazon go store
CONWIP
Throughput
COVID-19
title_short Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
title_full Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
title_fullStr Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
title_full_unstemmed Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
title_sort Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
dc.creator.fl_str_mv Calderón Ochoa, Andrés F.
Coronado-Hernandez, Jairo R.
Portnoy, Ivan
dc.contributor.author.spa.fl_str_mv Calderón Ochoa, Andrés F.
Coronado-Hernandez, Jairo R.
Portnoy, Ivan
dc.subject.proposal.eng.fl_str_mv Queuing theory
Jackson networks
Amazon go store
CONWIP
Throughput
COVID-19
topic Queuing theory
Jackson networks
Amazon go store
CONWIP
Throughput
COVID-19
description The throughput of a finite-capacity queueing system is the mean number of clients served during a time interval. The COVID-19 outbreak has posed a serious challenge for many commercial establishments, including the retails, which have struggled to adapt to new working dynamics. Retails have been forced to adjust their service guidelines to comply with biosecurity protocols, ensuring to observe governmental and public health policies. A significant change for the retail market has been the capacity restrictions to ensure social distancing, i.e., a limitation on the number of customers simultaneously shopping in the store. Such a constraint has an impact on the throughput that can be achieved by a retail. This article assesses the impact of the capacity restriction measures on an Amazon Go-like retail performance through a throughput analysis under COVID-19-related capacity restrictions. For the assessment, we first retrieved real data from a retail located in Cartagena, Colombia. Two scenarios were considered: i) low demand and ii) high demand. Further, we built an Amazon Go-like, two-queue, M/M/c/K retail model with a CONWIP (Constant Work-In-Process) approach, considering biosecurity-based capacity restrictions due to the COVID-19 pandemic. The R package ‘queueing’ was used to set up the model, and an algorithm was created to go over each sampling period and find the hourly optimum capacity and throughput under the dynamic conditions of both scenarios (low and high demand). Results from the performance analysis show that, for some operational conditions, the optimum maximum throughput is achieved with capacities below the biosecurity-based capacity, while for some other operational conditions the maximum throughput cannot be achieved with the restrictions, as the optimum capacity lies beyond the biosecurity-based capacity. These results suggest that the maximum capacity definition should not be static. Instead, it should be done considering the retail’s dimensions, the biosecurity policies, and the dynamic retail’s operational conditions such as the demand and service capacity.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-12T14:19:08Z
dc.date.available.none.fl_str_mv 2022-07-12T14:19:08Z
dc.date.issued.none.fl_str_mv 2022-01-26
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Andrés F. Calderón - Ochoa, Jairo R. Coronado - Hernandez, Ivan Portnoy, Throughput Analysis of an Amazon Go Retail under the COVID-19-related Capacity Constraints, Procedia Computer Science, Volume 198, 2022, Pages 602-607, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.293.
dc.identifier.issn.spa.fl_str_mv 18770509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9359
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.procs.2021.12.293
dc.identifier.doi.spa.fl_str_mv 10.1016/j.procs.2021.12.293
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Andrés F. Calderón - Ochoa, Jairo R. Coronado - Hernandez, Ivan Portnoy, Throughput Analysis of an Amazon Go Retail under the COVID-19-related Capacity Constraints, Procedia Computer Science, Volume 198, 2022, Pages 602-607, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.293.
18770509
10.1016/j.procs.2021.12.293
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9359
https://doi.org/10.1016/j.procs.2021.12.293
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Procedia Computer Science
dc.relation.references.spa.fl_str_mv [1]N. Jhala and P. Bhathawala, “Analysis and application of queuing theory in Supermarkets,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 9, p. 6, 2017, doi: 10.15680/IJIRSET.2017.0609021.
[2]R. Morabito and F. C. R. De Lima, “A markovian queueing model for the analysis of user waiting times in supermarket checkouts,” Int. J. Oper. Quant. Manag., vol. 10, no. 2, pp. 165–177, 2004.
[3]C. F. Chai, “Problem analysis and optimizing of setting service desks in supermarket based on M/M/C queuing system,” 19th Int. Conf. Ind. Eng. Eng. Manag. Assist. Technol. Ind. Eng., pp. 833–841, 2013, doi: 10.1007/978- 3-642-38391-5_88.
[4]M. OECD, “COVID-19 and the retail sector: impact and policy responses,” OECD Rep., no. June, pp. 1–7, 2020.
[5]J. Vall Castelló and G. Lopez Casasnovas, “The effect of lockdowns and infection rates on supermarket sales,” Econ. Hum. Biol., vol. 40, 2021, doi: 10.1016/j.ehb.2020.100947.
[6]T. Hepp, P. Marquart, C. Jauck, and O. Gefeller, “Effects of the Covid-19 Restrictions on Supermarket Visits in Germany,” Gesundheitswesen, vol. 83, no. 3, pp. 166–172, 2021, doi: 10.1055/a-1341-1575.
[7]F. Ying and N. O’Clery, “Modelling COVID-19 transmission in supermarkets using an agent-based model,” PLoS One, vol. 16, no. 4 April, pp. 1–13, 2021, doi: 10.1371/journal.pone.0249821.
[8] M. Qian and J. Jiang, “COVID-19 and social distancing,” Z. Gesundh. Wiss., pp. 1–3, May 2020, doi: 10.1007/s10389-020-01321-z.
[9] “¿Cómo calcular el aforo máximo por COVID-19 en el lugar de trabajo_.” .
[10]G. Cañavate, “Cómo calcular el aforo máximo por Covid19,” OTP Prevención. p. 1, 2020, [Online]. Available: https://evaluacionpsicosocial.com/como-calcular-aforo-maximo-coronavirus/.
[11] H. A. Taha and others, “INVESTIGACIÓN DE OPERACIONES 7a EDICIÓN.” Pearson Educación, 2004.
dc.relation.citationendpage.spa.fl_str_mv 607
dc.relation.citationstartpage.spa.fl_str_mv 602
dc.relation.citationvolume.spa.fl_str_mv 198
dc.rights.spa.fl_str_mv © 2021 The Authors. Published by Elsevier B.V.
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv © 2021 The Authors. Published by Elsevier B.V.
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050921025321?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9b870d40-071d-46ef-bb32-f564e9227368/download
https://repositorio.cuc.edu.co/bitstreams/d8ef02c4-baeb-4580-b01e-bf8f73c86fba/download
https://repositorio.cuc.edu.co/bitstreams/1863c636-bf16-4b85-8cdc-ceab083cd0e3/download
https://repositorio.cuc.edu.co/bitstreams/8935d9ef-e0f2-4234-9a78-559e2a48cac2/download
bitstream.checksum.fl_str_mv 22ca03574d8cd291ea1c99d0d162facd
e30e9215131d99561d40d6b0abbe9bad
1afc09625d0f5559785e6824f5b3dc50
4ca9b5b133e17d35b7b132bb3c8c079d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760773285806080
spelling Calderón Ochoa, Andrés F.Coronado-Hernandez, Jairo R.Portnoy, Ivan2022-07-12T14:19:08Z2022-07-12T14:19:08Z2022-01-26Andrés F. Calderón - Ochoa, Jairo R. Coronado - Hernandez, Ivan Portnoy, Throughput Analysis of an Amazon Go Retail under the COVID-19-related Capacity Constraints, Procedia Computer Science, Volume 198, 2022, Pages 602-607, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.293.18770509https://hdl.handle.net/11323/9359https://doi.org/10.1016/j.procs.2021.12.29310.1016/j.procs.2021.12.293Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The throughput of a finite-capacity queueing system is the mean number of clients served during a time interval. The COVID-19 outbreak has posed a serious challenge for many commercial establishments, including the retails, which have struggled to adapt to new working dynamics. Retails have been forced to adjust their service guidelines to comply with biosecurity protocols, ensuring to observe governmental and public health policies. A significant change for the retail market has been the capacity restrictions to ensure social distancing, i.e., a limitation on the number of customers simultaneously shopping in the store. Such a constraint has an impact on the throughput that can be achieved by a retail. This article assesses the impact of the capacity restriction measures on an Amazon Go-like retail performance through a throughput analysis under COVID-19-related capacity restrictions. For the assessment, we first retrieved real data from a retail located in Cartagena, Colombia. Two scenarios were considered: i) low demand and ii) high demand. Further, we built an Amazon Go-like, two-queue, M/M/c/K retail model with a CONWIP (Constant Work-In-Process) approach, considering biosecurity-based capacity restrictions due to the COVID-19 pandemic. The R package ‘queueing’ was used to set up the model, and an algorithm was created to go over each sampling period and find the hourly optimum capacity and throughput under the dynamic conditions of both scenarios (low and high demand). Results from the performance analysis show that, for some operational conditions, the optimum maximum throughput is achieved with capacities below the biosecurity-based capacity, while for some other operational conditions the maximum throughput cannot be achieved with the restrictions, as the optimum capacity lies beyond the biosecurity-based capacity. These results suggest that the maximum capacity definition should not be static. Instead, it should be done considering the retail’s dimensions, the biosecurity policies, and the dynamic retail’s operational conditions such as the demand and service capacity.6 páginasapplication/pdfengElsevier BVNetherlands© 2021 The Authors. Published by Elsevier B.V.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraintsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1877050921025321?via%3DihubProcedia Computer Science[1]N. Jhala and P. Bhathawala, “Analysis and application of queuing theory in Supermarkets,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 9, p. 6, 2017, doi: 10.15680/IJIRSET.2017.0609021.[2]R. Morabito and F. C. R. De Lima, “A markovian queueing model for the analysis of user waiting times in supermarket checkouts,” Int. J. Oper. Quant. Manag., vol. 10, no. 2, pp. 165–177, 2004.[3]C. F. Chai, “Problem analysis and optimizing of setting service desks in supermarket based on M/M/C queuing system,” 19th Int. Conf. Ind. Eng. Eng. Manag. Assist. Technol. Ind. Eng., pp. 833–841, 2013, doi: 10.1007/978- 3-642-38391-5_88.[4]M. OECD, “COVID-19 and the retail sector: impact and policy responses,” OECD Rep., no. June, pp. 1–7, 2020.[5]J. Vall Castelló and G. Lopez Casasnovas, “The effect of lockdowns and infection rates on supermarket sales,” Econ. Hum. Biol., vol. 40, 2021, doi: 10.1016/j.ehb.2020.100947.[6]T. Hepp, P. Marquart, C. Jauck, and O. Gefeller, “Effects of the Covid-19 Restrictions on Supermarket Visits in Germany,” Gesundheitswesen, vol. 83, no. 3, pp. 166–172, 2021, doi: 10.1055/a-1341-1575.[7]F. Ying and N. O’Clery, “Modelling COVID-19 transmission in supermarkets using an agent-based model,” PLoS One, vol. 16, no. 4 April, pp. 1–13, 2021, doi: 10.1371/journal.pone.0249821.[8] M. Qian and J. Jiang, “COVID-19 and social distancing,” Z. Gesundh. Wiss., pp. 1–3, May 2020, doi: 10.1007/s10389-020-01321-z.[9] “¿Cómo calcular el aforo máximo por COVID-19 en el lugar de trabajo_.” .[10]G. Cañavate, “Cómo calcular el aforo máximo por Covid19,” OTP Prevención. p. 1, 2020, [Online]. Available: https://evaluacionpsicosocial.com/como-calcular-aforo-maximo-coronavirus/.[11] H. A. Taha and others, “INVESTIGACIÓN DE OPERACIONES 7a EDICIÓN.” Pearson Educación, 2004.607602198Queuing theoryJackson networksAmazon go storeCONWIPThroughputCOVID-19PublicationORIGINAL1-s2.0-S1877050921025321-main.pdf1-s2.0-S1877050921025321-main.pdfapplication/pdf729823https://repositorio.cuc.edu.co/bitstreams/9b870d40-071d-46ef-bb32-f564e9227368/download22ca03574d8cd291ea1c99d0d162facdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d8ef02c4-baeb-4580-b01e-bf8f73c86fba/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1877050921025321-main.pdf.txt1-s2.0-S1877050921025321-main.pdf.txttext/plain29759https://repositorio.cuc.edu.co/bitstreams/1863c636-bf16-4b85-8cdc-ceab083cd0e3/download1afc09625d0f5559785e6824f5b3dc50MD53THUMBNAIL1-s2.0-S1877050921025321-main.pdf.jpg1-s2.0-S1877050921025321-main.pdf.jpgimage/jpeg13646https://repositorio.cuc.edu.co/bitstreams/8935d9ef-e0f2-4234-9a78-559e2a48cac2/download4ca9b5b133e17d35b7b132bb3c8c079dMD5411323/9359oai:repositorio.cuc.edu.co:11323/93592024-09-17 11:05:21.242https://creativecommons.org/licenses/by/4.0/© 2021 The Authors. Published by Elsevier B.V.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==