Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints
The throughput of a finite-capacity queueing system is the mean number of clients served during a time interval. The COVID-19 outbreak has posed a serious challenge for many commercial establishments, including the retails, which have struggled to adapt to new working dynamics. Retails have been for...
- Autores:
-
Calderón Ochoa, Andrés F.
Coronado-Hernandez, Jairo R.
Portnoy, Ivan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9359
- Acceso en línea:
- https://hdl.handle.net/11323/9359
https://doi.org/10.1016/j.procs.2021.12.293
https://repositorio.cuc.edu.co/
- Palabra clave:
- Queuing theory
Jackson networks
Amazon go store
CONWIP
Throughput
COVID-19
- Rights
- openAccess
- License
- © 2021 The Authors. Published by Elsevier B.V.
id |
RCUC2_32d2f0a992e827ce28feeac78a34047f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9359 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
title |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
spellingShingle |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints Queuing theory Jackson networks Amazon go store CONWIP Throughput COVID-19 |
title_short |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
title_full |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
title_fullStr |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
title_full_unstemmed |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
title_sort |
Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraints |
dc.creator.fl_str_mv |
Calderón Ochoa, Andrés F. Coronado-Hernandez, Jairo R. Portnoy, Ivan |
dc.contributor.author.spa.fl_str_mv |
Calderón Ochoa, Andrés F. Coronado-Hernandez, Jairo R. Portnoy, Ivan |
dc.subject.proposal.eng.fl_str_mv |
Queuing theory Jackson networks Amazon go store CONWIP Throughput COVID-19 |
topic |
Queuing theory Jackson networks Amazon go store CONWIP Throughput COVID-19 |
description |
The throughput of a finite-capacity queueing system is the mean number of clients served during a time interval. The COVID-19 outbreak has posed a serious challenge for many commercial establishments, including the retails, which have struggled to adapt to new working dynamics. Retails have been forced to adjust their service guidelines to comply with biosecurity protocols, ensuring to observe governmental and public health policies. A significant change for the retail market has been the capacity restrictions to ensure social distancing, i.e., a limitation on the number of customers simultaneously shopping in the store. Such a constraint has an impact on the throughput that can be achieved by a retail. This article assesses the impact of the capacity restriction measures on an Amazon Go-like retail performance through a throughput analysis under COVID-19-related capacity restrictions. For the assessment, we first retrieved real data from a retail located in Cartagena, Colombia. Two scenarios were considered: i) low demand and ii) high demand. Further, we built an Amazon Go-like, two-queue, M/M/c/K retail model with a CONWIP (Constant Work-In-Process) approach, considering biosecurity-based capacity restrictions due to the COVID-19 pandemic. The R package ‘queueing’ was used to set up the model, and an algorithm was created to go over each sampling period and find the hourly optimum capacity and throughput under the dynamic conditions of both scenarios (low and high demand). Results from the performance analysis show that, for some operational conditions, the optimum maximum throughput is achieved with capacities below the biosecurity-based capacity, while for some other operational conditions the maximum throughput cannot be achieved with the restrictions, as the optimum capacity lies beyond the biosecurity-based capacity. These results suggest that the maximum capacity definition should not be static. Instead, it should be done considering the retail’s dimensions, the biosecurity policies, and the dynamic retail’s operational conditions such as the demand and service capacity. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-12T14:19:08Z |
dc.date.available.none.fl_str_mv |
2022-07-12T14:19:08Z |
dc.date.issued.none.fl_str_mv |
2022-01-26 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Andrés F. Calderón - Ochoa, Jairo R. Coronado - Hernandez, Ivan Portnoy, Throughput Analysis of an Amazon Go Retail under the COVID-19-related Capacity Constraints, Procedia Computer Science, Volume 198, 2022, Pages 602-607, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.293. |
dc.identifier.issn.spa.fl_str_mv |
18770509 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9359 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.procs.2021.12.293 |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.procs.2021.12.293 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Andrés F. Calderón - Ochoa, Jairo R. Coronado - Hernandez, Ivan Portnoy, Throughput Analysis of an Amazon Go Retail under the COVID-19-related Capacity Constraints, Procedia Computer Science, Volume 198, 2022, Pages 602-607, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.293. 18770509 10.1016/j.procs.2021.12.293 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9359 https://doi.org/10.1016/j.procs.2021.12.293 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Procedia Computer Science |
dc.relation.references.spa.fl_str_mv |
[1]N. Jhala and P. Bhathawala, “Analysis and application of queuing theory in Supermarkets,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 9, p. 6, 2017, doi: 10.15680/IJIRSET.2017.0609021. [2]R. Morabito and F. C. R. De Lima, “A markovian queueing model for the analysis of user waiting times in supermarket checkouts,” Int. J. Oper. Quant. Manag., vol. 10, no. 2, pp. 165–177, 2004. [3]C. F. Chai, “Problem analysis and optimizing of setting service desks in supermarket based on M/M/C queuing system,” 19th Int. Conf. Ind. Eng. Eng. Manag. Assist. Technol. Ind. Eng., pp. 833–841, 2013, doi: 10.1007/978- 3-642-38391-5_88. [4]M. OECD, “COVID-19 and the retail sector: impact and policy responses,” OECD Rep., no. June, pp. 1–7, 2020. [5]J. Vall Castelló and G. Lopez Casasnovas, “The effect of lockdowns and infection rates on supermarket sales,” Econ. Hum. Biol., vol. 40, 2021, doi: 10.1016/j.ehb.2020.100947. [6]T. Hepp, P. Marquart, C. Jauck, and O. Gefeller, “Effects of the Covid-19 Restrictions on Supermarket Visits in Germany,” Gesundheitswesen, vol. 83, no. 3, pp. 166–172, 2021, doi: 10.1055/a-1341-1575. [7]F. Ying and N. O’Clery, “Modelling COVID-19 transmission in supermarkets using an agent-based model,” PLoS One, vol. 16, no. 4 April, pp. 1–13, 2021, doi: 10.1371/journal.pone.0249821. [8] M. Qian and J. Jiang, “COVID-19 and social distancing,” Z. Gesundh. Wiss., pp. 1–3, May 2020, doi: 10.1007/s10389-020-01321-z. [9] “¿Cómo calcular el aforo máximo por COVID-19 en el lugar de trabajo_.” . [10]G. Cañavate, “Cómo calcular el aforo máximo por Covid19,” OTP Prevención. p. 1, 2020, [Online]. Available: https://evaluacionpsicosocial.com/como-calcular-aforo-maximo-coronavirus/. [11] H. A. Taha and others, “INVESTIGACIÓN DE OPERACIONES 7a EDICIÓN.” Pearson Educación, 2004. |
dc.relation.citationendpage.spa.fl_str_mv |
607 |
dc.relation.citationstartpage.spa.fl_str_mv |
602 |
dc.relation.citationvolume.spa.fl_str_mv |
198 |
dc.rights.spa.fl_str_mv |
© 2021 The Authors. Published by Elsevier B.V. Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2021 The Authors. Published by Elsevier B.V. Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier BV |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050921025321?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9b870d40-071d-46ef-bb32-f564e9227368/download https://repositorio.cuc.edu.co/bitstreams/d8ef02c4-baeb-4580-b01e-bf8f73c86fba/download https://repositorio.cuc.edu.co/bitstreams/1863c636-bf16-4b85-8cdc-ceab083cd0e3/download https://repositorio.cuc.edu.co/bitstreams/8935d9ef-e0f2-4234-9a78-559e2a48cac2/download |
bitstream.checksum.fl_str_mv |
22ca03574d8cd291ea1c99d0d162facd e30e9215131d99561d40d6b0abbe9bad 1afc09625d0f5559785e6824f5b3dc50 4ca9b5b133e17d35b7b132bb3c8c079d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760773285806080 |
spelling |
Calderón Ochoa, Andrés F.Coronado-Hernandez, Jairo R.Portnoy, Ivan2022-07-12T14:19:08Z2022-07-12T14:19:08Z2022-01-26Andrés F. Calderón - Ochoa, Jairo R. Coronado - Hernandez, Ivan Portnoy, Throughput Analysis of an Amazon Go Retail under the COVID-19-related Capacity Constraints, Procedia Computer Science, Volume 198, 2022, Pages 602-607, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.293.18770509https://hdl.handle.net/11323/9359https://doi.org/10.1016/j.procs.2021.12.29310.1016/j.procs.2021.12.293Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The throughput of a finite-capacity queueing system is the mean number of clients served during a time interval. The COVID-19 outbreak has posed a serious challenge for many commercial establishments, including the retails, which have struggled to adapt to new working dynamics. Retails have been forced to adjust their service guidelines to comply with biosecurity protocols, ensuring to observe governmental and public health policies. A significant change for the retail market has been the capacity restrictions to ensure social distancing, i.e., a limitation on the number of customers simultaneously shopping in the store. Such a constraint has an impact on the throughput that can be achieved by a retail. This article assesses the impact of the capacity restriction measures on an Amazon Go-like retail performance through a throughput analysis under COVID-19-related capacity restrictions. For the assessment, we first retrieved real data from a retail located in Cartagena, Colombia. Two scenarios were considered: i) low demand and ii) high demand. Further, we built an Amazon Go-like, two-queue, M/M/c/K retail model with a CONWIP (Constant Work-In-Process) approach, considering biosecurity-based capacity restrictions due to the COVID-19 pandemic. The R package ‘queueing’ was used to set up the model, and an algorithm was created to go over each sampling period and find the hourly optimum capacity and throughput under the dynamic conditions of both scenarios (low and high demand). Results from the performance analysis show that, for some operational conditions, the optimum maximum throughput is achieved with capacities below the biosecurity-based capacity, while for some other operational conditions the maximum throughput cannot be achieved with the restrictions, as the optimum capacity lies beyond the biosecurity-based capacity. These results suggest that the maximum capacity definition should not be static. Instead, it should be done considering the retail’s dimensions, the biosecurity policies, and the dynamic retail’s operational conditions such as the demand and service capacity.6 páginasapplication/pdfengElsevier BVNetherlands© 2021 The Authors. Published by Elsevier B.V.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Throughput analysis of an Amazon go retail under the COVID-19-related capacity constraintsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1877050921025321?via%3DihubProcedia Computer Science[1]N. Jhala and P. Bhathawala, “Analysis and application of queuing theory in Supermarkets,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 9, p. 6, 2017, doi: 10.15680/IJIRSET.2017.0609021.[2]R. Morabito and F. C. R. De Lima, “A markovian queueing model for the analysis of user waiting times in supermarket checkouts,” Int. J. Oper. Quant. Manag., vol. 10, no. 2, pp. 165–177, 2004.[3]C. F. Chai, “Problem analysis and optimizing of setting service desks in supermarket based on M/M/C queuing system,” 19th Int. Conf. Ind. Eng. Eng. Manag. Assist. Technol. Ind. Eng., pp. 833–841, 2013, doi: 10.1007/978- 3-642-38391-5_88.[4]M. OECD, “COVID-19 and the retail sector: impact and policy responses,” OECD Rep., no. June, pp. 1–7, 2020.[5]J. Vall Castelló and G. Lopez Casasnovas, “The effect of lockdowns and infection rates on supermarket sales,” Econ. Hum. Biol., vol. 40, 2021, doi: 10.1016/j.ehb.2020.100947.[6]T. Hepp, P. Marquart, C. Jauck, and O. Gefeller, “Effects of the Covid-19 Restrictions on Supermarket Visits in Germany,” Gesundheitswesen, vol. 83, no. 3, pp. 166–172, 2021, doi: 10.1055/a-1341-1575.[7]F. Ying and N. O’Clery, “Modelling COVID-19 transmission in supermarkets using an agent-based model,” PLoS One, vol. 16, no. 4 April, pp. 1–13, 2021, doi: 10.1371/journal.pone.0249821.[8] M. Qian and J. Jiang, “COVID-19 and social distancing,” Z. Gesundh. Wiss., pp. 1–3, May 2020, doi: 10.1007/s10389-020-01321-z.[9] “¿Cómo calcular el aforo máximo por COVID-19 en el lugar de trabajo_.” .[10]G. Cañavate, “Cómo calcular el aforo máximo por Covid19,” OTP Prevención. p. 1, 2020, [Online]. Available: https://evaluacionpsicosocial.com/como-calcular-aforo-maximo-coronavirus/.[11] H. A. Taha and others, “INVESTIGACIÓN DE OPERACIONES 7a EDICIÓN.” Pearson Educación, 2004.607602198Queuing theoryJackson networksAmazon go storeCONWIPThroughputCOVID-19PublicationORIGINAL1-s2.0-S1877050921025321-main.pdf1-s2.0-S1877050921025321-main.pdfapplication/pdf729823https://repositorio.cuc.edu.co/bitstreams/9b870d40-071d-46ef-bb32-f564e9227368/download22ca03574d8cd291ea1c99d0d162facdMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d8ef02c4-baeb-4580-b01e-bf8f73c86fba/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1877050921025321-main.pdf.txt1-s2.0-S1877050921025321-main.pdf.txttext/plain29759https://repositorio.cuc.edu.co/bitstreams/1863c636-bf16-4b85-8cdc-ceab083cd0e3/download1afc09625d0f5559785e6824f5b3dc50MD53THUMBNAIL1-s2.0-S1877050921025321-main.pdf.jpg1-s2.0-S1877050921025321-main.pdf.jpgimage/jpeg13646https://repositorio.cuc.edu.co/bitstreams/8935d9ef-e0f2-4234-9a78-559e2a48cac2/download4ca9b5b133e17d35b7b132bb3c8c079dMD5411323/9359oai:repositorio.cuc.edu.co:11323/93592024-09-17 11:05:21.242https://creativecommons.org/licenses/by/4.0/© 2021 The Authors. Published by Elsevier B.V.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |