An iris segmentation using harmony search algorithm and fast circle fitting with blob detection

Pupil and iris segmentation based on ellipsis or circle recognition are sensitive to light reflections and reflected images. The method presented here is independent of size and shape and at the same time insensitive to light reflections and reflected mirror images. The pupil detected using the algo...

Full description

Autores:
Malinowski, Kamil
Saeed, Khalid
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9341
Acceso en línea:
https://hdl.handle.net/11323/9341
https://repositorio.cuc.edu.co/
Palabra clave:
Blob detection
Eye noise
Eye noise
Eye pupil
Imperfection
Iris segmentation
Rights
embargoedAccess
License
© Copyright 2022 Elsevier B.V., All rights reserved.
id RCUC2_32ce4c38745dbc3a892759f85ab494fa
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9341
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
title An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
spellingShingle An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
Blob detection
Eye noise
Eye noise
Eye pupil
Imperfection
Iris segmentation
title_short An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
title_full An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
title_fullStr An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
title_full_unstemmed An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
title_sort An iris segmentation using harmony search algorithm and fast circle fitting with blob detection
dc.creator.fl_str_mv Malinowski, Kamil
Saeed, Khalid
dc.contributor.author.spa.fl_str_mv Malinowski, Kamil
Saeed, Khalid
dc.subject.proposal.eng.fl_str_mv Blob detection
Eye noise
Eye noise
Eye pupil
Imperfection
Iris segmentation
topic Blob detection
Eye noise
Eye noise
Eye pupil
Imperfection
Iris segmentation
description Pupil and iris segmentation based on ellipsis or circle recognition are sensitive to light reflections and reflected images. The method presented here is independent of size and shape and at the same time insensitive to light reflections and reflected mirror images. The pupil detected using the algorithm can be a reference point to further segmentation of the sclera of the eye as well as of the iris. The method is also effective when the pupil and iris are not positioned perpendicularly to the camera eye. The algorithm’s average segmentation accuracy for all tested databases was 96% when considering only noisy and distorted images whilst a result of 100% was achieved with unblurred and clear images. The proposed method can be quickly and simply reproduced with a combination of known image processing methods. The developed algorithm for detecting the eyelid boundaries is effective with noisy and poor quality images due to the use of edge approximation using the Harmony Search Algorithm. An optimized shape detection method was used to detect the pupil and its edges. A method based on the variation and the average was used to eliminate shadows and eyelashes. The proposed scheme was tested on the UBIRIS.v1 database, MMU.v1 database and MILES databases, providing high results and short segmentation time. Segmentation accuracy for UBIRIS.v1 was 98.14%, for MMU.v1 – 90% and for MILES – 99.8%.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-07T13:29:46Z
dc.date.available.none.fl_str_mv 2022-07-07T13:29:46Z
2024-03-04
dc.date.issued.none.fl_str_mv 2022-03-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Kamil Malinowski, Khalid Saeed, An iris segmentation using harmony search algorithm and fast circle fitting with blob detection, Biocybernetics and Biomedical Engineering, Volume 42, Issue 1, 2022, Pages 391-403, ISSN 0208-5216, https://doi.org/10.1016/j.bbe.2022.02.010.
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9341
dc.identifier.doi.spa.fl_str_mv 10.1016/j.bbe.2022.02.010
dc.identifier.eissn.spa.fl_str_mv 0208-5216
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Kamil Malinowski, Khalid Saeed, An iris segmentation using harmony search algorithm and fast circle fitting with blob detection, Biocybernetics and Biomedical Engineering, Volume 42, Issue 1, 2022, Pages 391-403, ISSN 0208-5216, https://doi.org/10.1016/j.bbe.2022.02.010.
10.1016/j.bbe.2022.02.010
0208-5216
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9341
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Biocybernetics and Biomedical Engineering
dc.relation.references.spa.fl_str_mv Raina, U.K., Gupta, S.K., Gupta, A., Goray, A., Saini, V. Effect of cycloplegia on optical biometry in pediatric eyes (2018) Journal of Pediatric Ophthalmology and Strabismus, 55 (4), pp. 260-265. Cited 5 times. https://www.healio.com/ophthalmology/journals/jpos/2018-7-55-4/%7B16e9d54c-61bf-4051-9e93-e000c5ea05d7%7D/effect-of-cycloplegia-on-optical-biometry-in-pediatric-eyes.pdf doi: 10.3928/01913913-20180327-05
Alizadeh, Y., Akbari, M., Moghadam, R.S., Medghalchi, A., Dourandeesh, M., Bromandpoor, F. Macular optical coherence tomography before cataract surgery (Open Access) (2021) Journal of Current Ophthalmology, 33 (3), pp. 317-322. http://www.jcurrophthalmol.org/ doi: 10.4103/joco.joco_240_20
Proença, H., Alexandre, L.A. UBIRIS: A noisy iris image database (Open Access) (2005) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3617 LNCS, pp. 970-977. Cited 367 times. https://www.springer.com/series/558 ISBN: 3540288694; 978-354028869-5 doi: 10.1007/11553595_119
(2013) MMU. MMU Iris Database.
MILES Iris Dataset, Accessed: 2021-06-01. https://drive.google.com/drive/folders/0B5OBp4zckpLnU3YxMnozSGhGelE
Sundaram, R., Ravichandran, K.S., Jayaraman, P., Venkatraman, B. Extraction of blood vessels in fundus images of retina through hybrid segmentation approach (Open Access) (2019) Mathematics, 7 (2), art. no. 169. Cited 18 times. https://www.mdpi.com/2227-7390/7/2/169/pdf doi: 10.3390/math7020169
Sadikoglu, F., Uzelaltinbulat, S. Biometric Retina Identification Based on Neural Network (Open Access) (2016) Procedia Computer Science, 102, pp. 26-33. Cited 31 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2016.09.365
Meng, X.J., Yin, Y.L., Yang, G.P., Xi, X.M. Retinal identification based on an improved circular gabor filter and scale invariant feature transform (Open Access) (2013) Sensors (Switzerland), 13 (7), pp. 9248-9266. Cited 35 times. http://www.mdpi.com/1424-8220/13/7/9248/pdf doi: 10.3390/s130709248
Borah, T.R., Sarma, K.K., Talukdar, P. Retina and fingerprint based biometric identification system (2013) Int J Comput Appl (IJCA), 74. Cited 8 times.
Ortega, M., Penedo, M.G., Rouco, J., Barreira, N., Carreira, M.J. Retinal verification using a feature points-based biometric pattern (Open Access) (2009) Eurasip Journal on Advances in Signal Processing, 2009, art. no. 235746. Cited 61 times. doi: 10.1155/2009/235746
Abdelwahed, H., Hashim, A., Hasan, A. Segmentation approach for a noisy iris images based on hybrid techniques (2020) Eng Technol J, 38 (11), pp. 1684-1691. Cited 4 times.
Rapaka, S., Rajesh Kumar, P., Katta, M., Lakshminarayana, K., Bhupesh Kumar, N. A new segmentation method for non-ideal iris images using morphological reconstruction FCM based on improved DSA (Open Access) (2021) SN Applied Sciences, 3 (1), art. no. 53. Cited 5 times. springer.com/snas doi: 10.1007/s42452-020-04110-1
Varkarakis, V., Bazrafkan, S., Corcoran, P. Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets (Open Access) (2020) Neural Networks, 121, pp. 101-121. Cited 22 times. www.elsevier.com/locate/neunet doi: 10.1016/j.neunet.2019.07.020
Jan, F., Min-Allah, N. An effective iris segmentation scheme for noisy images (2020) Biocybernetics and Biomedical Engineering, 40 (3), pp. 1064-1080. Cited 6 times. http://www.sciencedirect.com/science/journal/02085216 doi: 10.1016/j.bbe.2020.06.002
Hao, K., Feng, G., Ren, Y., Zhang, X. Iris Segmentation Using Feature Channel Optimization for Noisy Environments (2020) Cognitive Computation, 12 (6), pp. 1205-1216. Cited 3 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-020-09759-9
Sahmoud, S., Fathee, H.N. Fast Iris Segmentation Algorithm for Visible Wavelength Images Based on Multi-color Space (2020) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12002 LNCS, pp. 239-250. Cited 2 times. https://www.springer.com/series/558 ISBN: 978-303040604-2 doi: 10.1007/978-3-030-40605-9_21
Kheirolahy, R., Ebrahimnezhad, H., Sedaaghi, M. Robust pupil boundary detection by optimized color mapping for iris recognition (2009) 2009 14th International CSI Computer Conference, CSICC 2009, art. no. 5349260, pp. 170-175. Cited 4 times. ISBN: 978-142444262-1 doi: 10.1109/CSICC.2009.5349260
Lee, S., Lee, D., Park, Y. Pupil segmentation using orientation fields, radial non-maximal suppression and elliptic approximation (Open Access) (2019) Advances in Electrical and Computer Engineering, 19 (2), pp. 69-74. Cited 3 times. http://www.aece.ro/displaypdf.php?year=2019&number=2&article=9 doi: 10.4316/aece.2019.02009
Omran, M., Alshemmary, E.N. An Iris Recognition System Using Deep convolutional Neural Network (Open Access) (2020) Journal of Physics: Conference Series, 1530 (1), art. no. 012159. Cited 9 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1530/1/012159
Şimşek, İ.B., Şirolu, C. Analysis of surgical outcome after upper eyelid surgery by computer vision algorithm using face and facial landmark detection (2021) Graefe's Arch Clin Exp Ophthalmol, pp. 1-7. Cited 2 times.
Jalilian, E., Karakaya, M., Uhl, A. CNN-based off-angle iris segmentation and recognition (2021) IET Biom, 10 (5), pp. 518-535. Cited 2 times.
Jan, F., Min-Allah, N., Agha, S., Usman, I., Khan, I. A robust iris localization scheme for the iris recognition (2021) Multimedia Tools Appl, 80 (3), pp. 4579-4605. Cited 4 times.
Sardar, M., Banerjee, S., Mitra, S. Iris Segmentation Using Interactive Deep Learning (Open Access) (2020) IEEE Access, 8, art. no. 9274419, pp. 219322-219330. Cited 3 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3041519
Jan, F., Alrashed, S., Min-Allah, N. Iris segmentation for non-ideal Iris biometric systems (2021) Multimedia Tools and Applications. Cited 5 times. https://link.springer.com/journal/11042 doi: 10.1007/s11042-021-11075-9
Li, Y.-H., Huang, P.-J., Juan, Y. An Efficient and Robust Iris Segmentation Algorithm Using Deep Learning (Open Access) (2019) Mobile Information Systems, 2019, art. no. 4568929. Cited 22 times. http://www.hindawi.com/journals/misy/contents/ doi: 10.1155/2019/4568929
Horn, B., Klaus, B., Horn, P. Robot vision (1986) . Cited 2995 times. MIT press
Faugeras, O., Faugeras, O.A. Three-dimensional computer vision: a geometric viewpoint (1993) . Cited 3218 times. MIT press
(1950) Mathematische Zeitschrift, 53 (3), pp. 210-218. Cited 57 times. doi: 10.1007/BF01175656
Suzuki, S., be, K. Topological structural analysis of digitized binary images by border following (1985) Computer Vision, Graphics and Image Processing, 30 (1), pp. 32-46. Cited 1593 times. doi: 10.1016/0734-189X(85)90016-7
Sklansky, J. Finding the convex hull of a simple polygon (1982) Pattern Recognition Letters, 1 (2), pp. 79-83. Cited 158 times. doi: 10.1016/0167-8655(82)90016-2
Otsu, Nobuyuki THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. (1979) IEEE Trans Syst Man Cybern, SMC-9 (1), pp. 62-66. Cited 27222 times. doi: 10.1109/tsmc.1979.4310076
Davies, E.R. Computer and machine vision: theory, algorithms, practicalities (2012) . Cited 800 times. Academic Press
Atherton, T.J., Kerbyson, D.J. Size invariant circle detection (1999) Image and Vision Computing, 17 (11), pp. 795-803. Cited 388 times. https://www.journals.elsevier.com/image-and-vision-computing doi: 10.1016/s0262-8856(98)00160-7
Zhang, C., Huber, F., Knop, M., Hamprecht, F.A. Yeast cell detection and segmentation in bright field microscopy (2014) 2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014, art. no. 6868107, pp. 1267-1270. Cited 10 times. ISBN: 978-146731959-1 doi: 10.1109/isbi.2014.6868107
Al-Sharadqah, A., Chernov, N. Error analysis for circle fitting algorithms (Open Access) (2009) Electronic Journal of Statistics, 3, pp. 886-911. Cited 141 times. doi: 10.1214/09-EJS419
Tahir, A.A.K., Anghelus, S. An accurate and fast method for eyelid detection (2020) International Journal of Biometrics, 12 (2), pp. 163-178. http://www.inderscience.com/ijbm doi: 10.1504/IJBM.2020.107715
Ak, T.A., Steluta, A. An iris recognition system using a new method of iris localization (2021) Int J Open Inf Technol, 9 (7), pp. 67-76.
Geem, Z.W., Kim, J.H., Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search (2001) Simulation, 76 (2), pp. 60-68. Cited 4470 times. doi: 10.1177/003754970107600201
Nadia, B., Abdessalam, B., Mohamed, B. Eyelids, eyelashes detection algorithm and houghtransform method for noise removal in iris recognition (Open Access) (2020) Indonesian Journal of Electrical Engineering and Computer Science, 18 (2), pp. 731-735. Cited 2 times. http://ijeecs.iaescore.com/index.php/IJEECS/article/view/20954/13720 doi: 10.11591/ijeecs.v18.i2.pp731-735
Liu, C.-C., Chung, P.-C., Lyu, C.-M., Liu, J., Yu, S.-S. A novel iris segmentation scheme (Open Access) (2014) Mathematical Problems in Engineering, 2014, art. no. 684212. Cited 6 times. http://www.hindawi.com/journals/mpe/contents.html doi: 10.1155/2014/684212
Horng, M.-H. Performance evaluation of multiple classification of the ultrasonic supraspinatus images by using ML, RBFNN and SVM classifiers (2010) Expert Systems with Applications, 37 (6), pp. 4146-4155. Cited 27 times. doi: 10.1016/j.eswa.2009.11.008
dc.relation.citationendpage.spa.fl_str_mv 403
dc.relation.citationstartpage.spa.fl_str_mv 391
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 42
dc.rights.spa.fl_str_mv © Copyright 2022 Elsevier B.V., All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © Copyright 2022 Elsevier B.V., All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Sp. z o.o.
dc.publisher.place.spa.fl_str_mv Poland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0208521622000134#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f08b2eab-3103-430c-b0a7-fd4c7cb5abb3/download
https://repositorio.cuc.edu.co/bitstreams/d8907dfd-18fd-4021-bc31-dfb7a3420e64/download
https://repositorio.cuc.edu.co/bitstreams/8a6131a2-d5b3-42e1-8886-8311663ce192/download
https://repositorio.cuc.edu.co/bitstreams/d6c864b0-0384-4482-8e04-58812c75e345/download
bitstream.checksum.fl_str_mv 13ef9880344b3afc75ccd6749cf5e3e5
e30e9215131d99561d40d6b0abbe9bad
03de126ccb9aeefae007cf359f35e5dc
9d12fce93e49472de039804c708949bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760773239668736
spelling Malinowski, KamilSaeed, Khalid2022-07-07T13:29:46Z2024-03-042022-07-07T13:29:46Z2022-03-04Kamil Malinowski, Khalid Saeed, An iris segmentation using harmony search algorithm and fast circle fitting with blob detection, Biocybernetics and Biomedical Engineering, Volume 42, Issue 1, 2022, Pages 391-403, ISSN 0208-5216, https://doi.org/10.1016/j.bbe.2022.02.010.https://hdl.handle.net/11323/934110.1016/j.bbe.2022.02.0100208-5216Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Pupil and iris segmentation based on ellipsis or circle recognition are sensitive to light reflections and reflected images. The method presented here is independent of size and shape and at the same time insensitive to light reflections and reflected mirror images. The pupil detected using the algorithm can be a reference point to further segmentation of the sclera of the eye as well as of the iris. The method is also effective when the pupil and iris are not positioned perpendicularly to the camera eye. The algorithm’s average segmentation accuracy for all tested databases was 96% when considering only noisy and distorted images whilst a result of 100% was achieved with unblurred and clear images. The proposed method can be quickly and simply reproduced with a combination of known image processing methods. The developed algorithm for detecting the eyelid boundaries is effective with noisy and poor quality images due to the use of edge approximation using the Harmony Search Algorithm. An optimized shape detection method was used to detect the pupil and its edges. A method based on the variation and the average was used to eliminate shadows and eyelashes. The proposed scheme was tested on the UBIRIS.v1 database, MMU.v1 database and MILES databases, providing high results and short segmentation time. Segmentation accuracy for UBIRIS.v1 was 98.14%, for MMU.v1 – 90% and for MILES – 99.8%.13 páginasapplication/pdfengElsevier Sp. z o.o.Poland© Copyright 2022 Elsevier B.V., All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAn iris segmentation using harmony search algorithm and fast circle fitting with blob detectionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S0208521622000134#!Biocybernetics and Biomedical EngineeringRaina, U.K., Gupta, S.K., Gupta, A., Goray, A., Saini, V. Effect of cycloplegia on optical biometry in pediatric eyes (2018) Journal of Pediatric Ophthalmology and Strabismus, 55 (4), pp. 260-265. Cited 5 times. https://www.healio.com/ophthalmology/journals/jpos/2018-7-55-4/%7B16e9d54c-61bf-4051-9e93-e000c5ea05d7%7D/effect-of-cycloplegia-on-optical-biometry-in-pediatric-eyes.pdf doi: 10.3928/01913913-20180327-05Alizadeh, Y., Akbari, M., Moghadam, R.S., Medghalchi, A., Dourandeesh, M., Bromandpoor, F. Macular optical coherence tomography before cataract surgery (Open Access) (2021) Journal of Current Ophthalmology, 33 (3), pp. 317-322. http://www.jcurrophthalmol.org/ doi: 10.4103/joco.joco_240_20Proença, H., Alexandre, L.A. UBIRIS: A noisy iris image database (Open Access) (2005) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3617 LNCS, pp. 970-977. Cited 367 times. https://www.springer.com/series/558 ISBN: 3540288694; 978-354028869-5 doi: 10.1007/11553595_119(2013) MMU. MMU Iris Database.MILES Iris Dataset, Accessed: 2021-06-01. https://drive.google.com/drive/folders/0B5OBp4zckpLnU3YxMnozSGhGelESundaram, R., Ravichandran, K.S., Jayaraman, P., Venkatraman, B. Extraction of blood vessels in fundus images of retina through hybrid segmentation approach (Open Access) (2019) Mathematics, 7 (2), art. no. 169. Cited 18 times. https://www.mdpi.com/2227-7390/7/2/169/pdf doi: 10.3390/math7020169Sadikoglu, F., Uzelaltinbulat, S. Biometric Retina Identification Based on Neural Network (Open Access) (2016) Procedia Computer Science, 102, pp. 26-33. Cited 31 times. http://www.sciencedirect.com/science/journal/18770509 doi: 10.1016/j.procs.2016.09.365Meng, X.J., Yin, Y.L., Yang, G.P., Xi, X.M. Retinal identification based on an improved circular gabor filter and scale invariant feature transform (Open Access) (2013) Sensors (Switzerland), 13 (7), pp. 9248-9266. Cited 35 times. http://www.mdpi.com/1424-8220/13/7/9248/pdf doi: 10.3390/s130709248Borah, T.R., Sarma, K.K., Talukdar, P. Retina and fingerprint based biometric identification system (2013) Int J Comput Appl (IJCA), 74. Cited 8 times.Ortega, M., Penedo, M.G., Rouco, J., Barreira, N., Carreira, M.J. Retinal verification using a feature points-based biometric pattern (Open Access) (2009) Eurasip Journal on Advances in Signal Processing, 2009, art. no. 235746. Cited 61 times. doi: 10.1155/2009/235746Abdelwahed, H., Hashim, A., Hasan, A. Segmentation approach for a noisy iris images based on hybrid techniques (2020) Eng Technol J, 38 (11), pp. 1684-1691. Cited 4 times.Rapaka, S., Rajesh Kumar, P., Katta, M., Lakshminarayana, K., Bhupesh Kumar, N. A new segmentation method for non-ideal iris images using morphological reconstruction FCM based on improved DSA (Open Access) (2021) SN Applied Sciences, 3 (1), art. no. 53. Cited 5 times. springer.com/snas doi: 10.1007/s42452-020-04110-1Varkarakis, V., Bazrafkan, S., Corcoran, P. Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets (Open Access) (2020) Neural Networks, 121, pp. 101-121. Cited 22 times. www.elsevier.com/locate/neunet doi: 10.1016/j.neunet.2019.07.020Jan, F., Min-Allah, N. An effective iris segmentation scheme for noisy images (2020) Biocybernetics and Biomedical Engineering, 40 (3), pp. 1064-1080. Cited 6 times. http://www.sciencedirect.com/science/journal/02085216 doi: 10.1016/j.bbe.2020.06.002Hao, K., Feng, G., Ren, Y., Zhang, X. Iris Segmentation Using Feature Channel Optimization for Noisy Environments (2020) Cognitive Computation, 12 (6), pp. 1205-1216. Cited 3 times. http://www.springer.com/biomed/neuroscience/journal/12559 doi: 10.1007/s12559-020-09759-9Sahmoud, S., Fathee, H.N. Fast Iris Segmentation Algorithm for Visible Wavelength Images Based on Multi-color Space (2020) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12002 LNCS, pp. 239-250. Cited 2 times. https://www.springer.com/series/558 ISBN: 978-303040604-2 doi: 10.1007/978-3-030-40605-9_21Kheirolahy, R., Ebrahimnezhad, H., Sedaaghi, M. Robust pupil boundary detection by optimized color mapping for iris recognition (2009) 2009 14th International CSI Computer Conference, CSICC 2009, art. no. 5349260, pp. 170-175. Cited 4 times. ISBN: 978-142444262-1 doi: 10.1109/CSICC.2009.5349260Lee, S., Lee, D., Park, Y. Pupil segmentation using orientation fields, radial non-maximal suppression and elliptic approximation (Open Access) (2019) Advances in Electrical and Computer Engineering, 19 (2), pp. 69-74. Cited 3 times. http://www.aece.ro/displaypdf.php?year=2019&number=2&article=9 doi: 10.4316/aece.2019.02009Omran, M., Alshemmary, E.N. An Iris Recognition System Using Deep convolutional Neural Network (Open Access) (2020) Journal of Physics: Conference Series, 1530 (1), art. no. 012159. Cited 9 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1530/1/012159Şimşek, İ.B., Şirolu, C. Analysis of surgical outcome after upper eyelid surgery by computer vision algorithm using face and facial landmark detection (2021) Graefe's Arch Clin Exp Ophthalmol, pp. 1-7. Cited 2 times.Jalilian, E., Karakaya, M., Uhl, A. CNN-based off-angle iris segmentation and recognition (2021) IET Biom, 10 (5), pp. 518-535. Cited 2 times.Jan, F., Min-Allah, N., Agha, S., Usman, I., Khan, I. A robust iris localization scheme for the iris recognition (2021) Multimedia Tools Appl, 80 (3), pp. 4579-4605. Cited 4 times.Sardar, M., Banerjee, S., Mitra, S. Iris Segmentation Using Interactive Deep Learning (Open Access) (2020) IEEE Access, 8, art. no. 9274419, pp. 219322-219330. Cited 3 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3041519Jan, F., Alrashed, S., Min-Allah, N. Iris segmentation for non-ideal Iris biometric systems (2021) Multimedia Tools and Applications. Cited 5 times. https://link.springer.com/journal/11042 doi: 10.1007/s11042-021-11075-9Li, Y.-H., Huang, P.-J., Juan, Y. An Efficient and Robust Iris Segmentation Algorithm Using Deep Learning (Open Access) (2019) Mobile Information Systems, 2019, art. no. 4568929. Cited 22 times. http://www.hindawi.com/journals/misy/contents/ doi: 10.1155/2019/4568929Horn, B., Klaus, B., Horn, P. Robot vision (1986) . Cited 2995 times. MIT pressFaugeras, O., Faugeras, O.A. Three-dimensional computer vision: a geometric viewpoint (1993) . Cited 3218 times. MIT press(1950) Mathematische Zeitschrift, 53 (3), pp. 210-218. Cited 57 times. doi: 10.1007/BF01175656Suzuki, S., be, K. Topological structural analysis of digitized binary images by border following (1985) Computer Vision, Graphics and Image Processing, 30 (1), pp. 32-46. Cited 1593 times. doi: 10.1016/0734-189X(85)90016-7Sklansky, J. Finding the convex hull of a simple polygon (1982) Pattern Recognition Letters, 1 (2), pp. 79-83. Cited 158 times. doi: 10.1016/0167-8655(82)90016-2Otsu, Nobuyuki THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS. (1979) IEEE Trans Syst Man Cybern, SMC-9 (1), pp. 62-66. Cited 27222 times. doi: 10.1109/tsmc.1979.4310076Davies, E.R. Computer and machine vision: theory, algorithms, practicalities (2012) . Cited 800 times. Academic PressAtherton, T.J., Kerbyson, D.J. Size invariant circle detection (1999) Image and Vision Computing, 17 (11), pp. 795-803. Cited 388 times. https://www.journals.elsevier.com/image-and-vision-computing doi: 10.1016/s0262-8856(98)00160-7Zhang, C., Huber, F., Knop, M., Hamprecht, F.A. Yeast cell detection and segmentation in bright field microscopy (2014) 2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014, art. no. 6868107, pp. 1267-1270. Cited 10 times. ISBN: 978-146731959-1 doi: 10.1109/isbi.2014.6868107Al-Sharadqah, A., Chernov, N. Error analysis for circle fitting algorithms (Open Access) (2009) Electronic Journal of Statistics, 3, pp. 886-911. Cited 141 times. doi: 10.1214/09-EJS419Tahir, A.A.K., Anghelus, S. An accurate and fast method for eyelid detection (2020) International Journal of Biometrics, 12 (2), pp. 163-178. http://www.inderscience.com/ijbm doi: 10.1504/IJBM.2020.107715Ak, T.A., Steluta, A. An iris recognition system using a new method of iris localization (2021) Int J Open Inf Technol, 9 (7), pp. 67-76.Geem, Z.W., Kim, J.H., Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search (2001) Simulation, 76 (2), pp. 60-68. Cited 4470 times. doi: 10.1177/003754970107600201Nadia, B., Abdessalam, B., Mohamed, B. Eyelids, eyelashes detection algorithm and houghtransform method for noise removal in iris recognition (Open Access) (2020) Indonesian Journal of Electrical Engineering and Computer Science, 18 (2), pp. 731-735. Cited 2 times. http://ijeecs.iaescore.com/index.php/IJEECS/article/view/20954/13720 doi: 10.11591/ijeecs.v18.i2.pp731-735Liu, C.-C., Chung, P.-C., Lyu, C.-M., Liu, J., Yu, S.-S. A novel iris segmentation scheme (Open Access) (2014) Mathematical Problems in Engineering, 2014, art. no. 684212. Cited 6 times. http://www.hindawi.com/journals/mpe/contents.html doi: 10.1155/2014/684212Horng, M.-H. Performance evaluation of multiple classification of the ultrasonic supraspinatus images by using ML, RBFNN and SVM classifiers (2010) Expert Systems with Applications, 37 (6), pp. 4146-4155. Cited 27 times. doi: 10.1016/j.eswa.2009.11.008403391142Blob detectionEye noiseEye noiseEye pupilImperfectionIris segmentationPublicationORIGINALAn iris segmentation using harmony search algorithm and fast circle fitting with blob detection.pdfAn iris segmentation using harmony search algorithm and fast circle fitting with blob detection.pdfapplication/pdf3148258https://repositorio.cuc.edu.co/bitstreams/f08b2eab-3103-430c-b0a7-fd4c7cb5abb3/download13ef9880344b3afc75ccd6749cf5e3e5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d8907dfd-18fd-4021-bc31-dfb7a3420e64/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTAn iris segmentation using harmony search algorithm and fast circle fitting with blob detection.pdf.txtAn iris segmentation using harmony search algorithm and fast circle fitting with blob detection.pdf.txttext/plain49477https://repositorio.cuc.edu.co/bitstreams/8a6131a2-d5b3-42e1-8886-8311663ce192/download03de126ccb9aeefae007cf359f35e5dcMD53THUMBNAILAn iris segmentation using harmony search algorithm and fast circle fitting with blob detection.pdf.jpgAn iris segmentation using harmony search algorithm and fast circle fitting with blob detection.pdf.jpgimage/jpeg14615https://repositorio.cuc.edu.co/bitstreams/d6c864b0-0384-4482-8e04-58812c75e345/download9d12fce93e49472de039804c708949bfMD5411323/9341oai:repositorio.cuc.edu.co:11323/93412024-09-17 11:05:20.17https://creativecommons.org/licenses/by-nc-nd/4.0/© Copyright 2022 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==