Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes
This study presents an investigation of a fiber-reinforced concrete (FRC) with use of fibers of polypropylene, polyvinyl alcohol, and recycled polyester in the amount of 0.50%, seeking to analyze the impact of the fiber additions on mechanical properties, drying shrinkage, and cracking. Regarding fl...
- Autores:
-
Ehrenbring, Hinoel Zamis
de Medeiros Quinino, Uziel C.
Silva Oliveira, Luis Felipe
Fonseca Tutikian, Bernardo
- Tipo de recurso:
- Technical documentation
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/2768
- Acceso en línea:
- https://hdl.handle.net/11323/2768
https://repositorio.cuc.edu.co/
- Palabra clave:
- cracking
drying shrinkage
fiber-reinforced concrete
ring test
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_3296748afd19e31e7be0a278c5e566e3 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/2768 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
title |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
spellingShingle |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes cracking drying shrinkage fiber-reinforced concrete ring test |
title_short |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
title_full |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
title_fullStr |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
title_full_unstemmed |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
title_sort |
Experimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes |
dc.creator.fl_str_mv |
Ehrenbring, Hinoel Zamis de Medeiros Quinino, Uziel C. Silva Oliveira, Luis Felipe Fonseca Tutikian, Bernardo |
dc.contributor.author.spa.fl_str_mv |
Ehrenbring, Hinoel Zamis de Medeiros Quinino, Uziel C. Silva Oliveira, Luis Felipe Fonseca Tutikian, Bernardo |
dc.subject.spa.fl_str_mv |
cracking drying shrinkage fiber-reinforced concrete ring test |
topic |
cracking drying shrinkage fiber-reinforced concrete ring test |
description |
This study presents an investigation of a fiber-reinforced concrete (FRC) with use of fibers of polypropylene, polyvinyl alcohol, and recycled polyester in the amount of 0.50%, seeking to analyze the impact of the fiber additions on mechanical properties, drying shrinkage, and cracking. Regarding flexural strength, a reduction of up to 25% of the value was observed for FRC. The residual strength of FRCs was increased values 20 times higher than the reference concrete. The addition of fibers also increased the void content of the matrices and, therefore, drying shrinkage of the reference matrix up to 74%. The fiber additions increased the internal tensile stresses of the FRC of up to 12.0 MPa. Besides the increase in resistance, the FRC presented formation cracks with openings 8 times smaller than the concrete. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-02-27T20:42:58Z |
dc.date.available.none.fl_str_mv |
2019-02-27T20:42:58Z |
dc.date.issued.none.fl_str_mv |
2019-12-08 |
dc.type.spa.fl_str_mv |
Documentación técnica |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_71bd |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/other |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_71bd |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1751-7648 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/2768 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1751-7648 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/2768 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Dawood E, Ramli M. Mechanical properties of high strength flowing concrete with hybrid fibers. Construct Build Mater. 2011;28:193–200. 2. Neville AM, Brooks JJ. Concrete technology. 3rd edn; 2013. 3. Nasir M, Al-Amoudi OSB, Maslehuddin M. Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Construct Build Mater. 2017;152:943–953. 4. Mokarem DW. Development of concrete shrinkage performance specifications [PhD dissertation]. Blacksburg, Virginia: Virginia Polytechnic Institute, State University, 2002. 5. Wittmann FH, Beltzung F, Zhao TJ. Shrinkage mechanisms, crack formation and service life of reinforced concrete structures. Int J Struct Eng. 2009;1:13–28. 6. Wang XH, Wang KJ, Bektas F. Drying shrinkage of ternary blend concrete in transportation structures. J. Sustainable C-B Mater. 2012;1:56–66. 7. Benaissa A, Morlier P, Viguier C. Fluage et retrait du béton de sable. Mater Struct. 1993;26:333–339. 8. Aly T, Sanjayan JG, Collins F. Effect of polypropylene fibers on shrinkage and cracking of concretes. Mater Struct. 2008;41:1741–1753. 9. Wan K, Li G, Wang S, Pang C. 3D full field study of drying shrinkage of foam concrete. Cement Concrete Comp. 2017;82:217–226. 10. Xie T, Fang C, Ali M, M S, Visintin P. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cement Concrete Comp. 2018;91:156–173. https://doi.org/10. 1016/j.cemconcomp.2018.05.009. 11. Hossain AB, Weiss J. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement Concrete Comp. 2004;26:531–540. 12. Banthia N, Yan C, Mindess S. Restrained shrinkage cracking in fiber reinforced concrete: A novel test technique. Cem Concr Res. 1996;26:9–14. 13. Barr B, Hoseinian SB, Be Ygi MA. Shrinkage of concrete stored in natural environments. Cement Concrete Comp. 2003;25:19–29. 14. American Society for Testing and Materials (ASTM INTERNATIONAL) C1581/C1581M-18a, Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage. West Conshohocken, PA: ASTM International;2018. www.astm.org 15. Loukili A. Etude du retrait et du fluage de bétons à ultra-hautes performances [Thèse de doctorat en Sciences appliquées]. Nantes, France: Université de Nantes; 1996. 16. Hale WM, Freyne SF, Bush TD. Properties of concrete mixtures containing slag cement and fly ash for use in transportation structures. Construct Build Mater. 2008;22:1990–2000. 17. Grasley ZC, D'Ambrosia MD. Viscoelastic properties and drying stress extracted from concrete ring tests. Cement Concrete Comp. 2011;33:171–178. 18. Dong W, Zhou X, Wu Z. A fracture mechanics-based method for prediction of cracking of circular and elliptical concrete rings under restrained shrinkage. Eng Fract Mech. 2014;131:687–701. 19. Ostertag CP, Blunt J. Effect of crack control in hybrid fiber reinforced concrete composites on corrosion rate of steel reinforcing bars. Fract Mech Concrete Concrete Struct. 2010;5:894–900. 20. Yousefieh N, Joshaghani A, Hajibandeh E, Shekarchi M. Influence of fibers on drying shrinkage in restrained concrete. Construct Build Mater. 2017; 148:833–845. https://doi.org/10.1016/j.conbuildmat.2017.05.093. 21. Naaman AE. Development and evolution of tensile strength-hardening FRC composites. BEFIB 2008: 7th International RILEM Symposium on Fiber Reinforced Concrete: Design and Applications; Chennai, India: RILEM Publications SARL; 2008 Sep 17-19; Chennai, India; 2008. p. 1-28.2008. 22. Figueiredo AD. Concreto reforçado com fibras [Thesis (professorship habilitation)]. São Paulo: Universidade de São Paulo, Escola Politécnica; 2011. 23. Hamoush S, Abu-Lebdeh T, Cummins T. Deflection behavior of concrete beams reinforced with PVA micro-fibers. Construct Build Mater. 2010;24:2285–2293. 24. Bentur A, Mindess S. Fibre reinforced cementitious composites. New York, NY: Taylor & Francis, 2007. 25. Yin S, Tuladhar R, Collister T, Combe M, Sivakugan M, Deng Z. Postcracking performance of recycled polypropylene fibre in concrete. Construct Build Mater. 2015;101:1069–1077. 26. Ehrenbring HZ. Comportamento de concretos reforçados com microfibras de polipropileno (PP), álcool polivinílico (PVA) e recicladas de poliéster (POL) em relação à retração por secagem restringida e às propriedades mecânicas [Thesis (Master's)]. São Leopoldo, Brazil: Universidade do Vale do Rio dos Sinos, Civil Engineering Graduate Program; 2017. 27. Noushini A, Samali B, Vessalas K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Construct Build Mater. 2013;49:374–383. 28. Tanesi J, Figueiredo AD. Fissuração por retração em concretos reforçados com fibras de polipropileno (CRFP). Technical Report of USP Polytechnic School, São Paulo, 239; 1999. 29. Mazzoli A, Monosi S, Plescia ES. Evaluation of the early-age shrinkage of fiber reinforced concrete (FRC) using image analysis methods. Construct Build Mater. 2015;101:596–601. 30. Bouziadi F, Boulekbache B, Hamrat M. The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures. Construct Build Mater. 2016;114:40–48. 31. ASTM, C150. Standard specification for Portland cement. West Conshohocken, PA: ASTM International, 2009. 32. ASTM, C33. Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International, 2016. 33. ASTM, C136. Standard test method for Sieve analysis of fine and coarse aggregates. West Conshohocken, PA: ASTM International, 2014. 34. ASTM, C39. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International, 2018. 35. ASTM, C1170. Standard test method for determining consistency and density of roller-compacted concrete using a vibrating table. West Conshohocken, PA: ASTM International, 2014. 36. ASTM, C1609. Standard test method for flexural performance of fiberreinforced concrete. West Conshohocken, PA: ASTM International, 2012. 37. ASTM, C642. Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken, PA: ASTM International, 2013;p. 2013. 38. Mangat PSE, Swamy RN. Compactibility of steel fibre reinforced concrete. Concrete. 1975;8:34–35. 39. Banthia N, Moncef A, Chokri K, Sheng J. Uniaxial tensile response of microfiber reinforced cement composites. Mater Struct. 1995;28:507–517. 40. Soroushian P, Elyamany H, Tlili A, Ostowari K. Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers. Cement Concrete Comp. 1998;20:67–78. 41. Li VC, Horikoshi T, Atsushi O, Torigoe S, Saito T. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite. ACI Mater J. 2004;101:242–248. https://www.concrete.org/publications/ acimaterialsjournal.aspx 42. Balaguru PN, Ramakrishnan V. Properties of fiber reinforced concrete: Workability, behavior under long-term loading, and air-void characteristics. ACI Mater J. 1988;85:189–196. 43. Li LG, Zhao ZW, Zhu J, Kwan AKH, Zeng KL. Combined effects of water film thickness and polypropylene fibre length on fresh properties of mortar. Construct Build Mater. 2018;174:586–593. 44. Gong J, Zeng W, Zhang W. Influence of shrinkage-reducing agent and polypropylene fiber on shrinkage of ceramsite concrete. Construct Build Mater. 2017;159:155–163. 45. Gao Y, Zhang J, Han P. Determination of stress relaxation parameters of concrete in tension at early-age by ring test. Construct Build Mater. 2013;41:152–164. 46. Balaguru PN, Slattum K. Test methods for durability of polymeric fibers in concrete and UV light exposure. ACI Mater J. 1995;148:115–136. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Structural Concrete |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://onlinelibrary.wiley.com/journal/17517648 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/caf48061-ba77-411b-95d6-6db12119411e/download https://repositorio.cuc.edu.co/bitstreams/66647159-045e-442b-a396-3672a7053304/download https://repositorio.cuc.edu.co/bitstreams/c0cb7e1f-be3d-447b-a078-d9073522c6d2/download https://repositorio.cuc.edu.co/bitstreams/79018f36-35aa-4c8b-be2f-83b67c1eb690/download https://repositorio.cuc.edu.co/bitstreams/812887fe-cac2-46cb-86f7-e18f7d3bd96c/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 0c1a1cef03cdd2e4a5b03c5c942da92c d08b8c33bcea36cdc25b517ad3874629 d08b8c33bcea36cdc25b517ad3874629 04335d67bae189849d9226cf2be352e9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760833966899200 |
spelling |
Ehrenbring, Hinoel Zamisde Medeiros Quinino, Uziel C.Silva Oliveira, Luis FelipeFonseca Tutikian, Bernardo2019-02-27T20:42:58Z2019-02-27T20:42:58Z2019-12-081751-7648https://hdl.handle.net/11323/2768Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study presents an investigation of a fiber-reinforced concrete (FRC) with use of fibers of polypropylene, polyvinyl alcohol, and recycled polyester in the amount of 0.50%, seeking to analyze the impact of the fiber additions on mechanical properties, drying shrinkage, and cracking. Regarding flexural strength, a reduction of up to 25% of the value was observed for FRC. The residual strength of FRCs was increased values 20 times higher than the reference concrete. The addition of fibers also increased the void content of the matrices and, therefore, drying shrinkage of the reference matrix up to 74%. The fiber additions increased the internal tensile stresses of the FRC of up to 12.0 MPa. Besides the increase in resistance, the FRC presented formation cracks with openings 8 times smaller than the concrete.Ehrenbring, Hinoel Zamis-0000-0002-0339-9825-600de Medeiros Quinino, Uziel C.-390c9732-f6bd-4bcf-bba6-5fca6e849650-0Silva Oliveira, Luis Felipe-07700f9d-e42e-4c6a-96e7-f6d927bb0372-0Fonseca Tutikian, Bernardo-0000-0003-1319-0547-600engStructural ConcreteAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2crackingdrying shrinkagefiber-reinforced concretering testExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretesDocumentación técnicahttp://purl.org/coar/resource_type/c_71bdTextinfo:eu-repo/semantics/otherhttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionhttps://onlinelibrary.wiley.com/journal/175176481. Dawood E, Ramli M. Mechanical properties of high strength flowing concrete with hybrid fibers. Construct Build Mater. 2011;28:193–200. 2. Neville AM, Brooks JJ. Concrete technology. 3rd edn; 2013. 3. Nasir M, Al-Amoudi OSB, Maslehuddin M. Effect of placement temperature and curing method on plastic shrinkage of plain and pozzolanic cement concretes under hot weather. Construct Build Mater. 2017;152:943–953. 4. Mokarem DW. Development of concrete shrinkage performance specifications [PhD dissertation]. Blacksburg, Virginia: Virginia Polytechnic Institute, State University, 2002. 5. Wittmann FH, Beltzung F, Zhao TJ. Shrinkage mechanisms, crack formation and service life of reinforced concrete structures. Int J Struct Eng. 2009;1:13–28. 6. Wang XH, Wang KJ, Bektas F. Drying shrinkage of ternary blend concrete in transportation structures. J. Sustainable C-B Mater. 2012;1:56–66. 7. Benaissa A, Morlier P, Viguier C. Fluage et retrait du béton de sable. Mater Struct. 1993;26:333–339. 8. Aly T, Sanjayan JG, Collins F. Effect of polypropylene fibers on shrinkage and cracking of concretes. Mater Struct. 2008;41:1741–1753. 9. Wan K, Li G, Wang S, Pang C. 3D full field study of drying shrinkage of foam concrete. Cement Concrete Comp. 2017;82:217–226. 10. Xie T, Fang C, Ali M, M S, Visintin P. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cement Concrete Comp. 2018;91:156–173. https://doi.org/10. 1016/j.cemconcomp.2018.05.009. 11. Hossain AB, Weiss J. Assessing residual stress development and stress relaxation in restrained concrete ring specimens. Cement Concrete Comp. 2004;26:531–540. 12. Banthia N, Yan C, Mindess S. Restrained shrinkage cracking in fiber reinforced concrete: A novel test technique. Cem Concr Res. 1996;26:9–14. 13. Barr B, Hoseinian SB, Be Ygi MA. Shrinkage of concrete stored in natural environments. Cement Concrete Comp. 2003;25:19–29. 14. American Society for Testing and Materials (ASTM INTERNATIONAL) C1581/C1581M-18a, Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage. West Conshohocken, PA: ASTM International;2018. www.astm.org 15. Loukili A. Etude du retrait et du fluage de bétons à ultra-hautes performances [Thèse de doctorat en Sciences appliquées]. Nantes, France: Université de Nantes; 1996. 16. Hale WM, Freyne SF, Bush TD. Properties of concrete mixtures containing slag cement and fly ash for use in transportation structures. Construct Build Mater. 2008;22:1990–2000. 17. Grasley ZC, D'Ambrosia MD. Viscoelastic properties and drying stress extracted from concrete ring tests. Cement Concrete Comp. 2011;33:171–178. 18. Dong W, Zhou X, Wu Z. A fracture mechanics-based method for prediction of cracking of circular and elliptical concrete rings under restrained shrinkage. Eng Fract Mech. 2014;131:687–701. 19. Ostertag CP, Blunt J. Effect of crack control in hybrid fiber reinforced concrete composites on corrosion rate of steel reinforcing bars. Fract Mech Concrete Concrete Struct. 2010;5:894–900. 20. Yousefieh N, Joshaghani A, Hajibandeh E, Shekarchi M. Influence of fibers on drying shrinkage in restrained concrete. Construct Build Mater. 2017; 148:833–845. https://doi.org/10.1016/j.conbuildmat.2017.05.093. 21. Naaman AE. Development and evolution of tensile strength-hardening FRC composites. BEFIB 2008: 7th International RILEM Symposium on Fiber Reinforced Concrete: Design and Applications; Chennai, India: RILEM Publications SARL; 2008 Sep 17-19; Chennai, India; 2008. p. 1-28.2008. 22. Figueiredo AD. Concreto reforçado com fibras [Thesis (professorship habilitation)]. São Paulo: Universidade de São Paulo, Escola Politécnica; 2011. 23. Hamoush S, Abu-Lebdeh T, Cummins T. Deflection behavior of concrete beams reinforced with PVA micro-fibers. Construct Build Mater. 2010;24:2285–2293. 24. Bentur A, Mindess S. Fibre reinforced cementitious composites. New York, NY: Taylor & Francis, 2007. 25. Yin S, Tuladhar R, Collister T, Combe M, Sivakugan M, Deng Z. Postcracking performance of recycled polypropylene fibre in concrete. Construct Build Mater. 2015;101:1069–1077. 26. Ehrenbring HZ. Comportamento de concretos reforçados com microfibras de polipropileno (PP), álcool polivinílico (PVA) e recicladas de poliéster (POL) em relação à retração por secagem restringida e às propriedades mecânicas [Thesis (Master's)]. São Leopoldo, Brazil: Universidade do Vale do Rio dos Sinos, Civil Engineering Graduate Program; 2017. 27. Noushini A, Samali B, Vessalas K. Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Construct Build Mater. 2013;49:374–383. 28. Tanesi J, Figueiredo AD. Fissuração por retração em concretos reforçados com fibras de polipropileno (CRFP). Technical Report of USP Polytechnic School, São Paulo, 239; 1999. 29. Mazzoli A, Monosi S, Plescia ES. Evaluation of the early-age shrinkage of fiber reinforced concrete (FRC) using image analysis methods. Construct Build Mater. 2015;101:596–601. 30. Bouziadi F, Boulekbache B, Hamrat M. The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures. Construct Build Mater. 2016;114:40–48. 31. ASTM, C150. Standard specification for Portland cement. West Conshohocken, PA: ASTM International, 2009. 32. ASTM, C33. Standard specification for concrete aggregates. West Conshohocken, PA: ASTM International, 2016. 33. ASTM, C136. Standard test method for Sieve analysis of fine and coarse aggregates. West Conshohocken, PA: ASTM International, 2014. 34. ASTM, C39. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International, 2018. 35. ASTM, C1170. Standard test method for determining consistency and density of roller-compacted concrete using a vibrating table. West Conshohocken, PA: ASTM International, 2014. 36. ASTM, C1609. Standard test method for flexural performance of fiberreinforced concrete. West Conshohocken, PA: ASTM International, 2012. 37. ASTM, C642. Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken, PA: ASTM International, 2013;p. 2013. 38. Mangat PSE, Swamy RN. Compactibility of steel fibre reinforced concrete. Concrete. 1975;8:34–35. 39. Banthia N, Moncef A, Chokri K, Sheng J. Uniaxial tensile response of microfiber reinforced cement composites. Mater Struct. 1995;28:507–517. 40. Soroushian P, Elyamany H, Tlili A, Ostowari K. Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers. Cement Concrete Comp. 1998;20:67–78. 41. Li VC, Horikoshi T, Atsushi O, Torigoe S, Saito T. Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite. ACI Mater J. 2004;101:242–248. https://www.concrete.org/publications/ acimaterialsjournal.aspx 42. Balaguru PN, Ramakrishnan V. Properties of fiber reinforced concrete: Workability, behavior under long-term loading, and air-void characteristics. ACI Mater J. 1988;85:189–196. 43. Li LG, Zhao ZW, Zhu J, Kwan AKH, Zeng KL. Combined effects of water film thickness and polypropylene fibre length on fresh properties of mortar. Construct Build Mater. 2018;174:586–593. 44. Gong J, Zeng W, Zhang W. Influence of shrinkage-reducing agent and polypropylene fiber on shrinkage of ceramsite concrete. Construct Build Mater. 2017;159:155–163. 45. Gao Y, Zhang J, Han P. Determination of stress relaxation parameters of concrete in tension at early-age by ring test. Construct Build Mater. 2013;41:152–164. 46. Balaguru PN, Slattum K. Test methods for durability of polymeric fibers in concrete and UV light exposure. ACI Mater J. 1995;148:115–136.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/caf48061-ba77-411b-95d6-6db12119411e/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdfExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdfapplication/pdf71807https://repositorio.cuc.edu.co/bitstreams/66647159-045e-442b-a396-3672a7053304/download0c1a1cef03cdd2e4a5b03c5c942da92cMD53THUMBNAILExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdf.jpgExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdf.jpgimage/jpeg34919https://repositorio.cuc.edu.co/bitstreams/c0cb7e1f-be3d-447b-a078-d9073522c6d2/downloadd08b8c33bcea36cdc25b517ad3874629MD54THUMBNAILExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdf.jpgExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdf.jpgimage/jpeg34919https://repositorio.cuc.edu.co/bitstreams/79018f36-35aa-4c8b-be2f-83b67c1eb690/downloadd08b8c33bcea36cdc25b517ad3874629MD54TEXTExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdf.txtExperimental method for investigation of impact of the addition of polymer fibers on drying shrinkage and cracking for concretes.pdf.txttext/plain1209https://repositorio.cuc.edu.co/bitstreams/812887fe-cac2-46cb-86f7-e18f7d3bd96c/download04335d67bae189849d9226cf2be352e9MD5511323/2768oai:repositorio.cuc.edu.co:11323/27682024-09-17 14:07:37.943open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |