Comparison of bioinspired algorithms applied to the timetabling problem

The problem of timetabling events is present in various organizations such as schools, hospitals, transportation centers. The purpose of timetabling activities at a university is to ensure that all students attend their required subjects in accordance with the available resources. The set of constra...

Full description

Autores:
Silva, Jose
Varela Izquierdo, Noel
Varas, Jesus
Lezama, Omar
Maco, José
Villón, Martín
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7717
Acceso en línea:
https://hdl.handle.net/11323/7717
https://doi.org/10.1007/978-981-15-7907-3_32
https://repositorio.cuc.edu.co/
Palabra clave:
Genetic algorithm
Memetic algorithm
Immune system
Faculty timetabling
Course timetabling
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_3238d70e432a2782856c804a8b3cd4a1
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7717
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Comparison of bioinspired algorithms applied to the timetabling problem
title Comparison of bioinspired algorithms applied to the timetabling problem
spellingShingle Comparison of bioinspired algorithms applied to the timetabling problem
Genetic algorithm
Memetic algorithm
Immune system
Faculty timetabling
Course timetabling
title_short Comparison of bioinspired algorithms applied to the timetabling problem
title_full Comparison of bioinspired algorithms applied to the timetabling problem
title_fullStr Comparison of bioinspired algorithms applied to the timetabling problem
title_full_unstemmed Comparison of bioinspired algorithms applied to the timetabling problem
title_sort Comparison of bioinspired algorithms applied to the timetabling problem
dc.creator.fl_str_mv Silva, Jose
Varela Izquierdo, Noel
Varas, Jesus
Lezama, Omar
Maco, José
Villón, Martín
dc.contributor.author.spa.fl_str_mv Silva, Jose
Varela Izquierdo, Noel
Varas, Jesus
Lezama, Omar
Maco, José
Villón, Martín
dc.subject.spa.fl_str_mv Genetic algorithm
Memetic algorithm
Immune system
Faculty timetabling
Course timetabling
topic Genetic algorithm
Memetic algorithm
Immune system
Faculty timetabling
Course timetabling
description The problem of timetabling events is present in various organizations such as schools, hospitals, transportation centers. The purpose of timetabling activities at a university is to ensure that all students attend their required subjects in accordance with the available resources. The set of constraints that must be considered in the design of timetables involves students, teachers and infrastructure. This study shows that acceptable solutions are generated through the application of genetic, memetic and immune system algorithms for the problem of timetabling. The algorithms are applied to real instances of the University of Mumbai in India and their results are comparable with those of a human expert.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-19T20:36:32Z
dc.date.available.none.fl_str_mv 2021-01-19T20:36:32Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7717
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-7907-3_32
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7717
https://doi.org/10.1007/978-981-15-7907-3_32
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Jorge AS, Martin CJ, Hugo T (2010) Academic timetabling design using hyper—heuristics. Springer, Berlin, pp 43–56
2. Asratian AS, de Werra D (2002) A generalized class–teacher model for some timetabling problems. University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science, & Mathematics. Eur J Oper Res 531–542
3. Soria-Alcaraz Jorge A, Martín C, Héctor P, Sotelo-Figueroa MA 2013) Comparison of metaheuristic algorithms with a methodology of design for the evaluation of hard constraints over the course timetabling problem. Springer, Berlin, pp 289–302.
4. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018.
5. De Werra D (1985) An introduction to timetabling. Eur J Oper Res 19(2):151–162
6. Obit JH, Ouelhadj D, Landa-Silva D, Vun TK, Alfred R (2011) Designing a multi-agent approach system for distributed course timetabling, pp 103–108.
7. Lewis MRR (2006) Metaheuristics for university course timetabling. Ph.D. Thesis, Napier University
8. Deng X, Zhang Y, Kang B, Wu J, Sun X, Deng Y (2011) An application of genetic algorithm for university course timetabling problem, pp 2119–2122./
9. Mahiba AA, Durai CAD (2012) Genetic algorithm with search bank strategies for university course timetabling problem. Procedia Eng 38:253–263
10. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data. Springer, Cham, pp 3–11
11. Nguyen K, Lu T, Le T, Tran N (2011) Memetic algorithm for a university course timetabling problem, pp. 67–71.
12. Aladag C, Hocaoglu G (2007) A tabu search algorithm to solve a course timetabling problem. Hacettepe J Math Stat, pp 53–64
13. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program (report 826)
14. Frausto-Solís J, Alonso-Pecina F, Mora-Vargas J (2008) An efficient simulated annealing algorithm for feasible solutions of course timetabling. Springer, Berlin, pp 675–685
15. Joudaki M, Imani M, Mazhari N (2010) Using improved memetic algorithm and local search to solve university course timetabling problem (UCTTP). Islamic Azad University, Doroud
16. Thepphakorn T, Pongcharoen P, Hicks C (2014) An ant colony based timetabling tool. Int J Prod Econ 149:131–144.
17. Soria-Alcaraz J, Ochoa G, Swan J, Carpio M, Puga H, Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem. Eur J Oper Res 77–86.
18. Wolpert H, Macready G (1996) No free lunch theorems for search. Technical report, The Santa Fe Institute, vol 1
19. Lai LF, Wu C, Hsueh N, Huang L, Hwang S (2008) An artificial intelligence approach to course timetabling. Int J Artif Intell Tools 223–240.
20. McCollum B, McMullan P, Parkes AJ, Burke EK, Qu R (2012) A new model for automated examination timetabling. Ann Oper Res 291–315
21. Conant-Pablos SE et al (2009) Pipelining memetic algorithms, constraint satisfaction, and local search for course timetabling. In: MICAI Mexican international conference on artificial intelligence, vol 1, pp 408–419
22. Carpio-Valadez JM (2006) Integral model for optimal assignation of academic tasks. In: Encuentro de investigacion en ingenieria electrica. ENVIE, Zacatecas, pp 78–83
23. Soria-Alcaraz JA, Martin C, Héctor P, Hugo T, Laura CR, Sotelo-Figueroa MA (2013) Methodology of design: a novel generic approach applied to the course timetabling problem, pp 287–319.
24. Talbi E (2009) Metaheuristics: from design to implementation. Wiley, US
25. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Pub. Co, Reading
26. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press
27. Abdoun O, Abouchabaka J (2011) A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. Int J Comput Appl
28. Derrac J, García S (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence. In: Swarm and Evolutionary Computation
29. Azuaje F (2003) Review of “Artificial immune systems: a new computational intelligence approach.” J Neural Netw 16(8):1229–1229
30. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33:1455–1465
31. Lü Z, Hao J (2010) Adaptive tabu search for course timetabling. Eur J Oper Res 235–244
32. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-7907-3_32
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/7717/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/7717/1/Comparison%20of%20bioinspired%20algorithms%20applied%20to%20the%20timetabling%20problem.pdf
https://repositorio.cuc.edu.co/bitstream/11323/7717/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/7717/4/Comparison%20of%20bioinspired%20algorithms%20applied%20to%20the%20timetabling%20problem.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/7717/5/Comparison%20of%20bioinspired%20algorithms%20applied%20to%20the%20timetabling%20problem.pdf.txt
bitstream.checksum.fl_str_mv e30e9215131d99561d40d6b0abbe9bad
db280643537bd4cf3006f06f7567de8a
4460e5956bc1d1639be9ae6146a50347
dbe02cfbaf2bc5bf3a62977d1447fea5
071f3298374c2f7a3ce0689495a311d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400039256522752
spelling Silva, Jose1d7ce9bcd08d6be0ee4300755e53d888Varela Izquierdo, Noel484160b66adc1de7303e235ec7894532Varas, Jesusf12809b7c3639c2ed486a652d44c6c26Lezama, Omard3cb35441d7a84a4bdb5e934cbf4f5afMaco, José3ae5a9f0859c736faaf0c56a1aaec025Villón, Martínf63f5e5ca7d5f396ac1e41161469c7c02021-01-19T20:36:32Z2021-01-19T20:36:32Z2021https://hdl.handle.net/11323/7717https://doi.org/10.1007/978-981-15-7907-3_32Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The problem of timetabling events is present in various organizations such as schools, hospitals, transportation centers. The purpose of timetabling activities at a university is to ensure that all students attend their required subjects in accordance with the available resources. The set of constraints that must be considered in the design of timetables involves students, teachers and infrastructure. This study shows that acceptable solutions are generated through the application of genetic, memetic and immune system algorithms for the problem of timetabling. The algorithms are applied to real instances of the University of Mumbai in India and their results are comparable with those of a human expert.application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7907-3_32Genetic algorithmMemetic algorithmImmune systemFaculty timetablingCourse timetablingComparison of bioinspired algorithms applied to the timetabling problemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Jorge AS, Martin CJ, Hugo T (2010) Academic timetabling design using hyper—heuristics. Springer, Berlin, pp 43–562. Asratian AS, de Werra D (2002) A generalized class–teacher model for some timetabling problems. University of Technology, Department of Engineering Sciences and Mathematics, Mathematical Science, & Mathematics. Eur J Oper Res 531–5423. Soria-Alcaraz Jorge A, Martín C, Héctor P, Sotelo-Figueroa MA 2013) Comparison of metaheuristic algorithms with a methodology of design for the evaluation of hard constraints over the course timetabling problem. Springer, Berlin, pp 289–302.4. Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018.5. De Werra D (1985) An introduction to timetabling. Eur J Oper Res 19(2):151–1626. Obit JH, Ouelhadj D, Landa-Silva D, Vun TK, Alfred R (2011) Designing a multi-agent approach system for distributed course timetabling, pp 103–108.7. Lewis MRR (2006) Metaheuristics for university course timetabling. Ph.D. Thesis, Napier University8. Deng X, Zhang Y, Kang B, Wu J, Sun X, Deng Y (2011) An application of genetic algorithm for university course timetabling problem, pp 2119–2122./9. Mahiba AA, Durai CAD (2012) Genetic algorithm with search bank strategies for university course timetabling problem. Procedia Eng 38:253–26310. Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data. Springer, Cham, pp 3–1111. Nguyen K, Lu T, Le T, Tran N (2011) Memetic algorithm for a university course timetabling problem, pp. 67–71.12. Aladag C, Hocaoglu G (2007) A tabu search algorithm to solve a course timetabling problem. Hacettepe J Math Stat, pp 53–6413. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program (report 826)14. Frausto-Solís J, Alonso-Pecina F, Mora-Vargas J (2008) An efficient simulated annealing algorithm for feasible solutions of course timetabling. Springer, Berlin, pp 675–68515. Joudaki M, Imani M, Mazhari N (2010) Using improved memetic algorithm and local search to solve university course timetabling problem (UCTTP). Islamic Azad University, Doroud16. Thepphakorn T, Pongcharoen P, Hicks C (2014) An ant colony based timetabling tool. Int J Prod Econ 149:131–144.17. Soria-Alcaraz J, Ochoa G, Swan J, Carpio M, Puga H, Burke E (2014) Effective learning hyper-heuristics for the course timetabling problem. Eur J Oper Res 77–86.18. Wolpert H, Macready G (1996) No free lunch theorems for search. Technical report, The Santa Fe Institute, vol 119. Lai LF, Wu C, Hsueh N, Huang L, Hwang S (2008) An artificial intelligence approach to course timetabling. Int J Artif Intell Tools 223–240.20. McCollum B, McMullan P, Parkes AJ, Burke EK, Qu R (2012) A new model for automated examination timetabling. Ann Oper Res 291–31521. Conant-Pablos SE et al (2009) Pipelining memetic algorithms, constraint satisfaction, and local search for course timetabling. In: MICAI Mexican international conference on artificial intelligence, vol 1, pp 408–41922. Carpio-Valadez JM (2006) Integral model for optimal assignation of academic tasks. In: Encuentro de investigacion en ingenieria electrica. ENVIE, Zacatecas, pp 78–8323. Soria-Alcaraz JA, Martin C, Héctor P, Hugo T, Laura CR, Sotelo-Figueroa MA (2013) Methodology of design: a novel generic approach applied to the course timetabling problem, pp 287–319.24. Talbi E (2009) Metaheuristics: from design to implementation. Wiley, US25. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Pub. Co, Reading26. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press27. Abdoun O, Abouchabaka J (2011) A comparative study of adaptive crossover operators for genetic algorithms to resolve the traveling salesman problem. Int J Comput Appl28. Derrac J, García S (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence. In: Swarm and Evolutionary Computation29. Azuaje F (2003) Review of “Artificial immune systems: a new computational intelligence approach.” J Neural Netw 16(8):1229–122930. Maulik U, Bandyopadhyay S (2000) Genetic algorithm-based clustering technique. Pattern Recogn 33:1455–146531. Lü Z, Hao J (2010) Adaptive tabu search for course timetabling. Eur J Oper Res 235–24432. Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/7717/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessORIGINALComparison of bioinspired algorithms applied to the timetabling problem.pdfComparison of bioinspired algorithms applied to the timetabling problem.pdfapplication/pdf94439https://repositorio.cuc.edu.co/bitstream/11323/7717/1/Comparison%20of%20bioinspired%20algorithms%20applied%20to%20the%20timetabling%20problem.pdfdb280643537bd4cf3006f06f7567de8aMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstream/11323/7717/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessTHUMBNAILComparison of bioinspired algorithms applied to the timetabling problem.pdf.jpgComparison of bioinspired algorithms applied to the timetabling problem.pdf.jpgimage/jpeg28028https://repositorio.cuc.edu.co/bitstream/11323/7717/4/Comparison%20of%20bioinspired%20algorithms%20applied%20to%20the%20timetabling%20problem.pdf.jpgdbe02cfbaf2bc5bf3a62977d1447fea5MD54open accessTEXTComparison of bioinspired algorithms applied to the timetabling problem.pdf.txtComparison of bioinspired algorithms applied to the timetabling problem.pdf.txttext/plain1012https://repositorio.cuc.edu.co/bitstream/11323/7717/5/Comparison%20of%20bioinspired%20algorithms%20applied%20to%20the%20timetabling%20problem.pdf.txt071f3298374c2f7a3ce0689495a311d3MD55open access11323/7717oai:repositorio.cuc.edu.co:11323/77172023-12-14 12:09:32.065Attribution-NonCommercial-NoDerivatives 4.0 International|||http://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==