Substrate treatment for the increment of electric power potential from plants microbial fuel cells
Plants microbial fuel cells (PMFC) is novel systemthat generates renewable, clean, and sustainable electricity with minimal environmentalimpact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different st...
- Autores:
-
Acosta-Coll, Melisa
Ospino C., Adalberto
Carbonell-Navarro, Stalin
Escobar-Duque, Jaider
Peña Gallardo, Rafael
Zamora-Musa, Ronald
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8313
- Acceso en línea:
- https://hdl.handle.net/11323/8313
https://doi.org/10.11591/ijece.v11i3.pp1933-1941
https://repositorio.cuc.edu.co/
- Palabra clave:
- Clean energy
Electric potential
Microbial fuel cell
Plant microbial fuel cell
Resistivity
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_321baca4a682e73dd25ca8286ce80a5b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8313 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
title |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
spellingShingle |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells Clean energy Electric potential Microbial fuel cell Plant microbial fuel cell Resistivity |
title_short |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
title_full |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
title_fullStr |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
title_full_unstemmed |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
title_sort |
Substrate treatment for the increment of electric power potential from plants microbial fuel cells |
dc.creator.fl_str_mv |
Acosta-Coll, Melisa Ospino C., Adalberto Carbonell-Navarro, Stalin Escobar-Duque, Jaider Peña Gallardo, Rafael Zamora-Musa, Ronald |
dc.contributor.author.spa.fl_str_mv |
Acosta-Coll, Melisa Ospino C., Adalberto Carbonell-Navarro, Stalin Escobar-Duque, Jaider Peña Gallardo, Rafael Zamora-Musa, Ronald |
dc.subject.eng.fl_str_mv |
Clean energy Electric potential Microbial fuel cell Plant microbial fuel cell Resistivity |
topic |
Clean energy Electric potential Microbial fuel cell Plant microbial fuel cell Resistivity |
description |
Plants microbial fuel cells (PMFC) is novel systemthat generates renewable, clean, and sustainable electricity with minimal environmentalimpact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different studies show that the highest limitation for energy generation through MFC is the high resistivity of the cathode, and the solution is to replace the metallic electrodes with non-metallic materials to obtain a better performance, however, the application of these materials requires complex interdisciplinary work. This study conducted three experimental tests using metallic electrodes for the extraction of electrons and combined a black earth substrate with different natural materials, types of plants, and water to determine their influence in the increment of the electric power output. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-01T00:31:49Z |
dc.date.available.none.fl_str_mv |
2021-06-01T00:31:49Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2088-8708 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8313 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.11591/ijece.v11i3.pp1933-1941 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2088-8708 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8313 https://doi.org/10.11591/ijece.v11i3.pp1933-1941 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
M. Acosta-Coll et al., “Real-time early warning system design forpluvial flash floods-A review,”Sensors, vol. 18, p. 2255, Jul.2018. J. Cabello et al., “Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba,”Journal of cleaner production,vol. 108, pp. 873–882, Dec.2015. S. Oncel, “Green energy engineering: Opening a green way for the future,”Journal of cleaner production,vol. 142, pp. 3095–3100, Jan.2017 C. Robles-Algarín et al.,“Procedimiento para la Selección de Criterios en la Planificación Energética de Zonas Rurales Colombianas,”Información tecnológica,vol. 29, pp. 71–80, Jun.2018. M. Rahimnejadet al.,“Microbial fuel cell as new technology for bioelectricity generation: A review,”Alexandria Engineering Journal,vol. 54, pp. 745–756, Sep.2015 A. Franks and K. Nevin, “Microbial fuel cells, a current review,”Energies,vol. 3, pp. 899–919, Apr.2010 C. Santoroet al.,“Microbial fuel cells: from fundamentals to applications. A review,”Journal of power sources,vol. 356, pp.225–244, Jul.2017 S. Flimbanet al.,“Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability,”Energies, vol. 12, p. 3390, Sep.2019. A. Nandyet al.,“Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge,”Energies, vol.12, p. 1034, Mar.2019. R. Regmiet al.,“A decade of plant-assisted microbial fuel cells: looking back and moving forward,”Biofuels, vol.9, pp. 605–612, Feb.2018. K. Aiyer, “How does electron transferoccur in microbial fuel cells?”World Journal of Microbiology and Biotechnology,vol.36, p.19, Jan.2020. M. Rossiet al., “Let the microbes power your sensing display,”2017 IEEE Sensors, pp. 1-3, Nov.2017 M. Vanitha et al., “Microbial fuel cell characterisation and evaluation of Lysinibacillus macroidesMFC02 electrigenic capability,”World Journal of Microbiology and Biotechnology, vol. 33, p.91, Apr.2017. B. Loganet al.,“Microbial fuel cells: methodology and technology,”Environmental science & technology,vol. 40, pp. 5181-5192, Jul.2006 G. Chen et al., “Application of biocathode in microbial fuel cells: cell performance and microbial community,” Applied microbiology and biotechnology, vol. 79, pp. 379–388, Jun. 2008. F. Offei et al., “A viable electrode material for use in microbial fuel cells for tropical regions,” Energies, vol. 9, p. 35, Jan. 2016. Q. Deng et al., “Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell,” Journal of Power Sources, vol. 195, pp. 1130–1135, Feb. 2010. A. Ter Heijne et al., “A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells,” Environmental science & technology, vol. 40, pp. 5200–5205, Jul. 2006. K. Vezina, “Plant Lamps” Turn Dirt and Vegetation into a Power Source,” MIT Technology Review [Online]. Available: https://declara.com/content/OgeWo67a. P. Sarma and K. Mohanty, “Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode,” Journal of bioscience and bioengineering, vol. 126, pp. 404–410, Sep. 2018. B. Liu et al., “Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations,” Chemosphere, vol. 209, pp. 739–747, Oct. 2018. Y. Hubenova and M. Mitov, “Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell,” Bioelectrochemistry, vol. 87, pp. 185–191, Oct. 2012. M. Helder et al., “Electricity production with living plants on a green roof: environmental performance of the plant‐ microbial fuel cell,” Biofuels, Bioproducts and Biorefining, vol. 7, pp. 52–64, Jan. 2013 R. Moliner, “Del carbón activo al grafeno: Evolución de los materiales de carbon,” Boletín del Grupo Español del Carbón, vol. 41, pp. 2–5, Sep. 2016. M. Richard, “El carbón activo ya se fabrica con una estructura diseñada a medida,” MIT Technology Review [Online]. Available: https://www.technologyreview.es/s/4951/el-carbon-activo-ya-se-fabrica-con-una-estructuradisenada-medida P. Omo-Okoro et al., “A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies,” Environmental Technology & Innovation, vol. 9, pp. 100–114, Feb. 2018. K. Palansooriya et al., “Impacts of biochar application on upland agriculture: A review,” Journal of environmental management, vol. 234, pp. 52–64, Mar. 2019. J. Kamcev et al., “Salt concentration dependence of ionic conductivity in ion exchange membranes,” Journal of Membrane Science, vol. 547, pp. 123–133, 2018. C. Yuan et al., “Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China,” Agricultural water management, vol. 212, pp. 424–432, Feb. 2019. C. Alexander, Fundamentals of electric circuits. McGraw-Hill, 2009 J. Frouz, “Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization,” Geoderma, vol. 332, pp. 161–172, Dec. 2018. S. Rostami and A. Azhdarpoor, “The application of plant growth regulators to improve phytoremediation of contaminated soils: A review,” Chemosphere, vol. 220, pp. 818–827, Apr. 2019. R. Piyare et al., “Plug into a plant: Using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system,” 2017 IEEE 42nd Conference on Local Computer Networks Workshops, Nov. 2017, pp. 1–4. G. Atzori et al., “Seawater potential use in soilless culture: A review,” Scientia Horticulturae, vol. 249, pp. 199–207, Apr. 2019 S. Yang et al., “Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity,” Chemical Engineering Research and Design, vol. 143, pp. 79–89, Mar. 2019. F. Canna, “Influencia de la temperatura ambiental en las plantas,” CANNA Research [Online]. Available: http://www.canna.es/influencia_temperatura_ambiental_en_las_plantas. O. Olubode, “Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber,” Scientia Horticulturae, vol. 243, pp. 622–644, Jan. 2019. M. Benlloch-González et al., “Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants,” Journal of plant physiology, vol. 207, pp. 22–29, Dec. 2016. J. Ni et al., “Effects of vegetation on soil temperature and water content: Field monitoring and numerical modeling,” Journal of Hydrology, vol. 571, pp. 494–502, Apr. 2019. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
International Journal of Electrical and Computer Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
http://ijece.iaescore.com/index.php/IJECE/article/view/23963 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b3b25b15-00eb-437b-8810-00bfac9f2227/download https://repositorio.cuc.edu.co/bitstreams/55e6a42e-0a8c-4e4a-a1f6-ef5cebb20422/download https://repositorio.cuc.edu.co/bitstreams/8e30d97e-cf08-43a7-88dd-4df8ab0a8c50/download https://repositorio.cuc.edu.co/bitstreams/480e4b81-b63f-4f0b-8cb5-07ca69685696/download https://repositorio.cuc.edu.co/bitstreams/da1b0800-ff4b-4d6f-89ad-ce45df945616/download |
bitstream.checksum.fl_str_mv |
4bc8bb930ae212bbeb1532eb52a78356 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 75c064bfa3fb6a7346ae53277f72b2d5 5d0bef657fa95204d7a55a5d4192cbf3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760799811633152 |
spelling |
Acosta-Coll, MelisaOspino C., AdalbertoCarbonell-Navarro, StalinEscobar-Duque, JaiderPeña Gallardo, RafaelZamora-Musa, Ronald2021-06-01T00:31:49Z2021-06-01T00:31:49Z20212088-8708https://hdl.handle.net/11323/8313https://doi.org/10.11591/ijece.v11i3.pp1933-1941Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Plants microbial fuel cells (PMFC) is novel systemthat generates renewable, clean, and sustainable electricity with minimal environmentalimpact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different studies show that the highest limitation for energy generation through MFC is the high resistivity of the cathode, and the solution is to replace the metallic electrodes with non-metallic materials to obtain a better performance, however, the application of these materials requires complex interdisciplinary work. This study conducted three experimental tests using metallic electrodes for the extraction of electrons and combined a black earth substrate with different natural materials, types of plants, and water to determine their influence in the increment of the electric power output.Acosta-Coll, Melisa-will be generated-orcid-0000-0002-5433-0414-600Ospino C., Adalberto-will be generated-orcid-0000-0003-1466-0424-600Carbonell-Navarro, StalinEscobar-Duque, JaiderPeña Gallardo, Rafael-will be generated-orcid-0000-0001-7776-6547-600Zamora-Musa, Ronaldapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Electrical and Computer Engineeringhttp://ijece.iaescore.com/index.php/IJECE/article/view/23963Clean energyElectric potentialMicrobial fuel cellPlant microbial fuel cellResistivitySubstrate treatment for the increment of electric power potential from plants microbial fuel cellsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionM. Acosta-Coll et al., “Real-time early warning system design forpluvial flash floods-A review,”Sensors, vol. 18, p. 2255, Jul.2018.J. Cabello et al., “Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba,”Journal of cleaner production,vol. 108, pp. 873–882, Dec.2015.S. Oncel, “Green energy engineering: Opening a green way for the future,”Journal of cleaner production,vol. 142, pp. 3095–3100, Jan.2017C. Robles-Algarín et al.,“Procedimiento para la Selección de Criterios en la Planificación Energética de Zonas Rurales Colombianas,”Información tecnológica,vol. 29, pp. 71–80, Jun.2018.M. Rahimnejadet al.,“Microbial fuel cell as new technology for bioelectricity generation: A review,”Alexandria Engineering Journal,vol. 54, pp. 745–756, Sep.2015A. Franks and K. Nevin, “Microbial fuel cells, a current review,”Energies,vol. 3, pp. 899–919, Apr.2010C. Santoroet al.,“Microbial fuel cells: from fundamentals to applications. A review,”Journal of power sources,vol. 356, pp.225–244, Jul.2017S. Flimbanet al.,“Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability,”Energies, vol. 12, p. 3390, Sep.2019.A. Nandyet al.,“Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge,”Energies, vol.12, p. 1034, Mar.2019.R. Regmiet al.,“A decade of plant-assisted microbial fuel cells: looking back and moving forward,”Biofuels, vol.9, pp. 605–612, Feb.2018.K. Aiyer, “How does electron transferoccur in microbial fuel cells?”World Journal of Microbiology and Biotechnology,vol.36, p.19, Jan.2020.M. Rossiet al., “Let the microbes power your sensing display,”2017 IEEE Sensors, pp. 1-3, Nov.2017M. Vanitha et al., “Microbial fuel cell characterisation and evaluation of Lysinibacillus macroidesMFC02 electrigenic capability,”World Journal of Microbiology and Biotechnology, vol. 33, p.91, Apr.2017.B. Loganet al.,“Microbial fuel cells: methodology and technology,”Environmental science & technology,vol. 40, pp. 5181-5192, Jul.2006G. Chen et al., “Application of biocathode in microbial fuel cells: cell performance and microbial community,” Applied microbiology and biotechnology, vol. 79, pp. 379–388, Jun. 2008.F. Offei et al., “A viable electrode material for use in microbial fuel cells for tropical regions,” Energies, vol. 9, p. 35, Jan. 2016.Q. Deng et al., “Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell,” Journal of Power Sources, vol. 195, pp. 1130–1135, Feb. 2010.A. Ter Heijne et al., “A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells,” Environmental science & technology, vol. 40, pp. 5200–5205, Jul. 2006.K. Vezina, “Plant Lamps” Turn Dirt and Vegetation into a Power Source,” MIT Technology Review [Online]. Available: https://declara.com/content/OgeWo67a.P. Sarma and K. Mohanty, “Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode,” Journal of bioscience and bioengineering, vol. 126, pp. 404–410, Sep. 2018.B. Liu et al., “Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations,” Chemosphere, vol. 209, pp. 739–747, Oct. 2018.Y. Hubenova and M. Mitov, “Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell,” Bioelectrochemistry, vol. 87, pp. 185–191, Oct. 2012.M. Helder et al., “Electricity production with living plants on a green roof: environmental performance of the plant‐ microbial fuel cell,” Biofuels, Bioproducts and Biorefining, vol. 7, pp. 52–64, Jan. 2013R. Moliner, “Del carbón activo al grafeno: Evolución de los materiales de carbon,” Boletín del Grupo Español del Carbón, vol. 41, pp. 2–5, Sep. 2016.M. Richard, “El carbón activo ya se fabrica con una estructura diseñada a medida,” MIT Technology Review [Online]. Available: https://www.technologyreview.es/s/4951/el-carbon-activo-ya-se-fabrica-con-una-estructuradisenada-medidaP. Omo-Okoro et al., “A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies,” Environmental Technology & Innovation, vol. 9, pp. 100–114, Feb. 2018.K. Palansooriya et al., “Impacts of biochar application on upland agriculture: A review,” Journal of environmental management, vol. 234, pp. 52–64, Mar. 2019.J. Kamcev et al., “Salt concentration dependence of ionic conductivity in ion exchange membranes,” Journal of Membrane Science, vol. 547, pp. 123–133, 2018.C. Yuan et al., “Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China,” Agricultural water management, vol. 212, pp. 424–432, Feb. 2019.C. Alexander, Fundamentals of electric circuits. McGraw-Hill, 2009J. Frouz, “Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization,” Geoderma, vol. 332, pp. 161–172, Dec. 2018.S. Rostami and A. Azhdarpoor, “The application of plant growth regulators to improve phytoremediation of contaminated soils: A review,” Chemosphere, vol. 220, pp. 818–827, Apr. 2019.R. Piyare et al., “Plug into a plant: Using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system,” 2017 IEEE 42nd Conference on Local Computer Networks Workshops, Nov. 2017, pp. 1–4.G. Atzori et al., “Seawater potential use in soilless culture: A review,” Scientia Horticulturae, vol. 249, pp. 199–207, Apr. 2019S. Yang et al., “Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity,” Chemical Engineering Research and Design, vol. 143, pp. 79–89, Mar. 2019.F. Canna, “Influencia de la temperatura ambiental en las plantas,” CANNA Research [Online]. Available: http://www.canna.es/influencia_temperatura_ambiental_en_las_plantas.O. Olubode, “Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber,” Scientia Horticulturae, vol. 243, pp. 622–644, Jan. 2019.M. Benlloch-González et al., “Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants,” Journal of plant physiology, vol. 207, pp. 22–29, Dec. 2016.J. Ni et al., “Effects of vegetation on soil temperature and water content: Field monitoring and numerical modeling,” Journal of Hydrology, vol. 571, pp. 494–502, Apr. 2019.PublicationORIGINAL23963-47331-1-PB.pdf23963-47331-1-PB.pdfapplication/pdf566937https://repositorio.cuc.edu.co/bitstreams/b3b25b15-00eb-437b-8810-00bfac9f2227/download4bc8bb930ae212bbeb1532eb52a78356MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/55e6a42e-0a8c-4e4a-a1f6-ef5cebb20422/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8e30d97e-cf08-43a7-88dd-4df8ab0a8c50/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL23963-47331-1-PB.pdf.jpg23963-47331-1-PB.pdf.jpgimage/jpeg64131https://repositorio.cuc.edu.co/bitstreams/480e4b81-b63f-4f0b-8cb5-07ca69685696/download75c064bfa3fb6a7346ae53277f72b2d5MD54TEXT23963-47331-1-PB.pdf.txt23963-47331-1-PB.pdf.txttext/plain27388https://repositorio.cuc.edu.co/bitstreams/da1b0800-ff4b-4d6f-89ad-ce45df945616/download5d0bef657fa95204d7a55a5d4192cbf3MD5511323/8313oai:repositorio.cuc.edu.co:11323/83132024-09-17 12:45:39.594http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |