Substrate treatment for the increment of electric power potential from plants microbial fuel cells

Plants microbial fuel cells (PMFC) is novel systemthat generates renewable, clean, and sustainable electricity with minimal environmentalimpact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different st...

Full description

Autores:
Acosta-Coll, Melisa
Ospino C., Adalberto
Carbonell-Navarro, Stalin
Escobar-Duque, Jaider
Peña Gallardo, Rafael
Zamora-Musa, Ronald
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8313
Acceso en línea:
https://hdl.handle.net/11323/8313
https://doi.org/10.11591/ijece.v11i3.pp1933-1941
https://repositorio.cuc.edu.co/
Palabra clave:
Clean energy
Electric potential
Microbial fuel cell
Plant microbial fuel cell
Resistivity
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_321baca4a682e73dd25ca8286ce80a5b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8313
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Substrate treatment for the increment of electric power potential from plants microbial fuel cells
title Substrate treatment for the increment of electric power potential from plants microbial fuel cells
spellingShingle Substrate treatment for the increment of electric power potential from plants microbial fuel cells
Clean energy
Electric potential
Microbial fuel cell
Plant microbial fuel cell
Resistivity
title_short Substrate treatment for the increment of electric power potential from plants microbial fuel cells
title_full Substrate treatment for the increment of electric power potential from plants microbial fuel cells
title_fullStr Substrate treatment for the increment of electric power potential from plants microbial fuel cells
title_full_unstemmed Substrate treatment for the increment of electric power potential from plants microbial fuel cells
title_sort Substrate treatment for the increment of electric power potential from plants microbial fuel cells
dc.creator.fl_str_mv Acosta-Coll, Melisa
Ospino C., Adalberto
Carbonell-Navarro, Stalin
Escobar-Duque, Jaider
Peña Gallardo, Rafael
Zamora-Musa, Ronald
dc.contributor.author.spa.fl_str_mv Acosta-Coll, Melisa
Ospino C., Adalberto
Carbonell-Navarro, Stalin
Escobar-Duque, Jaider
Peña Gallardo, Rafael
Zamora-Musa, Ronald
dc.subject.eng.fl_str_mv Clean energy
Electric potential
Microbial fuel cell
Plant microbial fuel cell
Resistivity
topic Clean energy
Electric potential
Microbial fuel cell
Plant microbial fuel cell
Resistivity
description Plants microbial fuel cells (PMFC) is novel systemthat generates renewable, clean, and sustainable electricity with minimal environmentalimpact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different studies show that the highest limitation for energy generation through MFC is the high resistivity of the cathode, and the solution is to replace the metallic electrodes with non-metallic materials to obtain a better performance, however, the application of these materials requires complex interdisciplinary work. This study conducted three experimental tests using metallic electrodes for the extraction of electrons and combined a black earth substrate with different natural materials, types of plants, and water to determine their influence in the increment of the electric power output.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-01T00:31:49Z
dc.date.available.none.fl_str_mv 2021-06-01T00:31:49Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2088-8708
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8313
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.11591/ijece.v11i3.pp1933-1941
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2088-8708
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8313
https://doi.org/10.11591/ijece.v11i3.pp1933-1941
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv M. Acosta-Coll et al., “Real-time early warning system design forpluvial flash floods-A review,”Sensors, vol. 18, p. 2255, Jul.2018.
J. Cabello et al., “Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba,”Journal of cleaner production,vol. 108, pp. 873–882, Dec.2015.
S. Oncel, “Green energy engineering: Opening a green way for the future,”Journal of cleaner production,vol. 142, pp. 3095–3100, Jan.2017
C. Robles-Algarín et al.,“Procedimiento para la Selección de Criterios en la Planificación Energética de Zonas Rurales Colombianas,”Información tecnológica,vol. 29, pp. 71–80, Jun.2018.
M. Rahimnejadet al.,“Microbial fuel cell as new technology for bioelectricity generation: A review,”Alexandria Engineering Journal,vol. 54, pp. 745–756, Sep.2015
A. Franks and K. Nevin, “Microbial fuel cells, a current review,”Energies,vol. 3, pp. 899–919, Apr.2010
C. Santoroet al.,“Microbial fuel cells: from fundamentals to applications. A review,”Journal of power sources,vol. 356, pp.225–244, Jul.2017
S. Flimbanet al.,“Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability,”Energies, vol. 12, p. 3390, Sep.2019.
A. Nandyet al.,“Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge,”Energies, vol.12, p. 1034, Mar.2019.
R. Regmiet al.,“A decade of plant-assisted microbial fuel cells: looking back and moving forward,”Biofuels, vol.9, pp. 605–612, Feb.2018.
K. Aiyer, “How does electron transferoccur in microbial fuel cells?”World Journal of Microbiology and Biotechnology,vol.36, p.19, Jan.2020.
M. Rossiet al., “Let the microbes power your sensing display,”2017 IEEE Sensors, pp. 1-3, Nov.2017
M. Vanitha et al., “Microbial fuel cell characterisation and evaluation of Lysinibacillus macroidesMFC02 electrigenic capability,”World Journal of Microbiology and Biotechnology, vol. 33, p.91, Apr.2017.
B. Loganet al.,“Microbial fuel cells: methodology and technology,”Environmental science & technology,vol. 40, pp. 5181-5192, Jul.2006
G. Chen et al., “Application of biocathode in microbial fuel cells: cell performance and microbial community,” Applied microbiology and biotechnology, vol. 79, pp. 379–388, Jun. 2008.
F. Offei et al., “A viable electrode material for use in microbial fuel cells for tropical regions,” Energies, vol. 9, p. 35, Jan. 2016.
Q. Deng et al., “Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell,” Journal of Power Sources, vol. 195, pp. 1130–1135, Feb. 2010.
A. Ter Heijne et al., “A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells,” Environmental science & technology, vol. 40, pp. 5200–5205, Jul. 2006.
K. Vezina, “Plant Lamps” Turn Dirt and Vegetation into a Power Source,” MIT Technology Review [Online]. Available: https://declara.com/content/OgeWo67a.
P. Sarma and K. Mohanty, “Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode,” Journal of bioscience and bioengineering, vol. 126, pp. 404–410, Sep. 2018.
B. Liu et al., “Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations,” Chemosphere, vol. 209, pp. 739–747, Oct. 2018.
Y. Hubenova and M. Mitov, “Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell,” Bioelectrochemistry, vol. 87, pp. 185–191, Oct. 2012.
M. Helder et al., “Electricity production with living plants on a green roof: environmental performance of the plant‐ microbial fuel cell,” Biofuels, Bioproducts and Biorefining, vol. 7, pp. 52–64, Jan. 2013
R. Moliner, “Del carbón activo al grafeno: Evolución de los materiales de carbon,” Boletín del Grupo Español del Carbón, vol. 41, pp. 2–5, Sep. 2016.
M. Richard, “El carbón activo ya se fabrica con una estructura diseñada a medida,” MIT Technology Review [Online]. Available: https://www.technologyreview.es/s/4951/el-carbon-activo-ya-se-fabrica-con-una-estructuradisenada-medida
P. Omo-Okoro et al., “A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies,” Environmental Technology & Innovation, vol. 9, pp. 100–114, Feb. 2018.
K. Palansooriya et al., “Impacts of biochar application on upland agriculture: A review,” Journal of environmental management, vol. 234, pp. 52–64, Mar. 2019.
J. Kamcev et al., “Salt concentration dependence of ionic conductivity in ion exchange membranes,” Journal of Membrane Science, vol. 547, pp. 123–133, 2018.
C. Yuan et al., “Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China,” Agricultural water management, vol. 212, pp. 424–432, Feb. 2019.
C. Alexander, Fundamentals of electric circuits. McGraw-Hill, 2009
J. Frouz, “Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization,” Geoderma, vol. 332, pp. 161–172, Dec. 2018.
S. Rostami and A. Azhdarpoor, “The application of plant growth regulators to improve phytoremediation of contaminated soils: A review,” Chemosphere, vol. 220, pp. 818–827, Apr. 2019.
R. Piyare et al., “Plug into a plant: Using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system,” 2017 IEEE 42nd Conference on Local Computer Networks Workshops, Nov. 2017, pp. 1–4.
G. Atzori et al., “Seawater potential use in soilless culture: A review,” Scientia Horticulturae, vol. 249, pp. 199–207, Apr. 2019
S. Yang et al., “Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity,” Chemical Engineering Research and Design, vol. 143, pp. 79–89, Mar. 2019.
F. Canna, “Influencia de la temperatura ambiental en las plantas,” CANNA Research [Online]. Available: http://www.canna.es/influencia_temperatura_ambiental_en_las_plantas.
O. Olubode, “Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber,” Scientia Horticulturae, vol. 243, pp. 622–644, Jan. 2019.
M. Benlloch-González et al., “Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants,” Journal of plant physiology, vol. 207, pp. 22–29, Dec. 2016.
J. Ni et al., “Effects of vegetation on soil temperature and water content: Field monitoring and numerical modeling,” Journal of Hydrology, vol. 571, pp. 494–502, Apr. 2019.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv International Journal of Electrical and Computer Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijece.iaescore.com/index.php/IJECE/article/view/23963
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b3b25b15-00eb-437b-8810-00bfac9f2227/download
https://repositorio.cuc.edu.co/bitstreams/55e6a42e-0a8c-4e4a-a1f6-ef5cebb20422/download
https://repositorio.cuc.edu.co/bitstreams/8e30d97e-cf08-43a7-88dd-4df8ab0a8c50/download
https://repositorio.cuc.edu.co/bitstreams/480e4b81-b63f-4f0b-8cb5-07ca69685696/download
https://repositorio.cuc.edu.co/bitstreams/da1b0800-ff4b-4d6f-89ad-ce45df945616/download
bitstream.checksum.fl_str_mv 4bc8bb930ae212bbeb1532eb52a78356
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
75c064bfa3fb6a7346ae53277f72b2d5
5d0bef657fa95204d7a55a5d4192cbf3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760799811633152
spelling Acosta-Coll, MelisaOspino C., AdalbertoCarbonell-Navarro, StalinEscobar-Duque, JaiderPeña Gallardo, RafaelZamora-Musa, Ronald2021-06-01T00:31:49Z2021-06-01T00:31:49Z20212088-8708https://hdl.handle.net/11323/8313https://doi.org/10.11591/ijece.v11i3.pp1933-1941Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Plants microbial fuel cells (PMFC) is novel systemthat generates renewable, clean, and sustainable electricity with minimal environmentalimpact. However, PMFC has limitations in power generation and current density, since its production values is lower than other renewable technologies. Different studies show that the highest limitation for energy generation through MFC is the high resistivity of the cathode, and the solution is to replace the metallic electrodes with non-metallic materials to obtain a better performance, however, the application of these materials requires complex interdisciplinary work. This study conducted three experimental tests using metallic electrodes for the extraction of electrons and combined a black earth substrate with different natural materials, types of plants, and water to determine their influence in the increment of the electric power output.Acosta-Coll, Melisa-will be generated-orcid-0000-0002-5433-0414-600Ospino C., Adalberto-will be generated-orcid-0000-0003-1466-0424-600Carbonell-Navarro, StalinEscobar-Duque, JaiderPeña Gallardo, Rafael-will be generated-orcid-0000-0001-7776-6547-600Zamora-Musa, Ronaldapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Electrical and Computer Engineeringhttp://ijece.iaescore.com/index.php/IJECE/article/view/23963Clean energyElectric potentialMicrobial fuel cellPlant microbial fuel cellResistivitySubstrate treatment for the increment of electric power potential from plants microbial fuel cellsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionM. Acosta-Coll et al., “Real-time early warning system design forpluvial flash floods-A review,”Sensors, vol. 18, p. 2255, Jul.2018.J. Cabello et al., “Bridging universities and industry through cleaner production activities. Experiences from the Cleaner Production Center at the University of Cienfuegos, Cuba,”Journal of cleaner production,vol. 108, pp. 873–882, Dec.2015.S. Oncel, “Green energy engineering: Opening a green way for the future,”Journal of cleaner production,vol. 142, pp. 3095–3100, Jan.2017C. Robles-Algarín et al.,“Procedimiento para la Selección de Criterios en la Planificación Energética de Zonas Rurales Colombianas,”Información tecnológica,vol. 29, pp. 71–80, Jun.2018.M. Rahimnejadet al.,“Microbial fuel cell as new technology for bioelectricity generation: A review,”Alexandria Engineering Journal,vol. 54, pp. 745–756, Sep.2015A. Franks and K. Nevin, “Microbial fuel cells, a current review,”Energies,vol. 3, pp. 899–919, Apr.2010C. Santoroet al.,“Microbial fuel cells: from fundamentals to applications. A review,”Journal of power sources,vol. 356, pp.225–244, Jul.2017S. Flimbanet al.,“Overview of recent advancements in the microbial fuel cell from fundamentals to applications: design, major elements, and scalability,”Energies, vol. 12, p. 3390, Sep.2019.A. Nandyet al.,“Comparative evaluation of coated and non-coated carbon electrodes in a microbial fuel cell for treatment of municipal sludge,”Energies, vol.12, p. 1034, Mar.2019.R. Regmiet al.,“A decade of plant-assisted microbial fuel cells: looking back and moving forward,”Biofuels, vol.9, pp. 605–612, Feb.2018.K. Aiyer, “How does electron transferoccur in microbial fuel cells?”World Journal of Microbiology and Biotechnology,vol.36, p.19, Jan.2020.M. Rossiet al., “Let the microbes power your sensing display,”2017 IEEE Sensors, pp. 1-3, Nov.2017M. Vanitha et al., “Microbial fuel cell characterisation and evaluation of Lysinibacillus macroidesMFC02 electrigenic capability,”World Journal of Microbiology and Biotechnology, vol. 33, p.91, Apr.2017.B. Loganet al.,“Microbial fuel cells: methodology and technology,”Environmental science & technology,vol. 40, pp. 5181-5192, Jul.2006G. Chen et al., “Application of biocathode in microbial fuel cells: cell performance and microbial community,” Applied microbiology and biotechnology, vol. 79, pp. 379–388, Jun. 2008.F. Offei et al., “A viable electrode material for use in microbial fuel cells for tropical regions,” Energies, vol. 9, p. 35, Jan. 2016.Q. Deng et al., “Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell,” Journal of Power Sources, vol. 195, pp. 1130–1135, Feb. 2010.A. Ter Heijne et al., “A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells,” Environmental science & technology, vol. 40, pp. 5200–5205, Jul. 2006.K. Vezina, “Plant Lamps” Turn Dirt and Vegetation into a Power Source,” MIT Technology Review [Online]. Available: https://declara.com/content/OgeWo67a.P. Sarma and K. Mohanty, “Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode,” Journal of bioscience and bioengineering, vol. 126, pp. 404–410, Sep. 2018.B. Liu et al., “Anodic potentials, electricity generation and bacterial community as affected by plant roots in sediment microbial fuel cell: Effects of anode locations,” Chemosphere, vol. 209, pp. 739–747, Oct. 2018.Y. Hubenova and M. Mitov, “Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell,” Bioelectrochemistry, vol. 87, pp. 185–191, Oct. 2012.M. Helder et al., “Electricity production with living plants on a green roof: environmental performance of the plant‐ microbial fuel cell,” Biofuels, Bioproducts and Biorefining, vol. 7, pp. 52–64, Jan. 2013R. Moliner, “Del carbón activo al grafeno: Evolución de los materiales de carbon,” Boletín del Grupo Español del Carbón, vol. 41, pp. 2–5, Sep. 2016.M. Richard, “El carbón activo ya se fabrica con una estructura diseñada a medida,” MIT Technology Review [Online]. Available: https://www.technologyreview.es/s/4951/el-carbon-activo-ya-se-fabrica-con-una-estructuradisenada-medidaP. Omo-Okoro et al., “A review of the application of agricultural wastes as precursor materials for the adsorption of per-and polyfluoroalkyl substances: a focus on current approaches and methodologies,” Environmental Technology & Innovation, vol. 9, pp. 100–114, Feb. 2018.K. Palansooriya et al., “Impacts of biochar application on upland agriculture: A review,” Journal of environmental management, vol. 234, pp. 52–64, Mar. 2019.J. Kamcev et al., “Salt concentration dependence of ionic conductivity in ion exchange membranes,” Journal of Membrane Science, vol. 547, pp. 123–133, 2018.C. Yuan et al., “Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China,” Agricultural water management, vol. 212, pp. 424–432, Feb. 2019.C. Alexander, Fundamentals of electric circuits. McGraw-Hill, 2009J. Frouz, “Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization,” Geoderma, vol. 332, pp. 161–172, Dec. 2018.S. Rostami and A. Azhdarpoor, “The application of plant growth regulators to improve phytoremediation of contaminated soils: A review,” Chemosphere, vol. 220, pp. 818–827, Apr. 2019.R. Piyare et al., “Plug into a plant: Using a plant microbial fuel cell and a wake-up radio for an energy neutral sensing system,” 2017 IEEE 42nd Conference on Local Computer Networks Workshops, Nov. 2017, pp. 1–4.G. Atzori et al., “Seawater potential use in soilless culture: A review,” Scientia Horticulturae, vol. 249, pp. 199–207, Apr. 2019S. Yang et al., “Performance modelling of seawater electrolysis in an undivided cell: Effects of current density and seawater salinity,” Chemical Engineering Research and Design, vol. 143, pp. 79–89, Mar. 2019.F. Canna, “Influencia de la temperatura ambiental en las plantas,” CANNA Research [Online]. Available: http://www.canna.es/influencia_temperatura_ambiental_en_las_plantas.O. Olubode, “Influence of seasonal variability of precipitation and temperature on performances of pawpaw varieties intercropped with cucumber,” Scientia Horticulturae, vol. 243, pp. 622–644, Jan. 2019.M. Benlloch-González et al., “Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants,” Journal of plant physiology, vol. 207, pp. 22–29, Dec. 2016.J. Ni et al., “Effects of vegetation on soil temperature and water content: Field monitoring and numerical modeling,” Journal of Hydrology, vol. 571, pp. 494–502, Apr. 2019.PublicationORIGINAL23963-47331-1-PB.pdf23963-47331-1-PB.pdfapplication/pdf566937https://repositorio.cuc.edu.co/bitstreams/b3b25b15-00eb-437b-8810-00bfac9f2227/download4bc8bb930ae212bbeb1532eb52a78356MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/55e6a42e-0a8c-4e4a-a1f6-ef5cebb20422/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8e30d97e-cf08-43a7-88dd-4df8ab0a8c50/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL23963-47331-1-PB.pdf.jpg23963-47331-1-PB.pdf.jpgimage/jpeg64131https://repositorio.cuc.edu.co/bitstreams/480e4b81-b63f-4f0b-8cb5-07ca69685696/download75c064bfa3fb6a7346ae53277f72b2d5MD54TEXT23963-47331-1-PB.pdf.txt23963-47331-1-PB.pdf.txttext/plain27388https://repositorio.cuc.edu.co/bitstreams/da1b0800-ff4b-4d6f-89ad-ce45df945616/download5d0bef657fa95204d7a55a5d4192cbf3MD5511323/8313oai:repositorio.cuc.edu.co:11323/83132024-09-17 12:45:39.594http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==