Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia
In this work, the technical-economic and environmental viability of a municipal solid waste (MSW) gasification plant for the production of electricity in Sincelejo, Colombia was investigated. The study was carried out using a model implemented in Aspen plus, which allowed obtaining material and ener...
- Autores:
-
Coavas Fuentes, Rosa Julia
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13670
- Acceso en línea:
- https://hdl.handle.net/11323/13670
https://repositorio.cuc.edu.co/
- Palabra clave:
- Economic feasibility
Efficiency
Electricity
Gasification
Municipal solid waste
Syngas
Technoeconomic
Viabilidad económica
Eficiencia
Electricidad
Gasificación
Residuos sólidos urbanos
Syngas
Tecnoeconómico
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
RCUC2_31d931eb8528eaca137082aeaf91c690 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13670 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
title |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
spellingShingle |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia Economic feasibility Efficiency Electricity Gasification Municipal solid waste Syngas Technoeconomic Viabilidad económica Eficiencia Electricidad Gasificación Residuos sólidos urbanos Syngas Tecnoeconómico |
title_short |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
title_full |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
title_fullStr |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
title_full_unstemmed |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
title_sort |
Evaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, Colombia |
dc.creator.fl_str_mv |
Coavas Fuentes, Rosa Julia |
dc.contributor.advisor.none.fl_str_mv |
Balbis Morejón Milen Cabello Eras Juan José |
dc.contributor.author.none.fl_str_mv |
Coavas Fuentes, Rosa Julia |
dc.contributor.jury.none.fl_str_mv |
Hernández Ruydiaz Jorge Emilio Sagastume Gutierrez Alexis |
dc.subject.proposal.eng.fl_str_mv |
Economic feasibility Efficiency Electricity Gasification Municipal solid waste Syngas Technoeconomic |
topic |
Economic feasibility Efficiency Electricity Gasification Municipal solid waste Syngas Technoeconomic Viabilidad económica Eficiencia Electricidad Gasificación Residuos sólidos urbanos Syngas Tecnoeconómico |
dc.subject.proposal.spa.fl_str_mv |
Viabilidad económica Eficiencia Electricidad Gasificación Residuos sólidos urbanos Syngas |
dc.subject.proposal.none.fl_str_mv |
Tecnoeconómico |
description |
In this work, the technical-economic and environmental viability of a municipal solid waste (MSW) gasification plant for the production of electricity in Sincelejo, Colombia was investigated. The study was carried out using a model implemented in Aspen plus, which allowed obtaining material and energy balances, essential for the calculation of technical, economic and environmental indicators. The economic calculations were carried out following the methodology established by Peters & Timmerhaus. Different types of MSW were considered including food waste, wood, paper and cardboard residues, as well as pruning and garden remains. Two waste utilization scenarios were evaluated: scenario 1, with 69% utilization and scenario 2, with 34% utilization. The results revealed that the overall efficiency of the process was 14.3% and an energy resource efficiency of 49%. Both scenarios present technical feasibility, however, the differences in their scales, 167 t/day in scenario 1 versus 85 t/day in scenario 2, impacted the viability of the project and operating costs. Scenario 1 presents significant economic viability, with a positive NPV and a favorable IRR, attributable to its larger scale of operation. In contrast, while Scenario 2 is not economically favorable. In both cases, without subsidies or incentives, the projects are unviable. In conclusion, both scenarios represent a clean solution for waste treatment, significantly reducing CO₂e emissions compared to landfilling, highlighting the importance of sustainable policies and advanced technologies for waste management. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-12T13:14:02Z |
dc.date.available.none.fl_str_mv |
2024-11-12T13:14:02Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13670 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/13670 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abdeljaber, A., Zannerni, R., Masoud, W., Abdallah, M., & Rocha-Meneses, L. (2022). Eco Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment. Sustainability (Switzerland), 14(7), 3899. https://doi.org/10.3390/SU14073899/S1 Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/J.EJPE.2018.07.003 Abushammala, M. F. M., & Qazi, W. A. (2021). Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technologies and Environmental Policy, 23(7), 2011–2023. https://doi.org/10.1007/S10098- 021-02099-8/METRICS Agaton, C. B., Guno, C. S., Villanueva, R. O., & Villanueva, R. O. (2020). Economic analysis of waste-to-energy investment in the Philippines: A real options approach. Applied Energy, 275, 115265. https://doi.org/10.1016/J.APENERGY.2020.115265 Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L. A., & Moldestad, B. M. E. (2019). Measurement and characterization of biomass mean residence time in an air-blown bubbling fluidized bed gasification reactor. Fuel, 253, 1414–1423. https://doi.org/10.1016/J.FUEL.2019.05.103 Ahmed, A. M. A., Salmiaton, A., Choong, T. S. Y., & Wan Azlina, W. A. K. G. (2015). Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus. Renewable and Sustainable Energy Reviews, 52, 1623–1644. https://doi.org/10.1016/J.RSER.2015.07.125 Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2022). Recent advances in thermodynamic analysis of biomass gasification: A review on numerical modelling and simulation. Journal of the Energy Institute, 102, 395–419. https://doi.org/10.1016/J.JOEI.2022.05.003 Akhator, P., & Asibor, J. (2021a). SIMULATION OF AIR‐GASIFICATION OF WOOD WASTES USING ASPEN PLUS. International Journal of Engineering Science and Application, 5(3), 86–97. https://dergipark.org.tr/en/pub/ijesa/issue/65216/975953 Akhator, P., & Asibor, J. (2021b). Simulation of Air-Gasification of Wood Wastes Using Aspen Plus. INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION Akhator and Asibor, 5(3). Alcaldia de sincelejo. (2022). PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SÓLIDOS. https://alcaldiadesincelejo.gov.co/Transparencia/PlaneacionGestionyControl/PLAN%20DE %20GESTION%20INTEGRAL%20DE%20RESIDUOS%20SÓLIDOS%20PGIRS%20SIN CELEJO%202022.pdf Aleluia, J., & Ferrão, P. (2017). Assessing the costs of municipal solid waste treatment technologies in developing Asian countries. Waste Management, 69, 592–608. https://doi.org/10.1016/J.WASMAN.2017.08.047 AlNouss, A., McKay, G., & Al-Ansari, T. (2020). Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 242, 118499. https://doi.org/10.1016/J.JCLEPRO.2019.118499 Alzate, S., Restrepo-Cuestas, B., & Jaramillo-Duque, Á. (2019a). Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, Vol. 8, Page 51, 8(1), 51. https://doi.org/10.3390/RESOURCES8010051 Alzate, S., Restrepo-Cuestas, B., & Jaramillo-Duque, Á. (2019b). Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, Vol. 8, Page 51, 8(1), 51. https://doi.org/10.3390/RESOURCES8010051 Amin, N., Aslam, M., khan, Z., Yasin, M., Hossain, S., Shahid, M. K., Inayat, A., Samir, A., Ahmad, R., Murshed, M. N., Khurram, M. S., El Sayed, M. E., & Ghauri, M. (2023). Municipal solid waste treatment for bioenergy and resource production: Potential technologies, techno-economic-environmental aspects and implications of membrane-based recovery. Chemosphere, 323, 138196. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138196 Arafat, H. A., Jijakli, K., & Ahsan, A. (2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/J.JCLEPRO.2013.11.071 Arena, U. (2012a). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(4), 625–639. https://doi.org/10.1016/J.WASMAN.2011.09.025 Arena, U. (2012b). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(4), 625–639. https://doi.org/10.1016/J.WASMAN.2011.09.025 Aydin, E. S., Yucel, O., & Sadikoglu, H. (2018). Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification. International Journal of Hydrogen Energy, 43(2), 1105–1115. https://doi.org/10.1016/J.IJHYDENE.2017.11.013 Banco de desarollo de America latina. (2018). Economía circular e innovación tecnológica en residuos sólidos: Oportunidades en América Latina. Banco de la República. (2024). https://www.banrep.gov.co/es Barragán-Escandón, A., Ruiz, J. M. O., Tigre, J. D. C., & Zalamea-León, E. F. (2020). Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability 2020, Vol. 12, Page 2669, 12(7), 2669. https://doi.org/10.3390/SU12072669 Basu, P. (2018). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory - Prabir Basu - Google Libros. Academic Press. Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013a). Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies 2013, Vol. 6, Pages 6508-6524, 6(12), 6508–6524. https://doi.org/10.3390/EN6126508 Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013b). Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies 2013, Vol. 6, Pages 6508-6524, 6(12), 6508–6524. https://doi.org/10.3390/EN6126508 Bhoi, P. R., Huhnke, R. L., Kumar, A., Indrawan, N., & Thapa, S. (2018). Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, 163, 513–518. https://doi.org/10.1016/J.ENERGY.2018.08.151 Bijos, J. C. B. F., Zanta, V. M., Morató, J., Queiroz, L. M., & Oliveira-Esquerre, K. P. S. R. (2022). Improving circularity in municipal solid waste management through machine learning in Latin America and the Caribbean. Sustainable Chemistry and Pharmacy, 28, 100740. https://doi.org/10.1016/J.SCP.2022.100740 Cabuk, B., Duman, G., Yanik, J., & Olgun, H. (2020). Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. International Journal of Hydrogen Energy, 45(5), 3435–3443. https://doi.org/10.1016/J.IJHYDENE.2019.02.130 Campbell, R. M., Anderson, N. M., Daugaard, D. E., & Naughton, H. T. (2018). Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Applied Energy, 230, 330–343. https://doi.org/10.1016/J.APENERGY.2018.08.085 Cao, L., Yu, I. K. M., Xiong, X., Tsang, D. C. W., Zhang, S., Clark, J. H., Hu, C., Ng, Y. H., Shang, J., & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547. https://doi.org/10.1016/J.ENVRES.2020.109547 Cao, Y., Fu, L., & Mofrad, A. (2019a). Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute, 92(6), 1683–1688. https://doi.org/10.1016/J.JOEI.2019.01.006 Cao, Y., Fu, L., & Mofrad, A. (2019b). Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute, 92(6), 1683–1688. https://doi.org/10.1016/J.JOEI.2019.01.006 Carmona-Garcia, E., Ortiz-Sánchez, M., & Cardona Alzate, C. A. (2019). Analysis of the Coffee Cut Stems as Raw Material for the Production of Sugars for Acetone–Butanol–Ethanol (ABE) Fermentation: Techno-Economic Analysis. Waste and Biomass Valorization, 10(12), 3793–3808. https://doi.org/10.1007/S12649-019-00632-X/METRICS Celia Martínez de León. (2016). Estudio tecno-económico de una planta de gasificación de residuos sólidos urbanos para aplicaciones de caldera y motor. Universidad de sevilla. Chan, W. P., Veksha, A., Lei, J., Oh, W. Da, Dou, X., Giannis, A., Lisak, G., & Lim, T. T. (2019). A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Applied Energy, 237, 227–240. https://doi.org/10.1016/J.APENERGY.2019.01.031 Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. T. (2021a). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291, 112661. https://doi.org/10.1016/J.JENVMAN.2021.112661 Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. T. (2021b). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291, 112661. https://doi.org/10.1016/J.JENVMAN.2021.112661 Chen, C., Jin, Y. Q., Yan, J. H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58–63. https://doi.org/10.1016/J.FUEL.2011.06.075 Chen, W., & Geng, W. (2017). Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input. Energy, 120, 283–292. https://doi.org/10.1016/J.ENERGY.2016.11.080 Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130 Cudjoe, D., & Wang, H. (2022). Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Processing Technology, 237, 107470. https://doi.org/10.1016/J.FUPROC.2022.107470 Dahmani, M., Périlhon, C., Marvillet, C., Hajjaji, N., Houas, A., & Khila, Z. (2017a). Development of a fixed bed gasifier model and optimal operating conditions determination. AIP Conference Proceedings, 1814. https://doi.org/10.1063/1.4976288 Dahmani, M., Périlhon, C., Marvillet, C., Hajjaji, N., Houas, A., & Khila, Z. (2017b). Development of a fixed bed gasifier model and optimal operating conditions determination. AIP Conference Proceedings, 1814. https://doi.org/10.1063/1.4976288 Dalmo, F. C., Simão, N. M., Lima, H. Q. de, Medina Jimenez, A. C., Nebra, S., Martins, G., Palacios-Bereche, R., & Henrique de Mello Sant’Ana, P. (2019). Energy recovery overview of municipal solid waste in São Paulo State, Brazil. Journal of Cleaner Production, 212, 461–474. https://doi.org/10.1016/J.JCLEPRO.2018.12.016 Deng, N., Li, D., Zhang, Q., Zhang, A., Cai, R., & Zhang, B. (2019). Simulation analysis of municipal solid waste pyrolysis and gasification based on Aspen plus. Frontiers in Energy, 13(1), 64–70. https://doi.org/10.1007/S11708-017-0481-7/METRICS Deng, N., Zhang, A., Zhang, Q., He, G., Cui, W., Chen, G., & Song, C. (2017). Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model. Bioresource Technology, 235, 371–379. https://doi.org/10.1016/J.BIORTECH.2017.03.072 Departamento Nacional de plaenación. (2022). Resolución 1092 de 2022. Https://Colaboracion.Dnp.Gov.Co/CDT/Participacin%20privada%20en%20proyectos%20d e%20infraestructu/Resoluci%C3%B3n%201092%20de%202022%20Por%20la%20cul%20 se%20adopta%20la%20tasa%20Social%20de%20Descuento.Pdf. Departamento Nacional de Planeación. (2022). Resolucion 1092 de 2022. Https://Colaboracion.Dnp.Gov.Co/CDT/Participacin%20privada%20en%20proyectos%20d e%20infraestructu/Resoluci%C3%B3n%201092%20de%202022%20Por%20la%20cul%20 se%20adopta%20la%20tasa%20Social%20de%20Descuento.Pdf. Di Maria, F., Sisani, F., & Contini, S. (2018). Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Applied Energy, 230, 1557–1572. https://doi.org/10.1016/J.APENERGY.2018.09.007 Díaz González, C. A., de Oliveira, D. C., Yepes, D. M., Pacheco, L. E., & Silva, E. E. (2023). Aspen Plus model of a downdraft gasifier for lignocellulosic biomass adjusted by Principal Component Analysis. Energy Conversion and Management, 296, 117570. https://doi.org/10.1016/J.ENCONMAN.2023.117570 Díaz González, C. A., & Pacheco Sandoval, L. (2020). Sustainability aspects of biomass gasification systems for small power generation. Renewable and Sustainable Energy Reviews, 134, 110180. https://doi.org/10.1016/J.RSER.2020.110180 Doherty, W., Reynolds, A., & Kennedy, D. (2009). The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass and Bioenergy, 33(9), 1158–1167. https://doi.org/10.1016/J.BIOMBIOE.2009.05.004 Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., & Huang, Q. (2016). Effect of Operating Parameters and Moisture Content on Municipal Solid Waste Pyrolysis and Gasification. Energy and Fuels, 30(5), 3994–4001. https://doi.org/10.1021/ACS.ENERGYFUELS.6B00042 Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., & Zhou, Z. (2018a). Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production, 203, 287–300. https://doi.org/10.1016/J.JCLEPRO.2018.08.139 Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., & Zhou, Z. (2018b). Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production, 203, 287–300. https://doi.org/10.1016/J.JCLEPRO.2018.08.139 Duan, Y., Tarafdar, A., Kumar, V., Ganeshan, P., Rajendran, K., Shekhar Giri, B., Gómez-García, R., Li, H., Zhang, Z., Sindhu, R., Binod, P., Pandey, A., Taherzadeh, M. J., Sarsaiya, S., Jain, A., & Kumar Awasthi, M. (2022). Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. Fuel, 325, 124846. https://doi.org/10.1016/J.FUEL.2022.124846 Fallahizadeh, S., Rahmatinia, M., Mohammadi, Z., Vaezzadeh, M., Tajamiri, A., & Soleimani, H. (2019). Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX, 6, 391–398. https://doi.org/10.1016/J.MEX.2019.02.013 Farooq, A., Haputta, P., Silalertruksa, T., & Gheewala, S. H. (2021). A Framework for the Selection of Suitable Waste to Energy Technologies for a Sustainable Municipal Solid Waste Management System. Frontiers in Sustainability, 2, 681690. https://doi.org/10.3389/FRSUS.2021.681690/BIBTEX Fernández-González, J. M., Grindlay, A. L., Serrano-Bernardo, F., Rodríguez-Rojas, M. I., & Zamorano, M. (2017). Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management, 67, 360–374. https://doi.org/10.1016/J.WASMAN.2017.05.003 Ferreira de Oliveira Leite, F., Escobar Palacio, J. C., Arcanjo Batista, M. J., & Grillo Renó, M. L. (2022). Evaluation of technological alternatives for the treatment of urban solid waste: A case study of Minas Gerais, Brazil. Journal of Cleaner Production, 330, 129618. https://doi.org/10.1016/J.JCLEPRO.2021.129618 Ferronato, N., & Torretta, V. (2019). Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health 2019, Vol. 16, Page 1060, 16(6), 1060. https://doi.org/10.3390/IJERPH16061060 Gałko, G., Mazur, I., Rejdak, M., Jagustyn, B., Hrabak, J., Ouadi, M., Jahangiri, H., & Sajdak, M. (2023). Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications. Energy, 263, 125920. https://doi.org/10.1016/J.ENERGY.2022.125920 Gutiérrez, A. S., Mendoza Fandiño, J. M., & Cabello Eras, J. J. (2021). Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). International Journal of Sustainable Engineering, 14(6), 1809–1825. https://doi.org/10.1080/19397038.2021.1993378 Gutierrez-Gomez, A. C., Gallego, A. G., Palacios-Bereche, R., Tofano de Campos Leite, J., & Pereira Neto, A. M. (2021). Energy recovery potential from Brazilian municipal solid waste via combustion process based on its thermochemical characterization. Journal of Cleaner Production, 293, 126145. https://doi.org/10.1016/J.JCLEPRO.2021.126145 Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230. https://doi.org/10.1002/CL2.1230 Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101. https://doi.org/10.1016/J.WASMAN.2016.09.030 Hameed, Z., Aslam, M., Khan, Z., Maqsood, K., Atabani, A. E., Ghauri, M., Khurram, M. S., Rehan, M., & Nizami, A. S. (2021). Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects. Renewable and Sustainable Energy Reviews, 136. https://doi.org/10.1016/j.rser.2020.110375 Han, J., Huang, Z., Qin, L., Chen, W., Zhao, B., & Xing, F. (2021). Refused derived fuel from municipal solid waste used as an alternative fuel during the iron ore sinter process. Journal of Cleaner Production, 278, 123594. https://doi.org/10.1016/J.JCLEPRO.2020.123594 Hasan, M. M., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Jahirul, M. I. (2021). Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renewable and Sustainable Energy Reviews, 145, 111073. https://doi.org/10.1016/J.RSER.2021.111073 Havilah, P. R., Sharma, A. K., Govindasamy, G., Matsakas, L., & Patel, A. (2022). Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies 2022, Vol. 15, Page 3938, 15(11), 3938. https://doi.org/10.3390/EN15113938 Hernández, J. J., Aranda, G., Barba, J., & Mendoza, J. M. (2012). Effect of steam content in the air–steam flow on biomass entrained flow gasification. Fuel Processing Technology, 99, 43–55. https://doi.org/10.1016/J.FUPROC.2012.01.030 Hettiarachchi, H., Ryu, S., Caucci, S., & Silva, R. (2018). Municipal Solid Waste Management in Latin America and the Caribbean: Issues and Potential Solutions from the Governance Perspective. Recycling 2018, Vol. 3, Page 19, 3(2), 19. https://doi.org/10.3390/RECYCLING3020019 Hoang, A. T., Varbanov, P. S., Nižetić, S., Sirohi, R., Pandey, A., Luque, R., Ng, K. H., & Pham, V. V. (2022). Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. Journal of Cleaner Production, 359, 131897. https://doi.org/10.1016/J.JCLEPRO.2022.131897 Hoppe, W., Bringezu, S., & Thonemann, N. (2016). Comparison of global warming potential between conventionally produced and CO2-based natural gas used in transport versus chemical production. Journal of Cleaner Production, 121, 231–237. https://doi.org/10.1016/J.JCLEPRO.2016.02.042 Hu, M., Guo, D., Ma, C., Hu, Z., Zhang, B., Xiao, B., Luo, S., & Wang, J. (2015). Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture. Energy, 90, 857–863. https://doi.org/10.1016/J.ENERGY.2015.07.122 Hu, Y., Pang, K., Cai, L., & Liu, Z. (2021). A multi-stage co-gasification system of biomass and municipal solid waste (MSW) for high quality syngas production. Energy, 221, 119639. https://doi.org/10.1016/J.ENERGY.2020.119639 IEA. (2019). Biomass pre-treatment for bioenergy: Case study 3: Pretreatment of municipal solid waste (MSW) for gasification. https://www.ieabioenergy.com/blog/publications/biomass pre-treatment-for-bioenergy-case-study-3-pretreatment-of-municipal-solid-waste-msw-for gasification IEA Bioenergy. (2019). Municipal Solid Waste (MSW) pretreatment for gasification (Case Study 3). Https://Www.Ieabioenergy.Com/Wp-Content/Uploads/2019/02/CS3-MSW-Pretreatment for-Gasification.Pdf Im-Orb, K., Simasatitkul, L., & Arpornwichanop, A. (2016a). Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel, 164, 361–373. https://doi.org/10.1016/J.FUEL.2015.10.018 Im-Orb, K., Simasatitkul, L., & Arpornwichanop, A. (2016b). Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel, 164, 361–373. https://doi.org/10.1016/J.FUEL.2015.10.018 Indrawan, N., Kumar, A., & Kumar, S. (2018). Recent Advances in Power Generation Through Biomass and Municipal Solid Waste Gasification. Energy, Environment, and Sustainability, 369–401. https://doi.org/10.1007/978-981-10-7335-9_15/COVER Indrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020a). Distributed power generation via gasification of biomass and municipal solid waste: A review. Journal of the Energy Institute, 93(6), 2293–2313. https://doi.org/10.1016/J.JOEI.2020.07.001 Indrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020b). Distributed power generation via gasification of biomass and municipal solid waste: A review. https://doi.org/10.1016/j.joei.2020.07.001 Indrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020c). Distributed power generation via gasification of biomass and municipal solid waste: A review. Journal of the Energy Institute, 93(6), 2293–2313. https://doi.org/10.1016/J.JOEI.2020.07.001 Infiesta, L. R., Ferreira, C. R. N., Trovó, A. G., Borges, V. L., & Carvalho, S. R. (2019). Design of an industrial solid waste processing line to produce refuse-derived fuel. Journal of Environmental Management, 236(August 2018), 715–719. https://doi.org/10.1016/j.jenvman.2019.02.017 Inter-American Development Bank. (2015). Situation-of-solid-waste-management-in-America Latin-America-and-the-Caribbean. https://publications.iadb.org/publications/english/viewer/Solid-Waste-Management-in Latin-America-and-the-Caribbean.pdf Interaseo. (2015). Tarifas vigentes para el servicio público domiciliario de aseo. Https://Sincelejo.Interaseo.Com.Co/Wp Content/Uploads/Sites/50/2023/02/PUBLICACION-TARIFAS-SINCELEJO-Y-PA-EL OASIS.Pdf. International Renewable Energy Agency. (2012). Renewable energy technologies: Cost analysis series. https://www.irena.org/- /media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis BIOMASS.pd International Solid Waste Association. (2015). CIRCULAR ECONOMY: ENERGY AND FUELS. https://www.iswalac.org/descarga/Traduccion-espanol-Task-Force-Report-5.pdf Iqbal, S., Davies, T. E., Morgan, D. J., Karim, K., Hayward, J. S., Bartley, J. K., Taylor, S. H., & Hutchings, G. J. (2016). Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today, 275, 35–39. https://doi.org/10.1016/J.CATTOD.2015.09.041 Isa, N. M., Tan, C. W., & Yatim, A. H. M. (2018). A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system. Renewable and Sustainable Energy Reviews, 81, 2236–2263. https://doi.org/10.1016/J.RSER.2017.06.034 Jha, S., Nanda, S., Acharya, B., & Dalai, A. K. (2022). A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, Vol. 15, Page 6352, 15(17), 6352. https://doi.org/10.3390/EN15176352 Kartal, F., & Özveren, U. (2020). A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®. Energy, 209, 118457. https://doi.org/10.1016/J.ENERGY.2020.118457 Kawamoto, K., & Miyata, H. (2015). Dioxin formation and control in a gasification–melting plant. Environmental Science and Pollution Research, 22(19), 14621–14628. https://doi.org/10.1007/S11356-014-3104-4/METRICS Kaydouh, M. N., & El Hassan, N. (2022). Thermodynamic simulation of the co-gasification of biomass and plastic waste for hydrogen-rich syngas production. Results in Engineering, 16, 100771. https://doi.org/10.1016/J.RINENG.2022.100771 Kaza, S., Yao, L. C. ;, Bhada-Tata, Perinaz;, & Van Woerden, Frank. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f 28552410e90a Khan, A. H., López-Maldonado, E. A., Alam, S. S., Khan, N. A., López, J. R. L., Herrera, P. F. M., Abutaleb, A., Ahmed, S., & Singh, L. (2022). Municipal solid waste generation and the current state of waste-to-energy potential: State of art review. Energy Conversion and Management, 267, 115905. https://doi.org/10.1016/J.ENCONMAN.2022.115905 Kong, D., Luo, K., Wang, S., Yu, J., & Fan, J. (2022). Particle behaviours of biomass gasification in a bubbling fluidized bed. Chemical Engineering Journal, 428, 131847. https://doi.org/10.1016/J.CEJ.2021.131847 Kumar, A., & Samadder, S. R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422. https://doi.org/10.1016/J.WASMAN.2017.08.046 Kumar, A., & Sharma, M. P. (2014). Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustainable Energy Technologies and Assessments, 5, 50–61. https://doi.org/10.1016/J.SETA.2013.11.004 Kumar, A., Singh, E., Mishra, R., Lo, S. L., & Kumar, S. (2023). Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity. Energy, 275, 127471. https://doi.org/10.1016/J.ENERGY.2023.127471 Kushwah, A., Reina, T. R., & Short, M. (2022a). Modelling approaches for biomass gasifiers: A comprehensive overview. Science of The Total Environment, 834, 155243. https://doi.org/10.1016/J.SCITOTENV.2022.155243 Kushwah, A., Reina, T. R., & Short, M. (2022b). Modelling approaches for biomass gasifiers: A comprehensive overview. Science of The Total Environment, 834, 155243. https://doi.org/10.1016/J.SCITOTENV.2022.155243 Laurence Le Coq, D. C. A. (2012). Syngas Treatment Unit for Small Scale Gasification - Application to IC Engine Gas Quality Requirement. Journal of Applied Fluid Mechanics, 5(ISSN 1735-3572), 95–103. Lawal, I. M., Ndagi, A., Mohammed, A., Saleh, Y. Y., Shuaibu, A., Hassan, I., Abubakar, S., Soja, U. B., & Jagaba, A. H. (2023). Proximate analysis of waste-to-energy potential of municipal solid waste for sustainable renewable energy generation. Ain Shams Engineering Journal, 102357. https://doi.org/10.1016/J.ASEJ.2023.102357 Leme, M. M. V., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Lopes, B. M., & Ferreira, C. H. (2014). Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resources, Conservation and Recycling, 87, 8–20. https://doi.org/10.1016/J.RESCONREC.2014.03.003 Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920. https://doi.org/10.1016/J.BIOMBIOE.2020.105920 Li, Y., Zhou, L. W., & Wang, R. Z. (2017). Urban biomass and methods of estimating municipal biomass resources. Renewable and Sustainable Energy Reviews, 80, 1017–1030. https://doi.org/10.1016/J.RSER.2017.05.214 Lino, F. A. M., Ismail, K. A. R., & Castañeda-Ayarza, J. A. (2023). Municipal solid waste treatment in Brazil: A comprehensive review. Energy Nexus, 11, 100232. https://doi.org/10.1016/J.NEXUS.2023.100232 Liu, H., Liu, T., Wei, G., Zhao, H., Li, T., Weng, F., Guo, X., Wang, Y., & Lin, Y. (2022). Environmental and economic assessment of rural domestic waste gasification models in China. Waste Management, 154, 160–174. https://doi.org/10.1016/J.WASMAN.2022.10.001 Liu, Z. (2019). Gasification of municipal solid wastes: a review on the tar yields. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(11), 1296–1304. https://doi.org/10.1080/15567036.2018.1548508 Liu, Z., Zhao, C., Cai, L., & Long, X. (2022). Steady state modelling of steam-gasification of biomass for H2-rich syngas production. Energy, 238, 121616. https://doi.org/10.1016/J.ENERGY.2021.121616 Loha, C., Karmakar, M. K., De, S., & Chatterjee, P. K. (2018). Gasifiers: Types, Operational Principles, and Commercial Forms. Energy, Environment, and Sustainability, 63–91. https://doi.org/10.1007/978-981-10-7335-9_3/TABLES/1 Lourinho, G., Alves, O., Garcia, B., Rijo, B., Brito, P., & Nobre, C. (2023). Costs of Gasification Technologies for Energy and Fuel Production: Overview, Analysis, and Numerical Estimation. Recycling, 8(3), 49. https://doi.org/10.3390/RECYCLING8030049/S1 Luz, F. C., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Andrade, R. V., Leme, M. M. V., & Del Olmo, O. A. (2015a). Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Conversion and Management, 103, 321–337. https://doi.org/10.1016/J.ENCONMAN.2015.06.074 Luz, F. C., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Andrade, R. V., Leme, M. M. V., & Del Olmo, O. A. (2015b). Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Conversion and Management, 103, 321–337. https://doi.org/10.1016/J.ENCONMAN.2015.06.074 Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z., & Yao, H. (2010). Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology, 91(8), 903–909. https://doi.org/10.1016/J.FUPROC.2009.09.014 Mallick, D., Mahanta, P., & Moholkar, V. S. (2020). Co–gasification of coal/biomass blends in 50 kWe circulating fluidized bed gasifier. Journal of the Energy Institute, 93(1), 99–111. https://doi.org/10.1016/J.JOEI.2019.04.005 Martínez, J. D., Mahkamov, K., Andrade, R. V., & Silva Lora, E. E. (2012). Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renewable Energy, 38(1), 1–9. https://doi.org/10.1016/J.RENENE.2011.07.035 Materazzi, M., Lettieri, P., Mazzei, L., Taylor, R., & Chapman, C. (2013). Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification. Fuel, 108, 356–369. https://doi.org/10.1016/J.FUEL.2013.02.037 Ministerio para la Transición Ecológica y el Reto Demográfico. (2011). Mejores Técnicas Disponibles de referencia europea para Incineración de Residuos. Moghadam, R. A., Yusup, S., Uemura, Y., Chin, B. L. F., Lam, H. L., & Al Shoaibi, A. (2014). Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. Energy, 75, 40–44. https://doi.org/10.1016/J.ENERGY.2014.04.062 Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/10.1016/J.JECHEM.2015.11.005 Montiel-Bohórquez, N. D., Agudelo, A. F., & Pérez, J. F. (2022). Modelling of an Integrated Plasma Gasification Combined Cycle power plant using Aspen Plus. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/J.JKSUES.2022.06.004 Moshi, R. E., Jande, Y. A. C., Kivevele, T. T., & Kim, W. S. (2020). Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1806404 Munir, M. T., Mardon, I., Al-Zuhair, S., Shawabkeh, A., & Saqib, N. U. (2019). Plasma gasification of municipal solid waste for waste-to-value processing. Renewable and Sustainable Energy Reviews, 116, 109461. https://doi.org/10.1016/J.RSER.2019.109461 Murugesan, P., Raja, V., Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2022). Food waste valorisation via gasification – A review on emerging concepts, prospects and challenges. Science of The Total Environment, 851, 157955. https://doi.org/10.1016/J.SCITOTENV.2022.157955 Nanda, S., & Berruti, F. (2021a). Municipal solid waste management and landfilling technologies: a review. In Environmental Chemistry Letters (Vol. 19, Issue 2, pp. 1433–1456). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-020- 01100-y Nanda, S., & Berruti, F. (2021b). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456. https://doi.org/10.1007/S10311-020-01100-Y/METRICS Nandhini, R., Berslin, D., Sivaprakash, B., Rajamohan, N., & Vo, D. V. N. (2022). Thermochemical conversion of municipal solid waste into energy and hydrogen: a review. Environmental Chemistry Letters 2022 20:3, 20(3), 1645–1669. https://doi.org/10.1007/S10311-022- 01410-3 Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., & Oinas, P. (2015). Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste. Http://Dx.Doi.Org/10.1177/0734242X15615697, 34(1), 38–46. https://doi.org/10.1177/0734242X15615697 Neehaul, N., Jeetah, P., & Deenapanray, P. (2020a). Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environmental Development, 33, 100489. https://doi.org/10.1016/J.ENVDEV.2019.100489 Neehaul, N., Jeetah, P., & Deenapanray, P. (2020b). Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environmental Development, 33, 100489. https://doi.org/10.1016/J.ENVDEV.2019.100489 Obuobi, B., Adu-Gyamfi, G., Adjei, M., & Nketiah, E. (2022). Technologies potential and economic viability analysis of deriving electricity from Municipal Solid Waste in Kumasi, Ghana. Energy for Sustainable Development, 68, 318–331. https://doi.org/10.1016/J.ESD.2022.04.011 Oliveira, M., Ramos, A., Ismail, T. M., Monteiro, E., & Rouboa, A. (2022). A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments. Energies 2022, Vol. 15, Page 1475, 15(4), 1475. https://doi.org/10.3390/EN15041475 Otero Meza, D. D., Sagastume Gutiérrez, A., Cabello Eras, J. J., Salcedo Mendoza, J., & Hernández Ruydíaz, J. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/J.ENCONMAN.2023.117522 Ouedraogo, A. S., Frazier, R. S., & Kumar, A. (2021). Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes. Energies 2021, Vol. 14, Page 7032, 14(21), 7032. https://doi.org/10.3390/EN14217032 Panepinto, D., Tedesco, V., Brizio, E., & Genon, G. (2015). Environmental Performances and Energy Efficiency for MSW Gasification Treatment. Waste and Biomass Valorization, 6(1), 123–135. https://doi.org/10.1007/S12649-014-9322-7/METRICS Parthasarathy, P., Alherbawi, M., Shahbaz, M., Al-Ansari, T., & McKay, G. (2023). Developing biochar from potential wastes in Qatar and its revenue potential. Energy Conversion and Management: X, 20, 100467. https://doi.org/10.1016/J.ECMX.2023.100467 Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570–579. https://doi.org/10.1016/J.RENENE.2013.12.025 Peters, M. , & Timmerhaus, K. ,. (2003). Plant Design and Economics for Chemical Engineers (McGraw-Hill,). Popp, J., Kovács, S., Oláh, J., Divéki, Z., & Balázs, E. (2021). Bioeconomy: Biomass and biomass based energy supply and demand. New Biotechnology, 60, 76–84. https://doi.org/10.1016/J.NBT.2020.10.004 Porshnov, D., Ozols, V., Ansone-Bertina, L., Burlakovs, J., & Klavins, M. (2018). Thermal decomposition study of major refuse derived fuel components. Energy Procedia, 147, 48– 53. https://doi.org/10.1016/J.EGYPRO.2018.07.032 POSADA RESTREPO, E. (2020). Perspectives Of Project Engineering In The Disposal Of Solid Waste In Colombia And Possibilities Of Energy Use And Valuation. Revista EIA, 17(33), 56–73. https://doi.org/10.24050/REIA.V17I33.1314 Poveda-Giraldo, J. A., Piedrahita-Rodríguez, S., Salgado Aristizabal, N., Salas-Moreno, M., & Cardona Alzate, C. A. (2022). Prefeasibility analysis of small-scale biorefineries: the annatto and açai case to improve the incomes of rural communities. Biomass Conversion and Biorefinery, 1–26. https://doi.org/10.1007/S13399-022-03479-W/METRICS Pu, G., Zhou, H. P., & Hao, G. T. (2013). Study on pine biomass air and oxygen/steam gasification in the fixed bed gasifier. International Journal of Hydrogen Energy, 38(35), 15757–15763. https://doi.org/10.1016/J.IJHYDENE.2013.04.117 Quintero-Naucil, M., Salcedo-Mendoza, J., Solarte-Toro, J. C., & Aristizábal-Marulanda, V. (2024). Assessment and comparison of thermochemical pathways for the rice residues valorization: pyrolysis and gasification. Environmental Science and Pollution Research, 1–18. https://doi.org/10.1007/S11356-024-32241-0/FIGURES/6 Ramos Casado, R., Arenales Rivera, J., Borjabad García, E., Escalada Cuadrado, R., Fernández Llorente, M., Bados Sevillano, R., & Pascual Delgado, A. (2016). Classification and characterisation of SRF produced from different flows of processed MSW in the Navarra region and its co-combustion performance with olive tree pruning residues. Waste Management, 47, 206–216. https://doi.org/10.1016/J.WASMAN.2015.05.018 Ramzan, N., Ashraf, A., Naveed, S., & Malik, A. (2011a). Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy, 35(9), 3962–3969. https://doi.org/10.1016/J.BIOMBIOE.2011.06.005 Ramzan, N., Ashraf, A., Naveed, S., & Malik, A. (2011b). Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy, 35(9), 3962–3969. https://doi.org/10.1016/J.BIOMBIOE.2011.06.005 Rehrah, D., Bansode, R. R., Hassan, O., & Ahmedna, M. (2016). Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. Journal of Analytical and Applied Pyrolysis, 118, 42–53. https://doi.org/10.1016/J.JAAP.2015.12.022 Ren, J., Cao, J. P., Zhao, X. Y., Yang, F. L., & Wei, X. Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. https://doi.org/10.1016/J.RSER.2019.109426 Renewable Energy Agency, I. (2012). RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES Biomass for Power Generation Acknowledgement. www.irena.org/Publications Rodrigues, L. F., Santos, I. F. S. dos, Santos, T. I. S. dos, Barros, R. M., & Tiago Filho, G. L. (2022). Energy and economic evaluation of MSW incineration and gasification in Brazil. Renewable Energy, 188, 933–944. https://doi.org/10.1016/J.RENENE.2022.02.083 Sajid, M., Raheem, A., Ullah, N., Asim, M., Ur Rehman, M. S., & Ali, N. (2022a). Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 168, 112815. https://doi.org/10.1016/J.RSER.2022.112815 Sajid, M., Raheem, A., Ullah, N., Asim, M., Ur Rehman, M. S., & Ali, N. (2022b). Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 168, 112815. https://doi.org/10.1016/J.RSER.2022.112815 Saldarriaga-Loaiza, J. D., Villada, F., Pérez, J. F., Saldarriaga-Loaiza, J. D., Villada, F., & Pérez, J. F. (2019). Análisis de Costos Nivelados de Electricidad de Plantas de Cogeneración usando Biomasa Forestal en el Departamento de Antioquia, Colombia. Información Tecnológica, 30(1), 63–74. https://doi.org/10.4067/S0718-07642019000100063 Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/J.RSER.2016.04.049 Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72, 363–384. https://doi.org/10.1016/J.RSER.2017.01.038 Sarquah, K., Narra, S., Beck, G., Bassey, U., Antwi, E., Hartmann, M., Derkyi, N. S. A., Awafo, E. A., & Nelles, M. (2022). Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies 2023, Vol. 16, Page 200, 16(1), 200. https://doi.org/10.3390/EN16010200 Satiada, M. A., & Calderon, A. (2021). Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Cleaner Environmental Systems, 3, 100063. https://doi.org/10.1016/J.CESYS.2021.100063 Seo, Y.-C., Alam, M. T., & Yang, W.-S. (2018). Gasification of Municipal Solid Waste. In Gasification for Low-grade Feedstock. InTech. https://doi.org/10.5772/intechopen.73685 Serna-Loaiza, S., García-Velásquez, C. A., & Cardona, C. A. (2019). Strategy for the selection of the minimum processing scale for the economic feasibility of biorefineries. Biofuels, Bioproducts and Biorefining, 13(1), 107–119. https://doi.org/10.1002/BBB.1941 Shadbahr, J., Ebadian, M., Gonzales-Calienes, G., Kannangara, M., Ahmadi, L., & Bensebaa, F. (2022). Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities. Renewable and Sustainable Energy Reviews, 168, 112872. https://doi.org/10.1016/J.RSER.2022.112872 Shah, H. H., Amin, M., & Pepe, F. (2023). Maximizing resource efficiency: opportunities for energy recovery from municipal solid waste in Europe. Journal of Material Cycles and Waste Management, 25(5), 2766–2782. https://doi.org/10.1007/S10163-023-01733- 5/METRICS Sharma, G., & Sinha, B. (2023). Future emissions of greenhouse gases, particulate matter and volatile organic compounds from municipal solid waste burning in India. Science of The Total Environment, 858, 159708. https://doi.org/10.1016/J.SCITOTENV.2022.159708 Siddiqi, A., Haraguchi, M., & Narayanamurti, V. (2020a). Urban waste to energy recovery assessment simulations for developing countries. World Development, 131, 104949. https://doi.org/10.1016/J.WORLDDEV.2020.104949 Siddiqi, A., Haraguchi, M., & Narayanamurti, V. (2020b). Urban waste to energy recovery assessment simulations for developing countries. World Development, 131, 104949. https://doi.org/10.1016/J.WORLDDEV.2020.104949 Silva, T. F. C. V., Soares, P. A., Manenti, D. R., Fonseca, A., Saraiva, I., Boaventura, R. A. R., & Vilar, V. J. P. (2017). An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Science of The Total Environment, 576, 99–117. https://doi.org/10.1016/J.SCITOTENV.2016.10.058 sinergox.xm. (2024). Precio de bolsa de electricidad. https://sinergox.xm.com.co/Paginas/Home.aspx S.Kaza, L. C., Yao, P., Bhada-Tata, & F. Van Woerden. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (Word Bank). https://doi.org/https://doi.org/10.1596/978-1-4648-1329-0 Smith, J. D., Alembath, A., Al-Rubaye, H., Yu, J., Gao, X., & Golpour, H. (2019). Validation and Application of a Kinetic Model for Downdraft Biomass Gasification Simulation. Chemical Engineering & Technology, 42(12), 2505–2519. https://doi.org/10.1002/CEAT.201900304 Solarte Toro. (2022). Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case [Instituto de Biotecnología y Agroindustria (IBA), Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/83551 Standard Test Method for Ash in Biomass, Pub. L. No. ASTM E1755-01 (2010). Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter, Pub. L. No. ASTM E711-87, https://www.astm.org/e0711-87r04.html (2004) Standard Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum and Lubricants, Pub. L. No. ASTM D591-92 (2021). Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, Pub. L. No. ASTM E872-82, https://www.astm.org/e0872-82r19.html (2019). superintendencia de servicio publico domiciliario. (2023). INFORME SECTORIAL DE LA ACTIVIDAD DE APROVECHAMIENTO 2021. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-Sectorial-de Aprovechamiento-de-2021.pd Superintendencia de Servicios Públicos Domiciliarios. (2020). informe nacional de dispocisión finalde residuos sólidos. https://www.superservicios.gov.co/sites/default/files/inline files/informe_df_2019_final_22-12-2020_0_0.pd Superintendencia de Servicios Públicos Domiciliarios. (2023a). Informe Nacional de Disposición Final de Residuos Sólidos. https://www.superservicios.gov.co/sites/default/files/inline files/Informe-Nacional-de-Disposicion-Final-de-Residuos-Sólidos.pdf.pdf Superintendencia de Servicios Públicos Domiciliarios. (2023b). INFORME SECTORIAL DE LA ACTIVIDAD DE APROVECHAMIENTO 2022 República de Colombia. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-sectorial-actividad de-aprovechamiento-2022.pd Superitendencia de servicios publicos domiciliarios. (2023). Informe Nacional de Disposición Final de Residuos Sólidos 2022. https://www.superservicios.gov.co/sites/default/files/inline files/Informe-Nacional-de-Disposicion-Final-de-Residuos-Sólidos-2022.pd Tan, S. T., Ho, W. S., Hashim, H., Lee, C. T., Taib, M. R., & Ho, C. S. (2015). Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Conversion and Management, 102, 111– 120. https://doi.org/10.1016/J.ENCONMAN.2015.02.010 Tavares, R., Ramos, A., & Rouboa, A. (2019). A theoretical study on municipal solid waste plasma gasification. Waste Management, 90, 37–45. https://doi.org/10.1016/J.WASMAN.2019.03.051 Tezer, Ö., Karabağ, N., Öngen, A., Çolpan, C. Ö., & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 47(34), 15419–15433. https://doi.org/10.1016/J.IJHYDENE.2022.02.158 Themelis, N. J. , Díaz Barriga, M. E. , Estevez, P. , & Velasco, M. G. (2013). Waste-to-Energy: A Technical Review of Municipal Solid Waste Thermal Treatment Practices. Global WTERT Council. . https://wtert.org/wp-content/uploads/2021/02/WTEGuidebook_IDB.pdf Torres, L. (2020). Estudio del sistema de limpieza de gases de un gasificador de lecho fluidizado burbujeante [Programa Académico de Ingeniería Mecánico-Eléctrica.]. Universidad de Piura. Tungalag, A., Lee, B. J., Yadav, M., & Akande, O. (2020). Yield prediction of MSW gasification including minor species through ASPEN plus simulation. Energy, 198, 117296. https://doi.org/10.1016/J.ENERGY.2020.117296 Udomsirichakorn, J., & Salam, P. A. (2014). Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. Renewable and Sustainable Energy Reviews, 30, 565–579. https://doi.org/10.1016/J.RSER.2013.10.013 Ulloa-Murillo, L. M., Villegas, L. M., Rodríguez-Ortiz, A. R., Duque-Acevedo, M., & Cortés García, F. J. (2022). Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 6041, 19(10), 6041. https://doi.org/10.3390/IJERPH19106041 United Nations Climate Change. (n.d.). Global Warming Potentials. Https://Unfccc.Int/Process/Transparency-and-Reporting/Greenhouse-Gas-Data/Greenhouse Gas-Data-Unfccc/Global-Warming-Potentials. Vaish, B., Sharma, B., Srivastava, V., Singh, P., Ibrahim, M. H., & Singh, R. P. (2017). Energy recovery potential and environmental impact of gasification for municipal solid waste. Https://Doi-Org.Ezproxy.Cuc.Edu.Co/10.1080/17597269.2017.1368061, 10(1), 87–100. https://doi.org/10.1080/17597269.2017.1368061 Vijay, V., Kapoor, R., Singh, P., Hiloidhari, M., & Ghosh, P. (2022). Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: A regional case study in India. Environmental Research, 212, 113257. https://doi.org/10.1016/J.ENVRES.2022.113257 Vikram, S., Deore, S. P., De Blasio, C., Mahajani, S. M., & Kumar, S. (2023a). Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis. Energy, 270, 126912. https://doi.org/10.1016/J.ENERGY.2023.126912 Vikram, S., Deore, S. P., De Blasio, C., Mahajani, S. M., & Kumar, S. (2023b). Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis. Energy, 270, 126912. https://doi.org/10.1016/J.ENERGY.2023.126912 Vikram, S., Deore, S. P., De Blasio, C., Mahajani, S. M., & Kumar, S. (2023c). Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis. Energy, 270. https://doi.org/10.1016/j.energy.2023.126912 Watson, J., Zhang, Y., Si, B., Chen, W. T., & de Souza, R. (2018b). Gasification of biowaste: A critical review and outlooks. Renewable and Sustainable Energy Reviews, 83, 1–17. https://doi.org/10.1016/J.RSER.2017.10.003 Wienchol, P., Korus, A., Szlęk, A., & Ditaranto, M. (2022). Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions. Energy, 248, 123573. https://doi.org/10.1016/J.ENERGY.2022.123573 Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. https://doi.org/10.1016/J.BIOMBIOE.2013.02.036 Word Bank. (2024). Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/compliance/price Wu, Z., Zhu, P., Yao, J., Zhang, S., Ren, J., Yang, F., & Zhang, Z. (2020). Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations. Applied Energy, 279, 115794. https://doi.org/10.1016/J.APENERGY.2020.115794 Yang, Y., Wang, J., Chong, K., & Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174, 406–416. https://doi.org/10.1016/J.ENCONMAN.2018.08.033 Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R. I., Strizhak, P. A., & Gao, X. (2019a). Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renewable and Sustainable Energy Reviews, 103, 384–398. https://doi.org/10.1016/J.RSER.2018.12.047 Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R. I., Strizhak, P. A., & Gao, X. (2019b). Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renewable and Sustainable Energy Reviews, 103, 384–398. https://doi.org/10.1016/J.RSER.2018.12.047 Yasar, A., Sadiq, K., Tabinda, A. B., Ghaffar, A., Rasheed, R., & Iqbal, A. (2021). Gasification of mixed waste at high temperature to enhance the syngas efficiency and reduce gaseous emissions and tar production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2021.1950237 Zhao, J., Xie, D., Wang, S., Zhang, R., Wu, Z., Meng, H., Chen, L., Wang, T., & Guo, Y. (2021). Hydrogen-rich syngas produced from co-gasification of municipal solid waste and wheat straw in an oxygen-enriched air fluidized bed. International Journal of Hydrogen Energy, 46(34), 18051–18063. https://doi.org/10.1016/J.IJHYDENE.2021.02.137 Zhou, N., Zhou, J., Dai, L., Guo, F., Wang, Y., Li, H., Deng, W., Lei, H., Chen, P., Liu, Y., & Ruan, R. (2020). Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresource Technology, 314, 123756. https://doi.org/10.1016/J.BIORTECH.2020.123756 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
129 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.none.fl_str_mv |
Corporacion Universidad de la Costa |
dc.publisher.department.none.fl_str_mv |
Energía |
dc.publisher.place.none.fl_str_mv |
Barranquilla, Atlantico |
dc.publisher.program.none.fl_str_mv |
Maestría en Eficiencia Energética y Energía Renovable |
publisher.none.fl_str_mv |
Corporacion Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3550ecaf-1b27-4bd1-9bcd-79e05dca71c9/download https://repositorio.cuc.edu.co/bitstreams/e7c4a691-bdf7-40bd-bcd5-fcbd1d8bb65e/download https://repositorio.cuc.edu.co/bitstreams/08aec508-b920-450e-8adf-59f76f47f512/download https://repositorio.cuc.edu.co/bitstreams/a10d5120-35f6-486e-ae7c-a15ea1ea92dc/download |
bitstream.checksum.fl_str_mv |
1905f13ec2dc179c31e437eafea55f63 73a5432e0b76442b22b026844140d683 87c60811d00e5c253182e7895794905b 33b9f81de980dc9f87a7888be3bbe50c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166738235097088 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Balbis Morejón MilenCabello Eras Juan JoséCoavas Fuentes, Rosa JuliaHernández Ruydiaz Jorge EmilioSagastume Gutierrez Alexis2024-11-12T13:14:02Z2024-11-12T13:14:02Z2024https://hdl.handle.net/11323/13670Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this work, the technical-economic and environmental viability of a municipal solid waste (MSW) gasification plant for the production of electricity in Sincelejo, Colombia was investigated. The study was carried out using a model implemented in Aspen plus, which allowed obtaining material and energy balances, essential for the calculation of technical, economic and environmental indicators. The economic calculations were carried out following the methodology established by Peters & Timmerhaus. Different types of MSW were considered including food waste, wood, paper and cardboard residues, as well as pruning and garden remains. Two waste utilization scenarios were evaluated: scenario 1, with 69% utilization and scenario 2, with 34% utilization. The results revealed that the overall efficiency of the process was 14.3% and an energy resource efficiency of 49%. Both scenarios present technical feasibility, however, the differences in their scales, 167 t/day in scenario 1 versus 85 t/day in scenario 2, impacted the viability of the project and operating costs. Scenario 1 presents significant economic viability, with a positive NPV and a favorable IRR, attributable to its larger scale of operation. In contrast, while Scenario 2 is not economically favorable. In both cases, without subsidies or incentives, the projects are unviable. In conclusion, both scenarios represent a clean solution for waste treatment, significantly reducing CO₂e emissions compared to landfilling, highlighting the importance of sustainable policies and advanced technologies for waste management.En este trabajo se investigó la viabilidad técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales (RSM) para la producción de electricidad en Sincelejo, Colombia. El estudio se llevó a cabo mediante un modelo implementado en Aspen plus, el cual permitió obtener los balances de materia y energía, fundamentales para el cálculo de indicadores técnicos económicos y ambientales. Los cálculos económicos se llevaron a cabo siguiendo la metodología establecida por peters & Timmerhaus. Se consideraron distintos tipos de RSM incluyendo residuos de desperdicios de comida, madera, papel y cartón, así como restos de poda y jardín. Se evaluaron dos escenarios de aprovechamiento de residuos: el escenario 1, con 69% de aprovechamiento y el escenario 2, con un 34% de aprovechamiento. Los resultados revelaron que la eficiencia global del proceso fue de 14.3% y una eficiencia energética de recursos del 49%. Ambos escenarios presentan viabilidad técnica, sin embargo, las diferencias en sus escalas, 167 t/día en el escenario 1 frente a 85 t/día en el escenario 2, impactaron en la viabilidad del proyecto y los costos operativos. El escenario 1 presento una viabilidad económica significativa, con un VPN positivo y una TIR favorable, atribuibles a su mayor escala de operación. En contraste, mientras que el Escenario 2, no es económicamente favorable. En los dos casos sin subsidios o incentivos los proyectos son inviables. En conclusión, ambos escenarios representan una solución limpia para el tratamiento de residuos, reduciendo significativamente las emisiones de CO₂e en comparación con el relleno sanitario, destacando la importancia de políticas sostenibles y tecnologías avanzadas para la gestión de residuos. Palabras clave: Viabilidad económica, Eficiencia, Electricidad, Gasificación, Residuos sólidos urbanos, Syngas, Tecnoeconómico.Lista de tablas 11 – Objetivos 17 -- Objetivo general. 17 -- Objetivos específicos 17 -- Capítulo 1 18 -- Marco teórico y antecedentes 19 -- Marco teórico 19 – Antecedentes 20 -- Capítulo 2 25 -- Materiales y métodos. 25 -- Caracterización de los RSM 25 -- Recolección de la muestra. 25 -- Análisis próximo 26 -- Análisis Último 27 -- Plantear los escenarios de valorización de los RSM mediante gasificación. 27 -- Revisión bibliográfica sistemática (Método PRISMA 27 -- Caracterización de la Tecnología de Gasificación. 30 -- Tecnología de Gasificación. 31 -- Parámetros de funcionamiento y operación 33 -- Efecto del medio gasificante. 34 -- Relación de equivalencia (ER 35 – Temperatura 35 -- Factores dependientes de los residuos. 36 -- Pretratamientos de RSM 36 -- Tamaño de partícula. 38 -- Composición del residuos y propiedades físicas 39 -- Configuración del Reactor. 41 -- Gasificador Dowdraft. 41 -- Gasificador Updraft 41 -- Gasificador de lecho fluidizado Burbujeante. 41 -- Gasificador de lecho fluidizado circulante. 42 -- Gasificador de flujo arrastrado 42 -- Gasificación por plasma 44 -- Acondicionamiento y purificación del gas. . 50 -- Potencial de generación de energía 51 -- Elaboración de Diagramas de Flujo y Descripción Conceptual. . 60 -- Identificación del Proceso desde el Pretratamiento hasta la Obtención de Electricidad. 60 -- Descripción del modelo de simulación realizado en Aspen plus para la etapa de gasificación. . 60 -- Evaluación tecno-económica y ambiental de la tecnología de gasificación propuesta a partir de RSM. 64 -- Cálculo de indicadores técnicos de rendimiento másico. 64 -- Cálculo de indicadores energéticos . 65 -- Evaluación económica. 66 -- Cálculo de costos de inversión (Capex) y costos operacionales (Opex). 66 -- Cálculo de indicadores financieros 67 -- Análisis de sensibilidad 70 -- Evaluación del impacto ambiental. 70 -- Estimaciones de metano provenientes del relleno sanitario. . 71 -- Cálculo de las emisiones provenientes de la gasificación. 72 -- Cálculo del potencial de calentamiento global 73 -- Capítulo 3 73 -- Resultados, análisis y discusión de los resultados. . 73 -- Resultados de caracterización de residuos. . 73 -- Diseño de la planta de gasificación y escenarios propuestos para la generación de electricidad.75 -- Resultados de indicadores técnicos y energéticos. 78 -- Influencia de relación de equivalencia. . 81 -- Influencia de la temperatura en la composición del gas 82 -- Resultados de indicadores económicos. 83 -- Resultados de indicadores ambientales. 89 -- Conclusiones. 91 -- Recomendaciones. 92 -- Referencias 93 -- Anexos 128Magíster en Eficiencia Energética y Energía RenovableMaestría129 páginasapplication/pdfspaCorporacion Universidad de la CostaEnergíaBarranquilla, AtlanticoMaestría en Eficiencia Energética y Energía RenovableEvaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad en la ciudad de Sincelejo, ColombiaTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionColombiaAbdeljaber, A., Zannerni, R., Masoud, W., Abdallah, M., & Rocha-Meneses, L. (2022). Eco Efficiency Analysis of Integrated Waste Management Strategies Based on Gasification and Mechanical Biological Treatment. Sustainability (Switzerland), 14(7), 3899. https://doi.org/10.3390/SU14073899/S1Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/J.EJPE.2018.07.003Abushammala, M. F. M., & Qazi, W. A. (2021). Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technologies and Environmental Policy, 23(7), 2011–2023. https://doi.org/10.1007/S10098- 021-02099-8/METRICSAgaton, C. B., Guno, C. S., Villanueva, R. O., & Villanueva, R. O. (2020). Economic analysis of waste-to-energy investment in the Philippines: A real options approach. Applied Energy, 275, 115265. https://doi.org/10.1016/J.APENERGY.2020.115265Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L. A., & Moldestad, B. M. E. (2019). Measurement and characterization of biomass mean residence time in an air-blown bubbling fluidized bed gasification reactor. Fuel, 253, 1414–1423. https://doi.org/10.1016/J.FUEL.2019.05.103Ahmed, A. M. A., Salmiaton, A., Choong, T. S. Y., & Wan Azlina, W. A. K. G. (2015). Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus. Renewable and Sustainable Energy Reviews, 52, 1623–1644. https://doi.org/10.1016/J.RSER.2015.07.125Ajorloo, M., Ghodrat, M., Scott, J., & Strezov, V. (2022). Recent advances in thermodynamic analysis of biomass gasification: A review on numerical modelling and simulation. Journal of the Energy Institute, 102, 395–419. https://doi.org/10.1016/J.JOEI.2022.05.003Akhator, P., & Asibor, J. (2021a). SIMULATION OF AIR‐GASIFICATION OF WOOD WASTES USING ASPEN PLUS. International Journal of Engineering Science and Application, 5(3), 86–97. https://dergipark.org.tr/en/pub/ijesa/issue/65216/975953Akhator, P., & Asibor, J. (2021b). Simulation of Air-Gasification of Wood Wastes Using Aspen Plus. INTERNATIONAL JOURNAL of ENGINEERING SCIENCE AND APPLICATION Akhator and Asibor, 5(3).Alcaldia de sincelejo. (2022). PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SÓLIDOS. https://alcaldiadesincelejo.gov.co/Transparencia/PlaneacionGestionyControl/PLAN%20DE %20GESTION%20INTEGRAL%20DE%20RESIDUOS%20SÓLIDOS%20PGIRS%20SIN CELEJO%202022.pdfAleluia, J., & Ferrão, P. (2017). Assessing the costs of municipal solid waste treatment technologies in developing Asian countries. Waste Management, 69, 592–608. https://doi.org/10.1016/J.WASMAN.2017.08.047AlNouss, A., McKay, G., & Al-Ansari, T. (2020). Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 242, 118499. https://doi.org/10.1016/J.JCLEPRO.2019.118499Alzate, S., Restrepo-Cuestas, B., & Jaramillo-Duque, Á. (2019a). Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, Vol. 8, Page 51, 8(1), 51. https://doi.org/10.3390/RESOURCES8010051Alzate, S., Restrepo-Cuestas, B., & Jaramillo-Duque, Á. (2019b). Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, Vol. 8, Page 51, 8(1), 51. https://doi.org/10.3390/RESOURCES8010051Amin, N., Aslam, M., khan, Z., Yasin, M., Hossain, S., Shahid, M. K., Inayat, A., Samir, A., Ahmad, R., Murshed, M. N., Khurram, M. S., El Sayed, M. E., & Ghauri, M. (2023). Municipal solid waste treatment for bioenergy and resource production: Potential technologies, techno-economic-environmental aspects and implications of membrane-based recovery. Chemosphere, 323, 138196. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138196Arafat, H. A., Jijakli, K., & Ahsan, A. (2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/J.JCLEPRO.2013.11.071Arena, U. (2012a). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(4), 625–639. https://doi.org/10.1016/J.WASMAN.2011.09.025Arena, U. (2012b). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(4), 625–639. https://doi.org/10.1016/J.WASMAN.2011.09.025Aydin, E. S., Yucel, O., & Sadikoglu, H. (2018). Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification. International Journal of Hydrogen Energy, 43(2), 1105–1115. https://doi.org/10.1016/J.IJHYDENE.2017.11.013Banco de desarollo de America latina. (2018). Economía circular e innovación tecnológica en residuos sólidos: Oportunidades en América Latina.Banco de la República. (2024). https://www.banrep.gov.co/es Barragán-Escandón, A., Ruiz, J. M. O., Tigre, J. D. C., & Zalamea-León, E. F. (2020). Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability 2020, Vol. 12, Page 2669, 12(7), 2669. https://doi.org/10.3390/SU12072669Basu, P. (2018). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory - Prabir Basu - Google Libros. Academic Press.Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013a). Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies 2013, Vol. 6, Pages 6508-6524, 6(12), 6508–6524. https://doi.org/10.3390/EN6126508Begum, S., Rasul, M. G., Akbar, D., & Ramzan, N. (2013b). Performance Analysis of an Integrated Fixed Bed Gasifier Model for Different Biomass Feedstocks. Energies 2013, Vol. 6, Pages 6508-6524, 6(12), 6508–6524. https://doi.org/10.3390/EN6126508Bhoi, P. R., Huhnke, R. L., Kumar, A., Indrawan, N., & Thapa, S. (2018). Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, 163, 513–518. https://doi.org/10.1016/J.ENERGY.2018.08.151Bijos, J. C. B. F., Zanta, V. M., Morató, J., Queiroz, L. M., & Oliveira-Esquerre, K. P. S. R. (2022). Improving circularity in municipal solid waste management through machine learning in Latin America and the Caribbean. Sustainable Chemistry and Pharmacy, 28, 100740. https://doi.org/10.1016/J.SCP.2022.100740Cabuk, B., Duman, G., Yanik, J., & Olgun, H. (2020). Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. International Journal of Hydrogen Energy, 45(5), 3435–3443. https://doi.org/10.1016/J.IJHYDENE.2019.02.130Campbell, R. M., Anderson, N. M., Daugaard, D. E., & Naughton, H. T. (2018). Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Applied Energy, 230, 330–343. https://doi.org/10.1016/J.APENERGY.2018.08.085Cao, L., Yu, I. K. M., Xiong, X., Tsang, D. C. W., Zhang, S., Clark, J. H., Hu, C., Ng, Y. H., Shang, J., & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547. https://doi.org/10.1016/J.ENVRES.2020.109547Cao, Y., Fu, L., & Mofrad, A. (2019a). Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute, 92(6), 1683–1688. https://doi.org/10.1016/J.JOEI.2019.01.006Cao, Y., Fu, L., & Mofrad, A. (2019b). Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute, 92(6), 1683–1688. https://doi.org/10.1016/J.JOEI.2019.01.006Carmona-Garcia, E., Ortiz-Sánchez, M., & Cardona Alzate, C. A. (2019). Analysis of the Coffee Cut Stems as Raw Material for the Production of Sugars for Acetone–Butanol–Ethanol (ABE) Fermentation: Techno-Economic Analysis. Waste and Biomass Valorization, 10(12), 3793–3808. https://doi.org/10.1007/S12649-019-00632-X/METRICSCelia Martínez de León. (2016). Estudio tecno-económico de una planta de gasificación de residuos sólidos urbanos para aplicaciones de caldera y motor. Universidad de sevilla.Chan, W. P., Veksha, A., Lei, J., Oh, W. Da, Dou, X., Giannis, A., Lisak, G., & Lim, T. T. (2019). A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Applied Energy, 237, 227–240. https://doi.org/10.1016/J.APENERGY.2019.01.031Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. T. (2021a). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291, 112661. https://doi.org/10.1016/J.JENVMAN.2021.112661Chanthakett, A., Arif, M. T., Khan, M. M. K., & Oo, A. M. T. (2021b). Performance assessment of gasification reactors for sustainable management of municipal solid waste. Journal of Environmental Management, 291, 112661. https://doi.org/10.1016/J.JENVMAN.2021.112661Chen, C., Jin, Y. Q., Yan, J. H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58–63. https://doi.org/10.1016/J.FUEL.2011.06.075Chen, W., & Geng, W. (2017). Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input. Energy, 120, 283–292. https://doi.org/10.1016/J.ENERGY.2016.11.080Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130Cudjoe, D., & Wang, H. (2022). Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Processing Technology, 237, 107470. https://doi.org/10.1016/J.FUPROC.2022.107470Dahmani, M., Périlhon, C., Marvillet, C., Hajjaji, N., Houas, A., & Khila, Z. (2017a). Development of a fixed bed gasifier model and optimal operating conditions determination. AIP Conference Proceedings, 1814. https://doi.org/10.1063/1.4976288Dahmani, M., Périlhon, C., Marvillet, C., Hajjaji, N., Houas, A., & Khila, Z. (2017b). Development of a fixed bed gasifier model and optimal operating conditions determination. AIP Conference Proceedings, 1814. https://doi.org/10.1063/1.4976288Dalmo, F. C., Simão, N. M., Lima, H. Q. de, Medina Jimenez, A. C., Nebra, S., Martins, G., Palacios-Bereche, R., & Henrique de Mello Sant’Ana, P. (2019). Energy recovery overview of municipal solid waste in São Paulo State, Brazil. Journal of Cleaner Production, 212, 461–474. https://doi.org/10.1016/J.JCLEPRO.2018.12.016Deng, N., Li, D., Zhang, Q., Zhang, A., Cai, R., & Zhang, B. (2019). Simulation analysis of municipal solid waste pyrolysis and gasification based on Aspen plus. Frontiers in Energy, 13(1), 64–70. https://doi.org/10.1007/S11708-017-0481-7/METRICSDeng, N., Zhang, A., Zhang, Q., He, G., Cui, W., Chen, G., & Song, C. (2017). Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model. Bioresource Technology, 235, 371–379. https://doi.org/10.1016/J.BIORTECH.2017.03.072Departamento Nacional de plaenación. (2022). Resolución 1092 de 2022. Https://Colaboracion.Dnp.Gov.Co/CDT/Participacin%20privada%20en%20proyectos%20d e%20infraestructu/Resoluci%C3%B3n%201092%20de%202022%20Por%20la%20cul%20 se%20adopta%20la%20tasa%20Social%20de%20Descuento.Pdf.Departamento Nacional de Planeación. (2022). Resolucion 1092 de 2022. Https://Colaboracion.Dnp.Gov.Co/CDT/Participacin%20privada%20en%20proyectos%20d e%20infraestructu/Resoluci%C3%B3n%201092%20de%202022%20Por%20la%20cul%20 se%20adopta%20la%20tasa%20Social%20de%20Descuento.Pdf.Di Maria, F., Sisani, F., & Contini, S. (2018). Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Applied Energy, 230, 1557–1572. https://doi.org/10.1016/J.APENERGY.2018.09.007Díaz González, C. A., de Oliveira, D. C., Yepes, D. M., Pacheco, L. E., & Silva, E. E. (2023). Aspen Plus model of a downdraft gasifier for lignocellulosic biomass adjusted by Principal Component Analysis. Energy Conversion and Management, 296, 117570. https://doi.org/10.1016/J.ENCONMAN.2023.117570Díaz González, C. A., & Pacheco Sandoval, L. (2020). Sustainability aspects of biomass gasification systems for small power generation. Renewable and Sustainable Energy Reviews, 134, 110180. https://doi.org/10.1016/J.RSER.2020.110180Doherty, W., Reynolds, A., & Kennedy, D. (2009). The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass and Bioenergy, 33(9), 1158–1167. https://doi.org/10.1016/J.BIOMBIOE.2009.05.004Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., & Huang, Q. (2016). Effect of Operating Parameters and Moisture Content on Municipal Solid Waste Pyrolysis and Gasification. Energy and Fuels, 30(5), 3994–4001. https://doi.org/10.1021/ACS.ENERGYFUELS.6B00042Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., & Zhou, Z. (2018a). Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production, 203, 287–300. https://doi.org/10.1016/J.JCLEPRO.2018.08.139Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., & Zhou, Z. (2018b). Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. Journal of Cleaner Production, 203, 287–300. https://doi.org/10.1016/J.JCLEPRO.2018.08.139Duan, Y., Tarafdar, A., Kumar, V., Ganeshan, P., Rajendran, K., Shekhar Giri, B., Gómez-García, R., Li, H., Zhang, Z., Sindhu, R., Binod, P., Pandey, A., Taherzadeh, M. J., Sarsaiya, S., Jain, A., & Kumar Awasthi, M. (2022). Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. Fuel, 325, 124846. https://doi.org/10.1016/J.FUEL.2022.124846Fallahizadeh, S., Rahmatinia, M., Mohammadi, Z., Vaezzadeh, M., Tajamiri, A., & Soleimani, H. (2019). Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX, 6, 391–398. https://doi.org/10.1016/J.MEX.2019.02.013Farooq, A., Haputta, P., Silalertruksa, T., & Gheewala, S. H. (2021). A Framework for the Selection of Suitable Waste to Energy Technologies for a Sustainable Municipal Solid Waste Management System. Frontiers in Sustainability, 2, 681690. https://doi.org/10.3389/FRSUS.2021.681690/BIBTEXFernández-González, J. M., Grindlay, A. L., Serrano-Bernardo, F., Rodríguez-Rojas, M. I., & Zamorano, M. (2017). Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management, 67, 360–374. https://doi.org/10.1016/J.WASMAN.2017.05.003Ferreira de Oliveira Leite, F., Escobar Palacio, J. C., Arcanjo Batista, M. J., & Grillo Renó, M. L. (2022). Evaluation of technological alternatives for the treatment of urban solid waste: A case study of Minas Gerais, Brazil. Journal of Cleaner Production, 330, 129618. https://doi.org/10.1016/J.JCLEPRO.2021.129618Ferronato, N., & Torretta, V. (2019). Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health 2019, Vol. 16, Page 1060, 16(6), 1060. https://doi.org/10.3390/IJERPH16061060Gałko, G., Mazur, I., Rejdak, M., Jagustyn, B., Hrabak, J., Ouadi, M., Jahangiri, H., & Sajdak, M. (2023). Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications. Energy, 263, 125920. https://doi.org/10.1016/J.ENERGY.2022.125920Gutiérrez, A. S., Mendoza Fandiño, J. M., & Cabello Eras, J. J. (2021). Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). International Journal of Sustainable Engineering, 14(6), 1809–1825. https://doi.org/10.1080/19397038.2021.1993378Gutierrez-Gomez, A. C., Gallego, A. G., Palacios-Bereche, R., Tofano de Campos Leite, J., & Pereira Neto, A. M. (2021). Energy recovery potential from Brazilian municipal solid waste via combustion process based on its thermochemical characterization. Journal of Cleaner Production, 293, 126145. https://doi.org/10.1016/J.JCLEPRO.2021.126145Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230. https://doi.org/10.1002/CL2.1230Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101. https://doi.org/10.1016/J.WASMAN.2016.09.030Hameed, Z., Aslam, M., Khan, Z., Maqsood, K., Atabani, A. E., Ghauri, M., Khurram, M. S., Rehan, M., & Nizami, A. S. (2021). Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects. Renewable and Sustainable Energy Reviews, 136. https://doi.org/10.1016/j.rser.2020.110375Han, J., Huang, Z., Qin, L., Chen, W., Zhao, B., & Xing, F. (2021). Refused derived fuel from municipal solid waste used as an alternative fuel during the iron ore sinter process. Journal of Cleaner Production, 278, 123594. https://doi.org/10.1016/J.JCLEPRO.2020.123594Hasan, M. M., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Jahirul, M. I. (2021). Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renewable and Sustainable Energy Reviews, 145, 111073. https://doi.org/10.1016/J.RSER.2021.111073Havilah, P. R., Sharma, A. K., Govindasamy, G., Matsakas, L., & Patel, A. (2022). Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas. Energies 2022, Vol. 15, Page 3938, 15(11), 3938. https://doi.org/10.3390/EN15113938Hernández, J. J., Aranda, G., Barba, J., & Mendoza, J. M. (2012). Effect of steam content in the air–steam flow on biomass entrained flow gasification. Fuel Processing Technology, 99, 43–55. https://doi.org/10.1016/J.FUPROC.2012.01.030Hettiarachchi, H., Ryu, S., Caucci, S., & Silva, R. (2018). Municipal Solid Waste Management in Latin America and the Caribbean: Issues and Potential Solutions from the Governance Perspective. Recycling 2018, Vol. 3, Page 19, 3(2), 19. https://doi.org/10.3390/RECYCLING3020019Hoang, A. T., Varbanov, P. S., Nižetić, S., Sirohi, R., Pandey, A., Luque, R., Ng, K. H., & Pham, V. V. (2022). Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. Journal of Cleaner Production, 359, 131897. https://doi.org/10.1016/J.JCLEPRO.2022.131897Hoppe, W., Bringezu, S., & Thonemann, N. (2016). Comparison of global warming potential between conventionally produced and CO2-based natural gas used in transport versus chemical production. Journal of Cleaner Production, 121, 231–237. https://doi.org/10.1016/J.JCLEPRO.2016.02.042Hu, M., Guo, D., Ma, C., Hu, Z., Zhang, B., Xiao, B., Luo, S., & Wang, J. (2015). Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture. Energy, 90, 857–863. https://doi.org/10.1016/J.ENERGY.2015.07.122Hu, Y., Pang, K., Cai, L., & Liu, Z. (2021). A multi-stage co-gasification system of biomass and municipal solid waste (MSW) for high quality syngas production. Energy, 221, 119639. https://doi.org/10.1016/J.ENERGY.2020.119639IEA. (2019). Biomass pre-treatment for bioenergy: Case study 3: Pretreatment of municipal solid waste (MSW) for gasification. https://www.ieabioenergy.com/blog/publications/biomass pre-treatment-for-bioenergy-case-study-3-pretreatment-of-municipal-solid-waste-msw-for gasificationIEA Bioenergy. (2019). Municipal Solid Waste (MSW) pretreatment for gasification (Case Study 3). Https://Www.Ieabioenergy.Com/Wp-Content/Uploads/2019/02/CS3-MSW-Pretreatment for-Gasification.PdfIm-Orb, K., Simasatitkul, L., & Arpornwichanop, A. (2016a). Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel, 164, 361–373. https://doi.org/10.1016/J.FUEL.2015.10.018Im-Orb, K., Simasatitkul, L., & Arpornwichanop, A. (2016b). Analysis of synthesis gas production with a flexible H2/CO ratio from rice straw gasification. Fuel, 164, 361–373. https://doi.org/10.1016/J.FUEL.2015.10.018Indrawan, N., Kumar, A., & Kumar, S. (2018). Recent Advances in Power Generation Through Biomass and Municipal Solid Waste Gasification. Energy, Environment, and Sustainability, 369–401. https://doi.org/10.1007/978-981-10-7335-9_15/COVERIndrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020a). Distributed power generation via gasification of biomass and municipal solid waste: A review. Journal of the Energy Institute, 93(6), 2293–2313. https://doi.org/10.1016/J.JOEI.2020.07.001Indrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020b). Distributed power generation via gasification of biomass and municipal solid waste: A review. https://doi.org/10.1016/j.joei.2020.07.001Indrawan, N., Kumar, A., Moliere, M., Sallam, K. A., & Huhnke, R. L. (2020c). Distributed power generation via gasification of biomass and municipal solid waste: A review. Journal of the Energy Institute, 93(6), 2293–2313. https://doi.org/10.1016/J.JOEI.2020.07.001Infiesta, L. R., Ferreira, C. R. N., Trovó, A. G., Borges, V. L., & Carvalho, S. R. (2019). Design of an industrial solid waste processing line to produce refuse-derived fuel. Journal of Environmental Management, 236(August 2018), 715–719. https://doi.org/10.1016/j.jenvman.2019.02.017Inter-American Development Bank. (2015). Situation-of-solid-waste-management-in-America Latin-America-and-the-Caribbean. https://publications.iadb.org/publications/english/viewer/Solid-Waste-Management-in Latin-America-and-the-Caribbean.pdfInteraseo. (2015). Tarifas vigentes para el servicio público domiciliario de aseo. Https://Sincelejo.Interaseo.Com.Co/Wp Content/Uploads/Sites/50/2023/02/PUBLICACION-TARIFAS-SINCELEJO-Y-PA-EL OASIS.Pdf.International Renewable Energy Agency. (2012). Renewable energy technologies: Cost analysis series. https://www.irena.org/- /media/Files/IRENA/Agency/Publication/2012/RE_Technologies_Cost_Analysis BIOMASS.pdInternational Solid Waste Association. (2015). CIRCULAR ECONOMY: ENERGY AND FUELS. https://www.iswalac.org/descarga/Traduccion-espanol-Task-Force-Report-5.pdfIqbal, S., Davies, T. E., Morgan, D. J., Karim, K., Hayward, J. S., Bartley, J. K., Taylor, S. H., & Hutchings, G. J. (2016). Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today, 275, 35–39. https://doi.org/10.1016/J.CATTOD.2015.09.041Isa, N. M., Tan, C. W., & Yatim, A. H. M. (2018). A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system. Renewable and Sustainable Energy Reviews, 81, 2236–2263. https://doi.org/10.1016/J.RSER.2017.06.034Jha, S., Nanda, S., Acharya, B., & Dalai, A. K. (2022). A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, Vol. 15, Page 6352, 15(17), 6352. https://doi.org/10.3390/EN15176352Kartal, F., & Özveren, U. (2020). A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®. Energy, 209, 118457. https://doi.org/10.1016/J.ENERGY.2020.118457Kawamoto, K., & Miyata, H. (2015). Dioxin formation and control in a gasification–melting plant. Environmental Science and Pollution Research, 22(19), 14621–14628. https://doi.org/10.1007/S11356-014-3104-4/METRICSKaydouh, M. N., & El Hassan, N. (2022). Thermodynamic simulation of the co-gasification of biomass and plastic waste for hydrogen-rich syngas production. Results in Engineering, 16, 100771. https://doi.org/10.1016/J.RINENG.2022.100771Kaza, S., Yao, L. C. ;, Bhada-Tata, Perinaz;, & Van Woerden, Frank. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f 28552410e90aKhan, A. H., López-Maldonado, E. A., Alam, S. S., Khan, N. A., López, J. R. L., Herrera, P. F. M., Abutaleb, A., Ahmed, S., & Singh, L. (2022). Municipal solid waste generation and the current state of waste-to-energy potential: State of art review. Energy Conversion and Management, 267, 115905. https://doi.org/10.1016/J.ENCONMAN.2022.115905Kong, D., Luo, K., Wang, S., Yu, J., & Fan, J. (2022). Particle behaviours of biomass gasification in a bubbling fluidized bed. Chemical Engineering Journal, 428, 131847. https://doi.org/10.1016/J.CEJ.2021.131847Kumar, A., & Samadder, S. R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422. https://doi.org/10.1016/J.WASMAN.2017.08.046Kumar, A., & Sharma, M. P. (2014). Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustainable Energy Technologies and Assessments, 5, 50–61. https://doi.org/10.1016/J.SETA.2013.11.004Kumar, A., Singh, E., Mishra, R., Lo, S. L., & Kumar, S. (2023). Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity. Energy, 275, 127471. https://doi.org/10.1016/J.ENERGY.2023.127471Kushwah, A., Reina, T. R., & Short, M. (2022a). Modelling approaches for biomass gasifiers: A comprehensive overview. Science of The Total Environment, 834, 155243. https://doi.org/10.1016/J.SCITOTENV.2022.155243Kushwah, A., Reina, T. R., & Short, M. (2022b). Modelling approaches for biomass gasifiers: A comprehensive overview. Science of The Total Environment, 834, 155243. https://doi.org/10.1016/J.SCITOTENV.2022.155243Laurence Le Coq, D. C. A. (2012). Syngas Treatment Unit for Small Scale Gasification - Application to IC Engine Gas Quality Requirement. Journal of Applied Fluid Mechanics, 5(ISSN 1735-3572), 95–103.Lawal, I. M., Ndagi, A., Mohammed, A., Saleh, Y. Y., Shuaibu, A., Hassan, I., Abubakar, S., Soja, U. B., & Jagaba, A. H. (2023). Proximate analysis of waste-to-energy potential of municipal solid waste for sustainable renewable energy generation. Ain Shams Engineering Journal, 102357. https://doi.org/10.1016/J.ASEJ.2023.102357Leme, M. M. V., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Lopes, B. M., & Ferreira, C. H. (2014). Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resources, Conservation and Recycling, 87, 8–20. https://doi.org/10.1016/J.RESCONREC.2014.03.003Lepage, T., Kammoun, M., Schmetz, Q., & Richel, A. (2021). Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy, 144, 105920. https://doi.org/10.1016/J.BIOMBIOE.2020.105920Li, Y., Zhou, L. W., & Wang, R. Z. (2017). Urban biomass and methods of estimating municipal biomass resources. Renewable and Sustainable Energy Reviews, 80, 1017–1030. https://doi.org/10.1016/J.RSER.2017.05.214Lino, F. A. M., Ismail, K. A. R., & Castañeda-Ayarza, J. A. (2023). Municipal solid waste treatment in Brazil: A comprehensive review. Energy Nexus, 11, 100232. https://doi.org/10.1016/J.NEXUS.2023.100232Liu, H., Liu, T., Wei, G., Zhao, H., Li, T., Weng, F., Guo, X., Wang, Y., & Lin, Y. (2022). Environmental and economic assessment of rural domestic waste gasification models in China. Waste Management, 154, 160–174. https://doi.org/10.1016/J.WASMAN.2022.10.001Liu, Z. (2019). Gasification of municipal solid wastes: a review on the tar yields. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(11), 1296–1304. https://doi.org/10.1080/15567036.2018.1548508Liu, Z., Zhao, C., Cai, L., & Long, X. (2022). Steady state modelling of steam-gasification of biomass for H2-rich syngas production. Energy, 238, 121616. https://doi.org/10.1016/J.ENERGY.2021.121616Loha, C., Karmakar, M. K., De, S., & Chatterjee, P. K. (2018). Gasifiers: Types, Operational Principles, and Commercial Forms. Energy, Environment, and Sustainability, 63–91. https://doi.org/10.1007/978-981-10-7335-9_3/TABLES/1Lourinho, G., Alves, O., Garcia, B., Rijo, B., Brito, P., & Nobre, C. (2023). Costs of Gasification Technologies for Energy and Fuel Production: Overview, Analysis, and Numerical Estimation. Recycling, 8(3), 49. https://doi.org/10.3390/RECYCLING8030049/S1Luz, F. C., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Andrade, R. V., Leme, M. M. V., & Del Olmo, O. A. (2015a). Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Conversion and Management, 103, 321–337. https://doi.org/10.1016/J.ENCONMAN.2015.06.074Luz, F. C., Rocha, M. H., Lora, E. E. S., Venturini, O. J., Andrade, R. V., Leme, M. M. V., & Del Olmo, O. A. (2015b). Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Conversion and Management, 103, 321–337. https://doi.org/10.1016/J.ENCONMAN.2015.06.074Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z., & Yao, H. (2010). Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology, 91(8), 903–909. https://doi.org/10.1016/J.FUPROC.2009.09.014Mallick, D., Mahanta, P., & Moholkar, V. S. (2020). Co–gasification of coal/biomass blends in 50 kWe circulating fluidized bed gasifier. Journal of the Energy Institute, 93(1), 99–111. https://doi.org/10.1016/J.JOEI.2019.04.005Martínez, J. D., Mahkamov, K., Andrade, R. V., & Silva Lora, E. E. (2012). Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renewable Energy, 38(1), 1–9. https://doi.org/10.1016/J.RENENE.2011.07.035Materazzi, M., Lettieri, P., Mazzei, L., Taylor, R., & Chapman, C. (2013). Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification. Fuel, 108, 356–369. https://doi.org/10.1016/J.FUEL.2013.02.037Ministerio para la Transición Ecológica y el Reto Demográfico. (2011). Mejores Técnicas Disponibles de referencia europea para Incineración de Residuos.Moghadam, R. A., Yusup, S., Uemura, Y., Chin, B. L. F., Lam, H. L., & Al Shoaibi, A. (2014). Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process. Energy, 75, 40–44. https://doi.org/10.1016/J.ENERGY.2014.04.062Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/10.1016/J.JECHEM.2015.11.005Montiel-Bohórquez, N. D., Agudelo, A. F., & Pérez, J. F. (2022). Modelling of an Integrated Plasma Gasification Combined Cycle power plant using Aspen Plus. Journal of King Saud University - Engineering Sciences. https://doi.org/10.1016/J.JKSUES.2022.06.004Moshi, R. E., Jande, Y. A. C., Kivevele, T. T., & Kim, W. S. (2020). Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1806404Munir, M. T., Mardon, I., Al-Zuhair, S., Shawabkeh, A., & Saqib, N. U. (2019). Plasma gasification of municipal solid waste for waste-to-value processing. Renewable and Sustainable Energy Reviews, 116, 109461. https://doi.org/10.1016/J.RSER.2019.109461Murugesan, P., Raja, V., Dutta, S., Moses, J. A., & Anandharamakrishnan, C. (2022). Food waste valorisation via gasification – A review on emerging concepts, prospects and challenges. Science of The Total Environment, 851, 157955. https://doi.org/10.1016/J.SCITOTENV.2022.157955Nanda, S., & Berruti, F. (2021a). Municipal solid waste management and landfilling technologies: a review. In Environmental Chemistry Letters (Vol. 19, Issue 2, pp. 1433–1456). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-020- 01100-yNanda, S., & Berruti, F. (2021b). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456. https://doi.org/10.1007/S10311-020-01100-Y/METRICSNandhini, R., Berslin, D., Sivaprakash, B., Rajamohan, N., & Vo, D. V. N. (2022). Thermochemical conversion of municipal solid waste into energy and hydrogen: a review. Environmental Chemistry Letters 2022 20:3, 20(3), 1645–1669. https://doi.org/10.1007/S10311-022- 01410-3Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., & Oinas, P. (2015). Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste. Http://Dx.Doi.Org/10.1177/0734242X15615697, 34(1), 38–46. https://doi.org/10.1177/0734242X15615697Neehaul, N., Jeetah, P., & Deenapanray, P. (2020a). Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environmental Development, 33, 100489. https://doi.org/10.1016/J.ENVDEV.2019.100489Neehaul, N., Jeetah, P., & Deenapanray, P. (2020b). Energy recovery from municipal solid waste in Mauritius: Opportunities and challenges. Environmental Development, 33, 100489. https://doi.org/10.1016/J.ENVDEV.2019.100489Obuobi, B., Adu-Gyamfi, G., Adjei, M., & Nketiah, E. (2022). Technologies potential and economic viability analysis of deriving electricity from Municipal Solid Waste in Kumasi, Ghana. Energy for Sustainable Development, 68, 318–331. https://doi.org/10.1016/J.ESD.2022.04.011Oliveira, M., Ramos, A., Ismail, T. M., Monteiro, E., & Rouboa, A. (2022). A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments. Energies 2022, Vol. 15, Page 1475, 15(4), 1475. https://doi.org/10.3390/EN15041475Otero Meza, D. D., Sagastume Gutiérrez, A., Cabello Eras, J. J., Salcedo Mendoza, J., & Hernández Ruydíaz, J. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/J.ENCONMAN.2023.117522Ouedraogo, A. S., Frazier, R. S., & Kumar, A. (2021). Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes. Energies 2021, Vol. 14, Page 7032, 14(21), 7032. https://doi.org/10.3390/EN14217032Panepinto, D., Tedesco, V., Brizio, E., & Genon, G. (2015). Environmental Performances and Energy Efficiency for MSW Gasification Treatment. Waste and Biomass Valorization, 6(1), 123–135. https://doi.org/10.1007/S12649-014-9322-7/METRICSParthasarathy, P., Alherbawi, M., Shahbaz, M., Al-Ansari, T., & McKay, G. (2023). Developing biochar from potential wastes in Qatar and its revenue potential. Energy Conversion and Management: X, 20, 100467. https://doi.org/10.1016/J.ECMX.2023.100467Parthasarathy, P., & Narayanan, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570–579. https://doi.org/10.1016/J.RENENE.2013.12.025Peters, M. , & Timmerhaus, K. ,. (2003). Plant Design and Economics for Chemical Engineers (McGraw-Hill,).Popp, J., Kovács, S., Oláh, J., Divéki, Z., & Balázs, E. (2021). Bioeconomy: Biomass and biomass based energy supply and demand. New Biotechnology, 60, 76–84. https://doi.org/10.1016/J.NBT.2020.10.004Porshnov, D., Ozols, V., Ansone-Bertina, L., Burlakovs, J., & Klavins, M. (2018). Thermal decomposition study of major refuse derived fuel components. Energy Procedia, 147, 48– 53. https://doi.org/10.1016/J.EGYPRO.2018.07.032POSADA RESTREPO, E. (2020). Perspectives Of Project Engineering In The Disposal Of Solid Waste In Colombia And Possibilities Of Energy Use And Valuation. Revista EIA, 17(33), 56–73. https://doi.org/10.24050/REIA.V17I33.1314Poveda-Giraldo, J. A., Piedrahita-Rodríguez, S., Salgado Aristizabal, N., Salas-Moreno, M., & Cardona Alzate, C. A. (2022). Prefeasibility analysis of small-scale biorefineries: the annatto and açai case to improve the incomes of rural communities. Biomass Conversion and Biorefinery, 1–26. https://doi.org/10.1007/S13399-022-03479-W/METRICSPu, G., Zhou, H. P., & Hao, G. T. (2013). Study on pine biomass air and oxygen/steam gasification in the fixed bed gasifier. International Journal of Hydrogen Energy, 38(35), 15757–15763. https://doi.org/10.1016/J.IJHYDENE.2013.04.117Quintero-Naucil, M., Salcedo-Mendoza, J., Solarte-Toro, J. C., & Aristizábal-Marulanda, V. (2024). Assessment and comparison of thermochemical pathways for the rice residues valorization: pyrolysis and gasification. Environmental Science and Pollution Research, 1–18. https://doi.org/10.1007/S11356-024-32241-0/FIGURES/6Ramos Casado, R., Arenales Rivera, J., Borjabad García, E., Escalada Cuadrado, R., Fernández Llorente, M., Bados Sevillano, R., & Pascual Delgado, A. (2016). Classification and characterisation of SRF produced from different flows of processed MSW in the Navarra region and its co-combustion performance with olive tree pruning residues. Waste Management, 47, 206–216. https://doi.org/10.1016/J.WASMAN.2015.05.018Ramzan, N., Ashraf, A., Naveed, S., & Malik, A. (2011a). Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy, 35(9), 3962–3969. https://doi.org/10.1016/J.BIOMBIOE.2011.06.005Ramzan, N., Ashraf, A., Naveed, S., & Malik, A. (2011b). Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy, 35(9), 3962–3969. https://doi.org/10.1016/J.BIOMBIOE.2011.06.005Rehrah, D., Bansode, R. R., Hassan, O., & Ahmedna, M. (2016). Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. Journal of Analytical and Applied Pyrolysis, 118, 42–53. https://doi.org/10.1016/J.JAAP.2015.12.022Ren, J., Cao, J. P., Zhao, X. Y., Yang, F. L., & Wei, X. Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426. https://doi.org/10.1016/J.RSER.2019.109426Renewable Energy Agency, I. (2012). RENEWABLE ENERGY TECHNOLOGIES: COST ANALYSIS SERIES Biomass for Power Generation Acknowledgement. www.irena.org/PublicationsRodrigues, L. F., Santos, I. F. S. dos, Santos, T. I. S. dos, Barros, R. M., & Tiago Filho, G. L. (2022). Energy and economic evaluation of MSW incineration and gasification in Brazil. Renewable Energy, 188, 933–944. https://doi.org/10.1016/J.RENENE.2022.02.083Sajid, M., Raheem, A., Ullah, N., Asim, M., Ur Rehman, M. S., & Ali, N. (2022a). Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 168, 112815. https://doi.org/10.1016/J.RSER.2022.112815Sajid, M., Raheem, A., Ullah, N., Asim, M., Ur Rehman, M. S., & Ali, N. (2022b). Gasification of municipal solid waste: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews, 168, 112815. https://doi.org/10.1016/J.RSER.2022.112815Saldarriaga-Loaiza, J. D., Villada, F., Pérez, J. F., Saldarriaga-Loaiza, J. D., Villada, F., & Pérez, J. F. (2019). Análisis de Costos Nivelados de Electricidad de Plantas de Cogeneración usando Biomasa Forestal en el Departamento de Antioquia, Colombia. Información Tecnológica, 30(1), 63–74. https://doi.org/10.4067/S0718-07642019000100063Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/J.RSER.2016.04.049Sansaniwal, S. K., Pal, K., Rosen, M. A., & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 72, 363–384. https://doi.org/10.1016/J.RSER.2017.01.038Sarquah, K., Narra, S., Beck, G., Bassey, U., Antwi, E., Hartmann, M., Derkyi, N. S. A., Awafo, E. A., & Nelles, M. (2022). Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization. Energies 2023, Vol. 16, Page 200, 16(1), 200. https://doi.org/10.3390/EN16010200Satiada, M. A., & Calderon, A. (2021). Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Cleaner Environmental Systems, 3, 100063. https://doi.org/10.1016/J.CESYS.2021.100063Seo, Y.-C., Alam, M. T., & Yang, W.-S. (2018). Gasification of Municipal Solid Waste. In Gasification for Low-grade Feedstock. InTech. https://doi.org/10.5772/intechopen.73685Serna-Loaiza, S., García-Velásquez, C. A., & Cardona, C. A. (2019). Strategy for the selection of the minimum processing scale for the economic feasibility of biorefineries. Biofuels, Bioproducts and Biorefining, 13(1), 107–119. https://doi.org/10.1002/BBB.1941Shadbahr, J., Ebadian, M., Gonzales-Calienes, G., Kannangara, M., Ahmadi, L., & Bensebaa, F. (2022). Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities. Renewable and Sustainable Energy Reviews, 168, 112872. https://doi.org/10.1016/J.RSER.2022.112872Shah, H. H., Amin, M., & Pepe, F. (2023). Maximizing resource efficiency: opportunities for energy recovery from municipal solid waste in Europe. Journal of Material Cycles and Waste Management, 25(5), 2766–2782. https://doi.org/10.1007/S10163-023-01733- 5/METRICSSharma, G., & Sinha, B. (2023). Future emissions of greenhouse gases, particulate matter and volatile organic compounds from municipal solid waste burning in India. Science of The Total Environment, 858, 159708. https://doi.org/10.1016/J.SCITOTENV.2022.159708Siddiqi, A., Haraguchi, M., & Narayanamurti, V. (2020a). Urban waste to energy recovery assessment simulations for developing countries. World Development, 131, 104949. https://doi.org/10.1016/J.WORLDDEV.2020.104949Siddiqi, A., Haraguchi, M., & Narayanamurti, V. (2020b). Urban waste to energy recovery assessment simulations for developing countries. World Development, 131, 104949. https://doi.org/10.1016/J.WORLDDEV.2020.104949Silva, T. F. C. V., Soares, P. A., Manenti, D. R., Fonseca, A., Saraiva, I., Boaventura, R. A. R., & Vilar, V. J. P. (2017). An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Science of The Total Environment, 576, 99–117. https://doi.org/10.1016/J.SCITOTENV.2016.10.058sinergox.xm. (2024). Precio de bolsa de electricidad. https://sinergox.xm.com.co/Paginas/Home.aspxS.Kaza, L. C., Yao, P., Bhada-Tata, & F. Van Woerden. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (Word Bank). https://doi.org/https://doi.org/10.1596/978-1-4648-1329-0Smith, J. D., Alembath, A., Al-Rubaye, H., Yu, J., Gao, X., & Golpour, H. (2019). Validation and Application of a Kinetic Model for Downdraft Biomass Gasification Simulation. Chemical Engineering & Technology, 42(12), 2505–2519. https://doi.org/10.1002/CEAT.201900304Solarte Toro. (2022). Sustainability assessment of different biorefinery schemes to enhance the development of post-conflict areas in the Colombian context: The Montes de Maria case [Instituto de Biotecnología y Agroindustria (IBA), Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/83551Standard Test Method for Ash in Biomass, Pub. L. No. ASTM E1755-01 (2010).Standard Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter, Pub. L. No. ASTM E711-87, https://www.astm.org/e0711-87r04.html (2004)Standard Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum and Lubricants, Pub. L. No. ASTM D591-92 (2021).Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, Pub. L. No. ASTM E872-82, https://www.astm.org/e0872-82r19.html (2019).superintendencia de servicio publico domiciliario. (2023). INFORME SECTORIAL DE LA ACTIVIDAD DE APROVECHAMIENTO 2021. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-Sectorial-de Aprovechamiento-de-2021.pdSuperintendencia de Servicios Públicos Domiciliarios. (2020). informe nacional de dispocisión finalde residuos sólidos. https://www.superservicios.gov.co/sites/default/files/inline files/informe_df_2019_final_22-12-2020_0_0.pdSuperintendencia de Servicios Públicos Domiciliarios. (2023a). Informe Nacional de Disposición Final de Residuos Sólidos. https://www.superservicios.gov.co/sites/default/files/inline files/Informe-Nacional-de-Disposicion-Final-de-Residuos-Sólidos.pdf.pdfSuperintendencia de Servicios Públicos Domiciliarios. (2023b). INFORME SECTORIAL DE LA ACTIVIDAD DE APROVECHAMIENTO 2022 República de Colombia. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-sectorial-actividad de-aprovechamiento-2022.pdSuperitendencia de servicios publicos domiciliarios. (2023). Informe Nacional de Disposición Final de Residuos Sólidos 2022. https://www.superservicios.gov.co/sites/default/files/inline files/Informe-Nacional-de-Disposicion-Final-de-Residuos-Sólidos-2022.pdTan, S. T., Ho, W. S., Hashim, H., Lee, C. T., Taib, M. R., & Ho, C. S. (2015). Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Conversion and Management, 102, 111– 120. https://doi.org/10.1016/J.ENCONMAN.2015.02.010Tavares, R., Ramos, A., & Rouboa, A. (2019). A theoretical study on municipal solid waste plasma gasification. Waste Management, 90, 37–45. https://doi.org/10.1016/J.WASMAN.2019.03.051Tezer, Ö., Karabağ, N., Öngen, A., Çolpan, C. Ö., & Ayol, A. (2022). Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy, 47(34), 15419–15433. https://doi.org/10.1016/J.IJHYDENE.2022.02.158Themelis, N. J. , Díaz Barriga, M. E. , Estevez, P. , & Velasco, M. G. (2013). Waste-to-Energy: A Technical Review of Municipal Solid Waste Thermal Treatment Practices. Global WTERT Council. . https://wtert.org/wp-content/uploads/2021/02/WTEGuidebook_IDB.pdfTorres, L. (2020). Estudio del sistema de limpieza de gases de un gasificador de lecho fluidizado burbujeante [Programa Académico de Ingeniería Mecánico-Eléctrica.]. Universidad de Piura.Tungalag, A., Lee, B. J., Yadav, M., & Akande, O. (2020). Yield prediction of MSW gasification including minor species through ASPEN plus simulation. Energy, 198, 117296. https://doi.org/10.1016/J.ENERGY.2020.117296Udomsirichakorn, J., & Salam, P. A. (2014). Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. Renewable and Sustainable Energy Reviews, 30, 565–579. https://doi.org/10.1016/J.RSER.2013.10.013Ulloa-Murillo, L. M., Villegas, L. M., Rodríguez-Ortiz, A. R., Duque-Acevedo, M., & Cortés García, F. J. (2022). Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 6041, 19(10), 6041. https://doi.org/10.3390/IJERPH19106041United Nations Climate Change. (n.d.). Global Warming Potentials. Https://Unfccc.Int/Process/Transparency-and-Reporting/Greenhouse-Gas-Data/Greenhouse Gas-Data-Unfccc/Global-Warming-Potentials.Vaish, B., Sharma, B., Srivastava, V., Singh, P., Ibrahim, M. H., & Singh, R. P. (2017). Energy recovery potential and environmental impact of gasification for municipal solid waste. Https://Doi-Org.Ezproxy.Cuc.Edu.Co/10.1080/17597269.2017.1368061, 10(1), 87–100. https://doi.org/10.1080/17597269.2017.1368061Vijay, V., Kapoor, R., Singh, P., Hiloidhari, M., & Ghosh, P. (2022). Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: A regional case study in India. Environmental Research, 212, 113257. https://doi.org/10.1016/J.ENVRES.2022.113257Vikram, S., Deore, S. P., De Blasio, C., Mahajani, S. M., & Kumar, S. (2023a). Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis. Energy, 270, 126912. https://doi.org/10.1016/J.ENERGY.2023.126912Vikram, S., Deore, S. P., De Blasio, C., Mahajani, S. M., & Kumar, S. (2023b). Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis. Energy, 270, 126912. https://doi.org/10.1016/J.ENERGY.2023.126912Vikram, S., Deore, S. P., De Blasio, C., Mahajani, S. M., & Kumar, S. (2023c). Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis. Energy, 270. https://doi.org/10.1016/j.energy.2023.126912Watson, J., Zhang, Y., Si, B., Chen, W. T., & de Souza, R. (2018b). Gasification of biowaste: A critical review and outlooks. Renewable and Sustainable Energy Reviews, 83, 1–17. https://doi.org/10.1016/J.RSER.2017.10.003Wienchol, P., Korus, A., Szlęk, A., & Ditaranto, M. (2022). Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions. Energy, 248, 123573. https://doi.org/10.1016/J.ENERGY.2022.123573Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. https://doi.org/10.1016/J.BIOMBIOE.2013.02.036Word Bank. (2024). Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/compliance/priceWu, Z., Zhu, P., Yao, J., Zhang, S., Ren, J., Yang, F., & Zhang, Z. (2020). Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations. Applied Energy, 279, 115794. https://doi.org/10.1016/J.APENERGY.2020.115794Yang, Y., Wang, J., Chong, K., & Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174, 406–416. https://doi.org/10.1016/J.ENCONMAN.2018.08.033Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R. I., Strizhak, P. A., & Gao, X. (2019a). Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renewable and Sustainable Energy Reviews, 103, 384–398. https://doi.org/10.1016/J.RSER.2018.12.047Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R. I., Strizhak, P. A., & Gao, X. (2019b). Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renewable and Sustainable Energy Reviews, 103, 384–398. https://doi.org/10.1016/J.RSER.2018.12.047Yasar, A., Sadiq, K., Tabinda, A. B., Ghaffar, A., Rasheed, R., & Iqbal, A. (2021). Gasification of mixed waste at high temperature to enhance the syngas efficiency and reduce gaseous emissions and tar production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2021.1950237Zhao, J., Xie, D., Wang, S., Zhang, R., Wu, Z., Meng, H., Chen, L., Wang, T., & Guo, Y. (2021). Hydrogen-rich syngas produced from co-gasification of municipal solid waste and wheat straw in an oxygen-enriched air fluidized bed. International Journal of Hydrogen Energy, 46(34), 18051–18063. https://doi.org/10.1016/J.IJHYDENE.2021.02.137Zhou, N., Zhou, J., Dai, L., Guo, F., Wang, Y., Li, H., Deng, W., Lei, H., Chen, P., Liu, Y., & Ruan, R. (2020). Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresource Technology, 314, 123756. https://doi.org/10.1016/J.BIORTECH.2020.123756Economic feasibilityEfficiencyElectricityGasificationMunicipal solid wasteSyngasTechnoeconomicViabilidad económicaEficienciaElectricidadGasificaciónResiduos sólidos urbanosSyngasTecnoeconómicoPublicationORIGINALEvaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad .pdfPDFapplication/pdf1983197https://repositorio.cuc.edu.co/bitstreams/3550ecaf-1b27-4bd1-9bcd-79e05dca71c9/download1905f13ec2dc179c31e437eafea55f63MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/e7c4a691-bdf7-40bd-bcd5-fcbd1d8bb65e/download73a5432e0b76442b22b026844140d683MD52TEXTEvaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad .pdf.txtEvaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad .pdf.txtExtracted texttext/plain102011https://repositorio.cuc.edu.co/bitstreams/08aec508-b920-450e-8adf-59f76f47f512/download87c60811d00e5c253182e7895794905bMD53THUMBNAILEvaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad .pdf.jpgEvaluación técnico-económica y ambiental de una planta de gasificación de residuos sólidos municipales para la producción de electricidad .pdf.jpgGenerated Thumbnailimage/jpeg8770https://repositorio.cuc.edu.co/bitstreams/a10d5120-35f6-486e-ae7c-a15ea1ea92dc/download33b9f81de980dc9f87a7888be3bbe50cMD5411323/13670oai:repositorio.cuc.edu.co:11323/136702025-01-15 14:08:58.739https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |