Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation

Nucleoside 2′-deoxyribosyltransferases (NDTs) catalyze the cleavage of glycosidic bonds of 2′-deoxynucleosides and the following transfer of the 2′-deoxyribose moiety to acceptor nucleobases. Here, we report the crystal structures and biochemical properties of the first tetrameric NDTs: the type I N...

Full description

Autores:
Fernández-Lucas, Jesús
Acebrón, Iván
Wu, Ruiying Y.
Alfaro, Yohana
Acosta, Javier
Kaminski, Pierre Alexandre
Arroyo, Miguel
Joachimiak, Andrzej
Nocek, Boguslaw
de la Mata, Isabel
Mancheño, José M.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9064
Acceso en línea:
https://hdl.handle.net/11323/9064
https://doi.org/10.1016/j.ijbiomac.2021.09.164
https://repositorio.cuc.edu.co/
Palabra clave:
2′-Deoxyribosyltransferases
Crystal structure
Psychrophilic enzymes
Rights
embargoedAccess
License
Copyright © 2022 Elsevier B.V.
id RCUC2_30bedd898e1ad8ead9d9791eea7c5a73
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9064
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
title Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
spellingShingle Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
2′-Deoxyribosyltransferases
Crystal structure
Psychrophilic enzymes
title_short Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
title_full Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
title_fullStr Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
title_full_unstemmed Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
title_sort Biochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptation
dc.creator.fl_str_mv Fernández-Lucas, Jesús
Acebrón, Iván
Wu, Ruiying Y.
Alfaro, Yohana
Acosta, Javier
Kaminski, Pierre Alexandre
Arroyo, Miguel
Joachimiak, Andrzej
Nocek, Boguslaw
de la Mata, Isabel
Mancheño, José M.
dc.contributor.author.spa.fl_str_mv Fernández-Lucas, Jesús
Acebrón, Iván
Wu, Ruiying Y.
Alfaro, Yohana
Acosta, Javier
Kaminski, Pierre Alexandre
Arroyo, Miguel
Joachimiak, Andrzej
Nocek, Boguslaw
de la Mata, Isabel
Mancheño, José M.
dc.subject.proposal.eng.fl_str_mv 2′-Deoxyribosyltransferases
Crystal structure
Psychrophilic enzymes
topic 2′-Deoxyribosyltransferases
Crystal structure
Psychrophilic enzymes
description Nucleoside 2′-deoxyribosyltransferases (NDTs) catalyze the cleavage of glycosidic bonds of 2′-deoxynucleosides and the following transfer of the 2′-deoxyribose moiety to acceptor nucleobases. Here, we report the crystal structures and biochemical properties of the first tetrameric NDTs: the type I NDT from the mesophilic bacterium Enterococcus faecalis V583 (EfPDT) and the type II NDT from the bacterium Desulfotalea psychrophila (DpNDT), the first psychrophilic NDT. This novel structural and biochemical data permitted an exhaustive comparative analysis aimed to shed light into the basis of the high global stability of the psychrophilic DpNDT, which has a higher melting temperature than EfPDT (58.5 °C versus 54.4 °C) or other mesophilic NDTs. DpNDT possesses a combination of unusual structural motifs not present neither in EfPDT nor any other NDT that most probably contribute to its global stability, in particular, a large aliphatic isoleucine-leucine-valine (ILV) bundle accompanied by a vicinal disulfide bridge and also an intersubunit disulfide bridge, the first described for an NDT. The functional and structural features of DpNDT do not fit the standard features of psychrophilic enzymes, which lead us to consider the implication of (sub)cellular levels together with the protein level in the adaptation of enzymatic activity to low temperatures.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-01
dc.date.accessioned.none.fl_str_mv 2022-03-10T19:04:46Z
dc.date.available.none.fl_str_mv 2022-12-01
2022-03-10T19:04:46Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0141-8130
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9064
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.ijbiomac.2021.09.164
dc.identifier.doi.spa.fl_str_mv 10.1016/j.ijbiomac.2021.09.164
dc.identifier.eissn.spa.fl_str_mv 1879-0003
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0141-8130
10.1016/j.ijbiomac.2021.09.164
1879-0003
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9064
https://doi.org/10.1016/j.ijbiomac.2021.09.164
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Biological Macromolecules
dc.relation.references.spa.fl_str_mv [1] S.A. Short, S.R. Armstrong, S.E. Ealick, D.J.T. Porter Active site amino acids that participate in the catalytic mechanism of nucleoside 2′-deoxyribosyltransferase J. Biol. Chem., 271 (1996), pp. 4978-4987, 10.1074/jbc.271.9.4978
[2] A. Fresco-Taboada, I. De La Mata, M. Arroyo, J. Fernández-Lucas New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs Appl. Microbiol. Biotechnol., 97 (2013), pp. 3773-3785, 10.1007/s00253-013-4816-y
[3] P.A. Kaminski Functional cloning, heterologous expression, and purification of two different N-deoxyribosyltransferases from lactobacillus helveticus J. Biol. Chem., 277 (2002), pp. 14400-14407, 10.1074/jbc.M111995200
[4] M.D. Erion, K. Takabayashi, H.B. Smith, J. Kessi, S. Wagner, S. Hönger, S.L. Shames, S.E. Ealick Purine nucleoside phosphorylase. 1. Structure - function studies Biochemistry, 36 (1997), pp. 11725-11734, 10.1021/bi961969w
[5] R.F. Chawdhri, D.W. Hutchinson, A.O.L. Richards Nucleoside deoxyribosyltransferase and inosine phosphorylase activity in lactic acid bacteria Arch. Microbiol., 155 (1991), pp. 409-411, 10.1007/BF00243463
[6] K.A. Lawrence, M.W. Jewett, P.A. Rosa, F.C. Gherardini Borrelia burgdorferi bb0426 encodes a 2′-deoxyribosyltransferase that plays a central role in purine salvage Mol. Microbiol., 72 (2009), pp. 1517-1529, 10.1111/j.1365-2958.2009.06740.x
[7] A. Fresco-Taboada, J. Fernández-Lucas, C. Acebal, M. Arroyo, F. Ramón, I. De La Mata, J.M. Mancheño 2′-deoxyribosyltransferase from bacillus psychrosaccharolyticus: a mesophilic-like biocatalyst for the synthesis of modified nucleosides from a psychrotolerant bacterium Catalysts, 8 (2018), 10.3390/catal8010008
[8] J. Del Arco, P.A. Sánchez-Murcia, J.M. Mancheño, F. Gago, J. Fernández-Lucas Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2´-deoxyribosyltransferase from chroococcidiopsis thermalis Appl. Microbiol. Biotechnol., 102 (2018), pp. 6947-6957
[9] D.J. Steenkamp, T.J.F. Halbich Substrate specificity of the purine-2’-deoxyribonucleosidase of crithidia luciliae Biochem. J., 287 (1992), pp. 125-129, 10.1042/bj2870125
[10] N. Crespo, P.A. Sánchez-Murcia, F. Gago, J. Cejudo-Sanches, M.A. Galmes, J. Fernández-Lucas, J.M. Mancheño 2′-deoxyribosyltransferase from leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases Appl. Microbiol. Biotechnol., 101 (2017), pp. 7187-7200, 10.1007/s00253-017-8450-y
[11] J. Bosch, M.A. Robien, C. Mehlin, E. Boni, A. Riechers, F.S. Buckner, W.C. Van Voorhis, P.J. Myler, E.A. Worthey, G. DeTitta, J.R. Luft, A. Lauricella, S. Gulde, L.A. Anderson, O. Kalyuzhniy, H.M. Neely, J. Ross, T.N. Earnest, M. Soltis, L. Schoenfeld, F. Zucker, E.A. Merritt, E. Fan, C.L.M.J. Verlinde, W.G.J. Hol Using fragment cocktail crystallography to assist inhibitor design of trypanosoma brucei nucleoside 2-deoxyribosyltransferase J. Med. Chem., 49 (2006), pp. 5939-5946, 10.1021/jm060429m
[12] S.R. Armstrong, W.J. Cook, S.A. Short, S.E. Ealick Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site Structure, 4 (1996), pp. 97-107, 10.1016/S0969-2126(96)00013-5
[13] R. Anand, P.A. Kaminski, S.E. Ealick Structures of purine 2′-deoxyribosyltransferase, substrate complexes, and the ribosylated enzyme intermediate at 2.0 Å resolution Biochemistry, 43 (2004), pp. 2384-2393, 10.1021/bi035723k
[14] D. Georlette, V. Blaise, T. Collins, S. D’Amico, E. Gratia, A. Hoyoux, J.C. Marx, G. Sonan, G. Feller, C. Gerday Some like it cold: biocatalysis at low temperatures FEMS Microbiol. Rev., 28 (2004), pp. 25-42, 10.1016/j.femsre.2003.07.003
[15] W.H. Eschenfeldt, L. Stols, C.S. Millard, A. Joachimiak, M.I. Donnelly A family of LIC vectors for high-throughput cloning and purification of proteins S.A. Doyle (Ed.), High Throughput Protein Expr. Purif, Humana Press (2009), pp. 105-115
[16] M.M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976), pp. 248-254
[17] L. Stols, C.S. Millard, I. Dementieva, M.I. Donnelly Production of selenomethionine-labeled proteins in two-liter plastic bottles for structure determination J. Struct. Funct. Genom., 5 (2004), pp. 95-102, 10.1023/B:JSFG.0000029196.87615.6e
[18] J. Fernández-Lucas, C. Acebal, J.V. Sinisterra, M. Arroyo, I. De La Mata Lactobacillus reuteri 2’-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides Appl. Environ. Microbiol., 76 (2010), pp. 1462-1470, 10.1128/AEM.01685-09
[19] J. Fernández-Lucas, A. Fresco-Taboada, C. Acebal, I. De La Mata, M. Arroyo Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from lactobacillus reuteri Appl. Microbiol. Biotechnol., 91 (2011), pp. 317-327, 10.1007/s00253-011-3221-7
[20] P.H. Brown, P. Schuck Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation Biophys. J., 90 (2006), pp. 4651-4661, 10.1529/biophysj.106.081372
[21] T.M. Laue, B. Shah, T.M. Ridgeway, S.L. Pelletier Computer aided interpretation of analytical sedimentation data for proteins S.E. Harding, J.C. Horton, A.J. Rowe (Eds.), Anal. Ultracentrifugation Biochem. Polym. Sci, Royal Society of Chemistry, Cambridge, UK (1992), pp. 90-125
[22] A.P. Minton Alternative strategies for the characterization of associations in multicomponent solutions via measurement of sedimentation equilibrium Progr. Colloid Polym. Sci., 107 (1997), pp. 11-19
[23] S. Mazurenko, J. Stourac, A. Kunka, S. Nedeljkovi, D. Bednar, Z. Prokop, J. Damborsky CalFitter : A Web Server for Analysis of Protein Thermal Denaturation Data, 46 (2018), pp. 344-349, 10.1093/nar/gky358
[24] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes Acta Crystallogr. Sect. D Biol. Crystallogr., 62 (2006), pp. 859-866, 10.1107/S0907444906019949
[25] W. Kabsch Acta Crystallogr. D Biol. Crystallogr., 66 (2010), pp. 125-132, 10.1107/S0907444909047337
[26] P.R. Evans An introduction to data reduction: space-group determination, scaling and intensity statistics Acta Crystallogr. Sect. D Biol. Crystallogr., 67 (2011), pp. 282-292, 10.1107/S090744491003982X
[27] T.R. Schneider, G.M. Sheldrick Substructure solution with SHELXD Acta Crystallogr. Sect. D Biol. Crystallogr., 58 (2002), pp. 1772-1779, 10.1107/S0907444902011678
[28] Z. Otwinowski Daresbury Study Weekend Proceedings SERC Daresbury Laboratory, Warrington, UK (1991)
[29] K. Cowtan DM: an automated procedure for phase improvement by density modification Jt. CCP4 ESF-EACBM Newsl. Protein Crystallogr., 31 (1994), pp. 34-38
[30] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan Features and development of coot Acta Crystallogr. Sect. D Biol. Crystallogr., 66 (2010), pp. 486-501, 10.1107/S0907444910007493
[31] A.J. McCoy, R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni, R.J. Read Phaser crystallographic software J. Appl. Crystallogr., 40 (2007), pp. 658-674, 10.1107/S0021889807021206
[32] G.N. Murshudov, P. Skubák, A.A. Lebedev, N.S. Pannu, R.A. Steiner, R.A. Nicholls, M.D. Winn, F. Long, A.A. Vagin REFMAC5 for the refinement of macromolecular crystal structures Acta Crystallogr. Sect. D Biol. Crystallogr., 67 (2011), pp. 355-367, 10.1107/S0907444911001314
[33] P.V. Afonine, R.W. Grosse-Kunstleve, N. Echols, J.J. Headd, N.W. Moriarty, M. Mustyakimov, T.C. Terwilliger, A. Urzhumtsev, P.H. Zwart, P.D. Adams Towards automated crystallographic structure refinement with phenix.refine Acta Crystallogr. Sect. D Biol. Crystallogr., 68 (2012), pp. 352-367, 10.1107/S0907444912001308
[34] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart PHENIX: a comprehensive python-based system for macromolecular structure solution Acta Crystallogr. Sect. D: Biol. Crystallogr., 66 (2010), pp. 213-221, 10.1107/s0907444909052925
[35] E. Krissinel, K. Henrick Inference of macromolecular assemblies from crystalline state J. Mol. Biol., 372 (2007), pp. 774-797, 10.1016/j.jmb.2007.05.022
[36] W.G. Touw, C. Baakman, J. Black, T.A.H. Te Beek, E. Krieger, R.P. Joosten, G. Vriend A series of PDB-related databanks for everyday needs Nucleic Acids Res., 43 (2015), pp. D364-D368, 10.1093/nar/gku1028
[37] W.L. DeLano The PyMOL Molecular Graphics System (2008)
[38] J. Kuever, F.A. Rainey, F. Widdle Desulfotalea Knoblauch, Sahm and Jorgensen 1999, 1641VP G.M. Garrity (Ed.), Bergey´s Man. Syst. Bacteriol (2005), pp. 997-999
[39] T. Oikawa, T. Kazuoka, K. Soda Paradoxical thermostable enzymes from psychrophile: molecular characterization and potentiality for biotechnological application J. Mol. Catal. B Enzym., 23 (2003), pp. 65-70, 10.1016/S1381-1177(03)00073-0
[40] Y. Miyamoto, T. Masaki, S. Chohnan Characterization of N-deoxyribosyltransferase from Lactococcus lactis subsp. lactis Biochim. Biophys. Acta, Proteins Proteomics, 1774 (2007), pp. 1323-1330, 10.1016/j.bbapap.2007.08.008
[41] P.A. Kaminski, P. Dacher, L. Dugué, S. Pochet In vivo reshaping the catalytic site of nucleoside 2′- deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution J. Biol. Chem., 283 (2008), pp. 20053-20059, 10.1074/jbc.M802706200
[42] E. Pérez, P.A. Sánchez-Murcia, J. Jordaan, M.D. Blanco, J.M. Mancheño, F. Gago, J. Fernández-Lucas Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-DeoxyribosylTransferase from trypanosoma brucei ChemCatChem, 10 (2018), pp. 4406-4416, 10.1002/cctc.201800775
[43] A.E. Fedøy, N. Yang, A. Martinez, H.K.S. Leiros, I.H. Steen Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability J. Mol. Biol., 372 (2007), pp. 130-149, 10.1016/j.jmb.2007.06.040
[44] H.K.S. Leiros, A.E. Fedøy, I. Leiros, I.H. Steen The complex structures of isocitrate dehydrogenase from clostridium thermocellum and desulfotalea psychrophila suggest a new active site locking mechanism FEBS Open Bio., 2 (2012), pp. 159-172, 10.1016/j.fob.2012.06.003
[45] D. Odokonyero, A. Sakai, Y. Patskovsky, V.N. Malashkevich, A.A. Fedorov, J.B. Bonanno, E.V. Fedorov, R. Toro, R. Agarwal, C. Wang, N.D.S. Ozerova, W.S. Yew, J.M. Sauder, S. Swaminathan, S.K. Burley, S.C. Almo, M.E. Glasner Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family Proc. Natl. Acad. Sci. U. S. A., 111 (2014), pp. 8535-8540, 10.1073/pnas.1318703111
[46] Á. Svingor, J. Kardos, I. Hajdú, A. Németh, P. Závodszky A better enzyme to cope with cold: comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHS J. Biol. Chem., 276 (2001), pp. 28121-28125, 10.1074/jbc.M104432200
[47] Y. Yamanaka, T. Kazuoka, M. Yoshida, K. Yamanaka, T. Oikawa, K. Soda Thermostable aldehyde dehydrogenase from psychrophile, cytophaga sp. KUC-1: enzymological characteristics and functional properties Biochem. Biophys. Res. Commun., 298 (2002), pp. 632-637, 10.1016/S0006-291X(02)02523-8
[48] T. Kazuoka, Y. Masuda, T. Oikawa, K. Soda Thermostable aspartase from a marine psychrophile, cytophaga sp. KUC-1: molecular characterization and primary structure J. Biochem., 133 (2003), pp. 51-58, 10.1093/jb/mvg012
[49] P.A. Fields Review: protein function at thermal extremes: balancing stability and flexibility Comp. Biochem. Physiol. A Mol. Integr. Physiol., 129 (2001), pp. 417-431, 10.1016/S1095-6433(00)00359-7
[50] G. Feller Molecular adaptations to cold in psychrophilic enzymes Cell. Mol. Life Sci., 60 (2003), pp. 648-662, 10.1007/s00018-003-2155-3
[51] K.S. Siddiqui, R. Cavicchioli Cold-adapted enzymes Annu. Rev. Biochem., 75 (2006), pp. 403-433, 10.1146/annurev.biochem.75.103004.142723
[52] A. Sadana A deactivation model involving pH for immobilized and soluble enzymes Biotechnol. Lett., 1 (1979), pp. 465-470, 10.1007/BF01388428
[53] S. Ganguly, K.K. Kundu Protonation/deprotonation energetics of uracil, thymine, and cytosine in water from e.m.f./spectrophotometric measurements Can. J. Chem., 72 (1994), pp. 1120-1126, 10.1139/v94-143
[54] V. Verdolino, R. Cammi, B.H. Munk, H.B. Schlegel Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model J. Phys. Chem. B, 112 (2008), pp. 16860-16873, 10.1021/jp8068877
[55] Z. Li, L. Jaroszewski, M. Iyer, M. Sedova, A. Godzik FATCAT 2.0: towards a better understanding of the structural diversity of proteins Nucleic Acids Res., 48 (2020), pp. W60-W64, 10.1093/nar/gkaa443
[56] J.P. Gallivan, D.A. Dougherty Cation-π interactions in structural biology Proc. Natl. Acad. Sci. U. S. A., 96 (1999), pp. 9459-9464, 10.1073/pnas.96.17.9459
[57] E.M. Duffy, W.L. Jorgensen, P.J. Kowalczyk Do denaturants interact with aromatic hydrocarbons in water? J. Am. Chem. Soc., 115 (1993), pp. 9271-9275, 10.1021/ja00073a050
[58] J.S. Richardson, L.L. Videau, C.J. Williams, D.C. Richardson Broad analysis of vicinal disulfides: occurrences, conformations with cis or with trans peptides, and functional roles including sugar binding J. Mol. Biol., 429 (2017), pp. 1321-1335, 10.1016/j.jmb.2017.03.017
[59] W.T. Booth, C.R. Schlachter, S. Pote, N. Ussin, N.J. Mank, V. Klapper, L.R. Offermann, C. Tang, B.K. Hurlburt, M. Chruszcz Impact of an N-terminal polyhistidine tag on protein thermal stability ACS Omega, 3 (2018), pp. 760-768, 10.1021/acsomega.7b01598
[60] S.V. Kathuria, Y.H. Chan, R.P. Nobrega, A. Özen, C.R. Matthews Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: sequence determinants of structure and stability Protein Sci., 25 (2016), pp. 662-675, 10.1002/pro.2860
[61] J.N. Sarakatsannis, Y. Duan Statistical characterization of salt bridges in proteins Proteins Struct. Funct. Genet., 60 (2005), pp. 732-739, 10.1002/prot.20549
[62] C. Vetriani, D.L. Maeder, N. Tolliday, K.S.P. Yip, T.J. Stillman, K.L. Britton, D.W. Rice, H.H. Klump, F.T. Robb Protein thermostability above 100 ° C : a key role for ionic interactions Proc. Natl. Acad. Sci. U. S. A., 95 (1998), pp. 12300-12305
[63] P. Leuenberger, S. Ganscha, A. Kahraman, V. Cappelletti, P.J. Boersema, C.Von Mering, M. Claassen, P. Picotti Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability Science (80-.), 355 (2017), 10.1126/science.aai7825
[64] D.A. Drummond, J.D. Bloom, C. Adami, C.O. Wilke, F.H. Arnold Why highly expressed proteins evolve slowly Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 14338-14343, 10.1073/pnas.0504070102
[65] D.A. Drummond, C.O. Wilke The evolutionary consequences of erroneous protein synthesis Nat. Rev. Genet., 10 (2009), pp. 715-724, 10.1038/nrg2662
dc.relation.citationendpage.spa.fl_str_mv 150
dc.relation.citationstartpage.spa.fl_str_mv 138
dc.relation.citationvolume.spa.fl_str_mv 192
dc.rights.spa.fl_str_mv Copyright © 2022 Elsevier B.V.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Copyright © 2022 Elsevier B.V.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0141813021020924?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9064/1/Biochemical%20and%20structural%20studies.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9064/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9064/3/Biochemical%20and%20structural%20studies.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9064/4/Biochemical%20and%20structural%20studies.pdf.jpg
bitstream.checksum.fl_str_mv 0e51e3b987528c4bcd85acc404d634a1
e30e9215131d99561d40d6b0abbe9bad
ad89a90ac9f8a92711aae79f6c0718bc
413639c012b53208e87f0398b3d99c32
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400219151269888
spelling Fernández-Lucas, Jesúsfdcd05d6ae671b197edd24d5a40904f1600Acebrón, Iván377c86bb55878bbbc1a460f84499d493Wu, Ruiying Y.6bf66d755d1bcfccbdfe5df7465b52c4Alfaro, Yohanaa18dccf00ef70a09e0271b7ea1f05181Acosta, Javier7a3d6f28c7f69e2089d61dba09f45051600Kaminski, Pierre Alexandre1acee9e98386cfce6a50bd68dc24058e600Arroyo, Miguel29f29f99e61cad255f3066d85a8503d7Joachimiak, Andrzejbdef4a32cb60863bf7f7731a2e23155c600Nocek, Boguslawc1190b23322d0ea48dfadd62d5a19953600de la Mata, Isabel50e972ee3fb506f4033c0b7af938271f600Mancheño, José M.10dc27d4e3f1b0793f07f32e414606552022-03-10T19:04:46Z2022-12-012022-03-10T19:04:46Z2020-12-010141-8130https://hdl.handle.net/11323/9064https://doi.org/10.1016/j.ijbiomac.2021.09.16410.1016/j.ijbiomac.2021.09.1641879-0003Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nucleoside 2′-deoxyribosyltransferases (NDTs) catalyze the cleavage of glycosidic bonds of 2′-deoxynucleosides and the following transfer of the 2′-deoxyribose moiety to acceptor nucleobases. Here, we report the crystal structures and biochemical properties of the first tetrameric NDTs: the type I NDT from the mesophilic bacterium Enterococcus faecalis V583 (EfPDT) and the type II NDT from the bacterium Desulfotalea psychrophila (DpNDT), the first psychrophilic NDT. This novel structural and biochemical data permitted an exhaustive comparative analysis aimed to shed light into the basis of the high global stability of the psychrophilic DpNDT, which has a higher melting temperature than EfPDT (58.5 °C versus 54.4 °C) or other mesophilic NDTs. DpNDT possesses a combination of unusual structural motifs not present neither in EfPDT nor any other NDT that most probably contribute to its global stability, in particular, a large aliphatic isoleucine-leucine-valine (ILV) bundle accompanied by a vicinal disulfide bridge and also an intersubunit disulfide bridge, the first described for an NDT. The functional and structural features of DpNDT do not fit the standard features of psychrophilic enzymes, which lead us to consider the implication of (sub)cellular levels together with the protein level in the adaptation of enzymatic activity to low temperatures.13 páginasapplication/pdfengElsevierNetherlandsCopyright © 2022 Elsevier B.V.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfBiochemical and structural studies of two tetrameric nucleoside 2′-deoxyribosyltransferases from psychrophilic and mesophilic bacteria: insights into cold-adaptationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S0141813021020924?via%3DihubInternational Journal of Biological Macromolecules[1] S.A. Short, S.R. Armstrong, S.E. Ealick, D.J.T. Porter Active site amino acids that participate in the catalytic mechanism of nucleoside 2′-deoxyribosyltransferase J. Biol. Chem., 271 (1996), pp. 4978-4987, 10.1074/jbc.271.9.4978[2] A. Fresco-Taboada, I. De La Mata, M. Arroyo, J. Fernández-Lucas New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs Appl. Microbiol. Biotechnol., 97 (2013), pp. 3773-3785, 10.1007/s00253-013-4816-y[3] P.A. Kaminski Functional cloning, heterologous expression, and purification of two different N-deoxyribosyltransferases from lactobacillus helveticus J. Biol. Chem., 277 (2002), pp. 14400-14407, 10.1074/jbc.M111995200[4] M.D. Erion, K. Takabayashi, H.B. Smith, J. Kessi, S. Wagner, S. Hönger, S.L. Shames, S.E. Ealick Purine nucleoside phosphorylase. 1. Structure - function studies Biochemistry, 36 (1997), pp. 11725-11734, 10.1021/bi961969w[5] R.F. Chawdhri, D.W. Hutchinson, A.O.L. Richards Nucleoside deoxyribosyltransferase and inosine phosphorylase activity in lactic acid bacteria Arch. Microbiol., 155 (1991), pp. 409-411, 10.1007/BF00243463[6] K.A. Lawrence, M.W. Jewett, P.A. Rosa, F.C. Gherardini Borrelia burgdorferi bb0426 encodes a 2′-deoxyribosyltransferase that plays a central role in purine salvage Mol. Microbiol., 72 (2009), pp. 1517-1529, 10.1111/j.1365-2958.2009.06740.x[7] A. Fresco-Taboada, J. Fernández-Lucas, C. Acebal, M. Arroyo, F. Ramón, I. De La Mata, J.M. Mancheño 2′-deoxyribosyltransferase from bacillus psychrosaccharolyticus: a mesophilic-like biocatalyst for the synthesis of modified nucleosides from a psychrotolerant bacterium Catalysts, 8 (2018), 10.3390/catal8010008[8] J. Del Arco, P.A. Sánchez-Murcia, J.M. Mancheño, F. Gago, J. Fernández-Lucas Characterization of an atypical, thermostable, organic solvent- and acid-tolerant 2´-deoxyribosyltransferase from chroococcidiopsis thermalis Appl. Microbiol. Biotechnol., 102 (2018), pp. 6947-6957[9] D.J. Steenkamp, T.J.F. Halbich Substrate specificity of the purine-2’-deoxyribonucleosidase of crithidia luciliae Biochem. J., 287 (1992), pp. 125-129, 10.1042/bj2870125[10] N. Crespo, P.A. Sánchez-Murcia, F. Gago, J. Cejudo-Sanches, M.A. Galmes, J. Fernández-Lucas, J.M. Mancheño 2′-deoxyribosyltransferase from leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases Appl. Microbiol. Biotechnol., 101 (2017), pp. 7187-7200, 10.1007/s00253-017-8450-y[11] J. Bosch, M.A. Robien, C. Mehlin, E. Boni, A. Riechers, F.S. Buckner, W.C. Van Voorhis, P.J. Myler, E.A. Worthey, G. DeTitta, J.R. Luft, A. Lauricella, S. Gulde, L.A. Anderson, O. Kalyuzhniy, H.M. Neely, J. Ross, T.N. Earnest, M. Soltis, L. Schoenfeld, F. Zucker, E.A. Merritt, E. Fan, C.L.M.J. Verlinde, W.G.J. Hol Using fragment cocktail crystallography to assist inhibitor design of trypanosoma brucei nucleoside 2-deoxyribosyltransferase J. Med. Chem., 49 (2006), pp. 5939-5946, 10.1021/jm060429m[12] S.R. Armstrong, W.J. Cook, S.A. Short, S.E. Ealick Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site Structure, 4 (1996), pp. 97-107, 10.1016/S0969-2126(96)00013-5[13] R. Anand, P.A. Kaminski, S.E. Ealick Structures of purine 2′-deoxyribosyltransferase, substrate complexes, and the ribosylated enzyme intermediate at 2.0 Å resolution Biochemistry, 43 (2004), pp. 2384-2393, 10.1021/bi035723k[14] D. Georlette, V. Blaise, T. Collins, S. D’Amico, E. Gratia, A. Hoyoux, J.C. Marx, G. Sonan, G. Feller, C. Gerday Some like it cold: biocatalysis at low temperatures FEMS Microbiol. Rev., 28 (2004), pp. 25-42, 10.1016/j.femsre.2003.07.003[15] W.H. Eschenfeldt, L. Stols, C.S. Millard, A. Joachimiak, M.I. Donnelly A family of LIC vectors for high-throughput cloning and purification of proteins S.A. Doyle (Ed.), High Throughput Protein Expr. Purif, Humana Press (2009), pp. 105-115[16] M.M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem., 72 (1976), pp. 248-254[17] L. Stols, C.S. Millard, I. Dementieva, M.I. Donnelly Production of selenomethionine-labeled proteins in two-liter plastic bottles for structure determination J. Struct. Funct. Genom., 5 (2004), pp. 95-102, 10.1023/B:JSFG.0000029196.87615.6e[18] J. Fernández-Lucas, C. Acebal, J.V. Sinisterra, M. Arroyo, I. De La Mata Lactobacillus reuteri 2’-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides Appl. Environ. Microbiol., 76 (2010), pp. 1462-1470, 10.1128/AEM.01685-09[19] J. Fernández-Lucas, A. Fresco-Taboada, C. Acebal, I. De La Mata, M. Arroyo Enzymatic synthesis of nucleoside analogues using immobilized 2′-deoxyribosyltransferase from lactobacillus reuteri Appl. Microbiol. Biotechnol., 91 (2011), pp. 317-327, 10.1007/s00253-011-3221-7[20] P.H. Brown, P. Schuck Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation Biophys. J., 90 (2006), pp. 4651-4661, 10.1529/biophysj.106.081372[21] T.M. Laue, B. Shah, T.M. Ridgeway, S.L. Pelletier Computer aided interpretation of analytical sedimentation data for proteins S.E. Harding, J.C. Horton, A.J. Rowe (Eds.), Anal. Ultracentrifugation Biochem. Polym. Sci, Royal Society of Chemistry, Cambridge, UK (1992), pp. 90-125[22] A.P. Minton Alternative strategies for the characterization of associations in multicomponent solutions via measurement of sedimentation equilibrium Progr. Colloid Polym. Sci., 107 (1997), pp. 11-19[23] S. Mazurenko, J. Stourac, A. Kunka, S. Nedeljkovi, D. Bednar, Z. Prokop, J. Damborsky CalFitter : A Web Server for Analysis of Protein Thermal Denaturation Data, 46 (2018), pp. 344-349, 10.1093/nar/gky358[24] W. Minor, M. Cymborowski, Z. Otwinowski, M. Chruszcz HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes Acta Crystallogr. Sect. D Biol. Crystallogr., 62 (2006), pp. 859-866, 10.1107/S0907444906019949[25] W. Kabsch Acta Crystallogr. D Biol. Crystallogr., 66 (2010), pp. 125-132, 10.1107/S0907444909047337[26] P.R. Evans An introduction to data reduction: space-group determination, scaling and intensity statistics Acta Crystallogr. Sect. D Biol. Crystallogr., 67 (2011), pp. 282-292, 10.1107/S090744491003982X[27] T.R. Schneider, G.M. Sheldrick Substructure solution with SHELXD Acta Crystallogr. Sect. D Biol. Crystallogr., 58 (2002), pp. 1772-1779, 10.1107/S0907444902011678[28] Z. Otwinowski Daresbury Study Weekend Proceedings SERC Daresbury Laboratory, Warrington, UK (1991)[29] K. Cowtan DM: an automated procedure for phase improvement by density modification Jt. CCP4 ESF-EACBM Newsl. Protein Crystallogr., 31 (1994), pp. 34-38[30] P. Emsley, B. Lohkamp, W.G. Scott, K. Cowtan Features and development of coot Acta Crystallogr. Sect. D Biol. Crystallogr., 66 (2010), pp. 486-501, 10.1107/S0907444910007493[31] A.J. McCoy, R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni, R.J. Read Phaser crystallographic software J. Appl. Crystallogr., 40 (2007), pp. 658-674, 10.1107/S0021889807021206[32] G.N. Murshudov, P. Skubák, A.A. Lebedev, N.S. Pannu, R.A. Steiner, R.A. Nicholls, M.D. Winn, F. Long, A.A. Vagin REFMAC5 for the refinement of macromolecular crystal structures Acta Crystallogr. Sect. D Biol. Crystallogr., 67 (2011), pp. 355-367, 10.1107/S0907444911001314[33] P.V. Afonine, R.W. Grosse-Kunstleve, N. Echols, J.J. Headd, N.W. Moriarty, M. Mustyakimov, T.C. Terwilliger, A. Urzhumtsev, P.H. Zwart, P.D. Adams Towards automated crystallographic structure refinement with phenix.refine Acta Crystallogr. Sect. D Biol. Crystallogr., 68 (2012), pp. 352-367, 10.1107/S0907444912001308[34] P.D. Adams, P.V. Afonine, G. Bunkoczi, V.B. Chen, I.W. Davis, N. Echols, J.J. Headd, L.W. Hung, G.J. Kapral, R.W. Grosse-Kunstleve, A.J. McCoy, N.W. Moriarty, R. Oeffner, R.J. Read, D.C. Richardson, J.S. Richardson, T.C. Terwilliger, P.H. Zwart PHENIX: a comprehensive python-based system for macromolecular structure solution Acta Crystallogr. Sect. D: Biol. Crystallogr., 66 (2010), pp. 213-221, 10.1107/s0907444909052925[35] E. Krissinel, K. Henrick Inference of macromolecular assemblies from crystalline state J. Mol. Biol., 372 (2007), pp. 774-797, 10.1016/j.jmb.2007.05.022[36] W.G. Touw, C. Baakman, J. Black, T.A.H. Te Beek, E. Krieger, R.P. Joosten, G. Vriend A series of PDB-related databanks for everyday needs Nucleic Acids Res., 43 (2015), pp. D364-D368, 10.1093/nar/gku1028[37] W.L. DeLano The PyMOL Molecular Graphics System (2008)[38] J. Kuever, F.A. Rainey, F. Widdle Desulfotalea Knoblauch, Sahm and Jorgensen 1999, 1641VP G.M. Garrity (Ed.), Bergey´s Man. Syst. Bacteriol (2005), pp. 997-999[39] T. Oikawa, T. Kazuoka, K. Soda Paradoxical thermostable enzymes from psychrophile: molecular characterization and potentiality for biotechnological application J. Mol. Catal. B Enzym., 23 (2003), pp. 65-70, 10.1016/S1381-1177(03)00073-0[40] Y. Miyamoto, T. Masaki, S. Chohnan Characterization of N-deoxyribosyltransferase from Lactococcus lactis subsp. lactis Biochim. Biophys. Acta, Proteins Proteomics, 1774 (2007), pp. 1323-1330, 10.1016/j.bbapap.2007.08.008[41] P.A. Kaminski, P. Dacher, L. Dugué, S. Pochet In vivo reshaping the catalytic site of nucleoside 2′- deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution J. Biol. Chem., 283 (2008), pp. 20053-20059, 10.1074/jbc.M802706200[42] E. Pérez, P.A. Sánchez-Murcia, J. Jordaan, M.D. Blanco, J.M. Mancheño, F. Gago, J. Fernández-Lucas Enzymatic synthesis of therapeutic nucleosides using a highly versatile purine nucleoside 2’-DeoxyribosylTransferase from trypanosoma brucei ChemCatChem, 10 (2018), pp. 4406-4416, 10.1002/cctc.201800775[43] A.E. Fedøy, N. Yang, A. Martinez, H.K.S. Leiros, I.H. Steen Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability J. Mol. Biol., 372 (2007), pp. 130-149, 10.1016/j.jmb.2007.06.040[44] H.K.S. Leiros, A.E. Fedøy, I. Leiros, I.H. Steen The complex structures of isocitrate dehydrogenase from clostridium thermocellum and desulfotalea psychrophila suggest a new active site locking mechanism FEBS Open Bio., 2 (2012), pp. 159-172, 10.1016/j.fob.2012.06.003[45] D. Odokonyero, A. Sakai, Y. Patskovsky, V.N. Malashkevich, A.A. Fedorov, J.B. Bonanno, E.V. Fedorov, R. Toro, R. Agarwal, C. Wang, N.D.S. Ozerova, W.S. Yew, J.M. Sauder, S. Swaminathan, S.K. Burley, S.C. Almo, M.E. Glasner Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family Proc. Natl. Acad. Sci. U. S. A., 111 (2014), pp. 8535-8540, 10.1073/pnas.1318703111[46] Á. Svingor, J. Kardos, I. Hajdú, A. Németh, P. Závodszky A better enzyme to cope with cold: comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHS J. Biol. Chem., 276 (2001), pp. 28121-28125, 10.1074/jbc.M104432200[47] Y. Yamanaka, T. Kazuoka, M. Yoshida, K. Yamanaka, T. Oikawa, K. Soda Thermostable aldehyde dehydrogenase from psychrophile, cytophaga sp. KUC-1: enzymological characteristics and functional properties Biochem. Biophys. Res. Commun., 298 (2002), pp. 632-637, 10.1016/S0006-291X(02)02523-8[48] T. Kazuoka, Y. Masuda, T. Oikawa, K. Soda Thermostable aspartase from a marine psychrophile, cytophaga sp. KUC-1: molecular characterization and primary structure J. Biochem., 133 (2003), pp. 51-58, 10.1093/jb/mvg012[49] P.A. Fields Review: protein function at thermal extremes: balancing stability and flexibility Comp. Biochem. Physiol. A Mol. Integr. Physiol., 129 (2001), pp. 417-431, 10.1016/S1095-6433(00)00359-7[50] G. Feller Molecular adaptations to cold in psychrophilic enzymes Cell. Mol. Life Sci., 60 (2003), pp. 648-662, 10.1007/s00018-003-2155-3[51] K.S. Siddiqui, R. Cavicchioli Cold-adapted enzymes Annu. Rev. Biochem., 75 (2006), pp. 403-433, 10.1146/annurev.biochem.75.103004.142723[52] A. Sadana A deactivation model involving pH for immobilized and soluble enzymes Biotechnol. Lett., 1 (1979), pp. 465-470, 10.1007/BF01388428[53] S. Ganguly, K.K. Kundu Protonation/deprotonation energetics of uracil, thymine, and cytosine in water from e.m.f./spectrophotometric measurements Can. J. Chem., 72 (1994), pp. 1120-1126, 10.1139/v94-143[54] V. Verdolino, R. Cammi, B.H. Munk, H.B. Schlegel Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model J. Phys. Chem. B, 112 (2008), pp. 16860-16873, 10.1021/jp8068877[55] Z. Li, L. Jaroszewski, M. Iyer, M. Sedova, A. Godzik FATCAT 2.0: towards a better understanding of the structural diversity of proteins Nucleic Acids Res., 48 (2020), pp. W60-W64, 10.1093/nar/gkaa443[56] J.P. Gallivan, D.A. Dougherty Cation-π interactions in structural biology Proc. Natl. Acad. Sci. U. S. A., 96 (1999), pp. 9459-9464, 10.1073/pnas.96.17.9459[57] E.M. Duffy, W.L. Jorgensen, P.J. Kowalczyk Do denaturants interact with aromatic hydrocarbons in water? J. Am. Chem. Soc., 115 (1993), pp. 9271-9275, 10.1021/ja00073a050[58] J.S. Richardson, L.L. Videau, C.J. Williams, D.C. Richardson Broad analysis of vicinal disulfides: occurrences, conformations with cis or with trans peptides, and functional roles including sugar binding J. Mol. Biol., 429 (2017), pp. 1321-1335, 10.1016/j.jmb.2017.03.017[59] W.T. Booth, C.R. Schlachter, S. Pote, N. Ussin, N.J. Mank, V. Klapper, L.R. Offermann, C. Tang, B.K. Hurlburt, M. Chruszcz Impact of an N-terminal polyhistidine tag on protein thermal stability ACS Omega, 3 (2018), pp. 760-768, 10.1021/acsomega.7b01598[60] S.V. Kathuria, Y.H. Chan, R.P. Nobrega, A. Özen, C.R. Matthews Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: sequence determinants of structure and stability Protein Sci., 25 (2016), pp. 662-675, 10.1002/pro.2860[61] J.N. Sarakatsannis, Y. Duan Statistical characterization of salt bridges in proteins Proteins Struct. Funct. Genet., 60 (2005), pp. 732-739, 10.1002/prot.20549[62] C. Vetriani, D.L. Maeder, N. Tolliday, K.S.P. Yip, T.J. Stillman, K.L. Britton, D.W. Rice, H.H. Klump, F.T. Robb Protein thermostability above 100 ° C : a key role for ionic interactions Proc. Natl. Acad. Sci. U. S. A., 95 (1998), pp. 12300-12305[63] P. Leuenberger, S. Ganscha, A. Kahraman, V. Cappelletti, P.J. Boersema, C.Von Mering, M. Claassen, P. Picotti Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability Science (80-.), 355 (2017), 10.1126/science.aai7825[64] D.A. Drummond, J.D. Bloom, C. Adami, C.O. Wilke, F.H. Arnold Why highly expressed proteins evolve slowly Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 14338-14343, 10.1073/pnas.0504070102[65] D.A. Drummond, C.O. Wilke The evolutionary consequences of erroneous protein synthesis Nat. Rev. Genet., 10 (2009), pp. 715-724, 10.1038/nrg26621501381922′-DeoxyribosyltransferasesCrystal structurePsychrophilic enzymesORIGINALBiochemical and structural studies.pdfBiochemical and structural studies.pdfapplication/pdf10184809https://repositorio.cuc.edu.co/bitstream/11323/9064/1/Biochemical%20and%20structural%20studies.pdf0e51e3b987528c4bcd85acc404d634a1MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9064/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTBiochemical and structural studies.pdf.txtBiochemical and structural studies.pdf.txttext/plain84461https://repositorio.cuc.edu.co/bitstream/11323/9064/3/Biochemical%20and%20structural%20studies.pdf.txtad89a90ac9f8a92711aae79f6c0718bcMD53open accessTHUMBNAILBiochemical and structural studies.pdf.jpgBiochemical and structural studies.pdf.jpgimage/jpeg14780https://repositorio.cuc.edu.co/bitstream/11323/9064/4/Biochemical%20and%20structural%20studies.pdf.jpg413639c012b53208e87f0398b3d99c32MD54open access11323/9064oai:repositorio.cuc.edu.co:11323/90642023-12-14 17:03:14.688An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==