Likert equidistante como suma ponderada de categorías de respuesta
Introducción: La suma de puntajes de elementos de Likert puede no ser significativa ya que no se cumple la propiedad de equidistancia. Esto implica que el cálculo de la media, la desviación estándar, la correlación, la regresión y el alfa de Cronbach utilizando la suma de las varianzas de los elemen...
- Autores:
-
Chakrabartty , Satyendra Nath
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/11389
- Acceso en línea:
- https://hdl.handle.net/11323/11389
https://doi.org/10.17981/cultedusoc.14.1.2023.04
- Palabra clave:
- Ítems tipo Likert
Suma ponderada
Monotónico
Equidistante
Distribución normal
Likert items
Weighted sum
Monotonic
Equidistant
Normal distribution
- Rights
- openAccess
- License
- CULTURA EDUCACIÓN Y SOCIEDAD - 2022
id |
RCUC2_307de8a6554fd49b5069610998eba496 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/11389 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Likert equidistante como suma ponderada de categorías de respuesta |
dc.title.translated.eng.fl_str_mv |
Equidistant Likert as weighted sum of Response Categories |
title |
Likert equidistante como suma ponderada de categorías de respuesta |
spellingShingle |
Likert equidistante como suma ponderada de categorías de respuesta Ítems tipo Likert Suma ponderada Monotónico Equidistante Distribución normal Likert items Weighted sum Monotonic Equidistant Normal distribution |
title_short |
Likert equidistante como suma ponderada de categorías de respuesta |
title_full |
Likert equidistante como suma ponderada de categorías de respuesta |
title_fullStr |
Likert equidistante como suma ponderada de categorías de respuesta |
title_full_unstemmed |
Likert equidistante como suma ponderada de categorías de respuesta |
title_sort |
Likert equidistante como suma ponderada de categorías de respuesta |
dc.creator.fl_str_mv |
Chakrabartty , Satyendra Nath |
dc.contributor.author.spa.fl_str_mv |
Chakrabartty , Satyendra Nath |
dc.subject.spa.fl_str_mv |
Ítems tipo Likert Suma ponderada Monotónico Equidistante Distribución normal |
topic |
Ítems tipo Likert Suma ponderada Monotónico Equidistante Distribución normal Likert items Weighted sum Monotonic Equidistant Normal distribution |
dc.subject.eng.fl_str_mv |
Likert items Weighted sum Monotonic Equidistant Normal distribution |
description |
Introducción: La suma de puntajes de elementos de Likert puede no ser significativa ya que no se cumple la propiedad de equidistancia. Esto implica que el cálculo de la media, la desviación estándar, la correlación, la regresión y el alfa de Cronbach utilizando la suma de las varianzas de los elementos y la varianza de la prueba podría ser problemático. Objetivo: Evitar la limitación de las puntuaciones de Likert sumativas transformando las puntuaciones de los ítems sin procesar en puntuaciones monotónicas continuas que satisfagan la propiedad equidistante y evalúen los métodos con respecto a las propiedades deseadas y prueben la normalidad de las puntuaciones de las pruebas transformadas. Metodología: El documento metodológico proporciona tres métodos para transformar puntajes discretos y ordinales de ítems en puntajes continuos por suma ponderada donde los pesos consideran frecuencias de diferentes categorías de respuesta de diferentes ítems y generan datos continuos que satisfacen propiedades equidistantes y monótonas. Resultados y discusión: Todos los métodos propuestos evitaron las principales limitaciones de las puntuaciones de Likert sumativas, generando datos continuos que satisfacen las propiedades equidistantes y monótonas. El método basado en frecuencias de categorías de respuesta para diferentes ítems (Método 3) pasó la prueba de normalidad a diferencia del Método 1 y el Método 2. Las puntuaciones transformadas normalmente distribuidas en el Método 3 facilitan la realización de análisis bajo una configuración paramétrica. Conclusiones: Los métodos propuestos que tienen altas correlaciones con las puntuaciones de Likert sumativas, conservan una estructura factorial similar y brindan reconciliación al debate sobre la naturaleza ordinal frente a la de intervalo de los datos generados a partir de un cuestionario de Likert. Teniendo en cuenta las ventajas teóricas, se recomienda el Método 3 para puntuar elementos de Likert principalmente debido a la distribución normal de las puntuaciones individuales que facilita la significatividad de las operaciones y para realizar análisis estadísticos paramétricos. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-29 00:00:00 2024-04-09T19:55:50Z |
dc.date.available.none.fl_str_mv |
2022-11-29 00:00:00 2024-04-09T19:55:50Z |
dc.date.issued.none.fl_str_mv |
2022-11-29 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2145-9258 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/11389 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/cultedusoc.14.1.2023.04 |
dc.identifier.doi.none.fl_str_mv |
10.17981/cultedusoc.14.1.2023.04 |
dc.identifier.eissn.none.fl_str_mv |
2389-7724 |
identifier_str_mv |
2145-9258 10.17981/cultedusoc.14.1.2023.04 2389-7724 |
url |
https://hdl.handle.net/11323/11389 https://doi.org/10.17981/cultedusoc.14.1.2023.04 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cultura Educación Sociedad |
dc.relation.references.spa.fl_str_mv |
Arvidsson, R. (2019). On the use of ordinal scoring scales in social life cycle assessment. The International Journal of Life Cycle Assessment, 24(3), 604–606. https://doi.org/10.1007/s11367-018-1557-2 Barua, A. (2013). Methods for Decision–making in Survey Questionnaires Based on Likert Scale. Journal of Asian Scientific Research, 3(1), 35–38. https://archive.aessweb.com/index.php/5003/article/view/3446 Bürkner, P.C. & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199 Carifio, J. & Perla, R. (2007). Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences, 3, 106–116. http://dx.doi.org/10.3844/jssp.2007.106.116 Chakrabartty, S. N. (2021). Optimum number of Response Categories. Current Psychology, 104(1), 1–15. https://doi.org/10.1007/s12144-021-01866-6 Dawes, J. (2007). Do data characteristics change according to the number of scale points used? International Journal of Market Research, 50(1), 61–77. https://doi.org/10.1177/147078530805000106 Flora, D. B. & Curran, P. J. (2004). An Empirical Evaluation of Alternative Methods of Estimation for Confirmatory Factor Analysis with Ordinal Data. Psychological Methods, 9(4), 466–491. https://doi.org/10.1037/1082-989X.9.4.466 Granberg-Rademacker, J. S. (2010). An Algorithm for Converting Ordinal Scale Measurement Data to Interval/Ratio Scale. Educational and Psychological Measurement, 70(1), 74–90. https://doi.org/10.1177/0013164409344532 Harwell, M. R. & Gatti, G. G. (2001). Rescaling ordinal data to interval data in educational research. Review of Educational Research, 71, 105–131. https://doi.org/10.3102/00346543071001105 Hinne, M. (2013). Additive conjoint measurement and the resistance toward falsifiability in psychology. Frontiers in Psychology, 4(1), 1–4. https://doi.org/10.3389/fpsyg.2013.00246 Huiping, W. & Leung, S-O. (2017). Can Likert Scales be Treated as Interval Scales?—A Simulation Study. Journal of Social Service Research, 43(4), 527–532. https://doi.org/10.1080/01488376.2017.1329775 Jamieson, S. (2005, Aug. 11). Likert scale. Encyclopedia Britannica. https://www.britannica.com/topic/Likert-Scale Kuzon, W. M., Urbanchek, M. G. & McCabe, S. (1996). The seven deadly sins of statistical analysis. Annals of Plastic Surgery, 37, 265–272. https://doi.org/10.1097/00000637-199609000-00006 Lee, J. A. & Soutar, G. N. (2010). Is Schwartz’s value survey an interval scale, and does it really matter? Journal of Cross-Cultural Psychology, 41(1), 76–86. https://doi.Org/10.1177/0022022109348920 Lim, H.-E. (2008). The use of different happiness rating scales: bias and comparison problem? Social Indicators Research, 87, 259–267. https://doi.org/10.1007/s11205-007-9171-x Marcus-Roberts, H. M. & Roberts, F. S. (1987). Meaningless statistics. Journal of Educational Statistics, 12, 383–394. https://doi.org/10.2307/1165056 Markus, K. A. & Borsboom, D. (2012). The cat came back: evaluating arguments against psychological measurement. Theory & Psychol, 22(4), 452–466. https://doi.org/10.1177/0959354310381155 Michell, J. (1990). An Introduction to the Logic of Psychological Measurement. ErlbaumAssociates. Munshi, J. (2014). A method for constructing Likert scales. Social Science Research Network. https://doi.org/10.2139/ssrn.2419366 Sheng, Y. & Sheng, Z. (2012). Is coefficient alpha robust to non-normal data? Frontiers in Psychology, 3(34), 1–13. https://doi.org/10.3389/fpstg.2012.00034 Šimkovic, M. & Träuble, B. (2019). Robustness of statistical methods when measure is affected by ceiling and/or floor effect. PloS one, 14(8), 1–47. https://doi.org/10.1371/journal.pone.0220889 Simms, L. J., Zelazny, K., Williams, T. F. & Bernstein, L. (2019). Does the number of response options matter? Psychometric perspectives using personality questionnaire data. Psychological Assessment, 31(4), 557–566. https://doi.org/10.1037/pas0000648 Snell, E. (1964). A Scaling Procedure for Ordered Categorical Data. Biometrics, 20(3), 592–607. https://doi.org/10.2307/2528498 Uyumaz, G. & Sırgancı, G. (2021). Determining the Factors Affecting the Psychological Distance Between Categories in the Rating Scale. International Journal of Contemporary Educational Research, 8(3), 178–190. https://doi.org/10.33200/ijcer.858599 Wu, Ch.-H. (2007). An Empirical Study on the Transformation of Likert scale Data to Numerical Scores. Applied Mathematical Sciences, 1(58), 2851–2862. https://doi.org/10.12988/ams Yusoff, R. & Janor, R. M. (2014). Generation of an Interval Metric Scale to Measure Attitude. SAGE Open, 4(1), 1–16. https://doi.org/10.1177/2158244013516768 |
dc.relation.citationendpage.none.fl_str_mv |
92 |
dc.relation.citationstartpage.none.fl_str_mv |
75 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/3915/4485 https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/3915/4486 https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/3915/4487 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2023 : Cultura Educación y Sociedad |
dc.rights.spa.fl_str_mv |
CULTURA EDUCACIÓN Y SOCIEDAD - 2022 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CULTURA EDUCACIÓN Y SOCIEDAD - 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html text/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/view/3915 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0637800a-0277-48fb-aea5-d5149e9685c5/download |
bitstream.checksum.fl_str_mv |
e3e282da6c98e50b11a5c225af9e7a94 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760746777804800 |
spelling |
Chakrabartty , Satyendra Nath2022-11-29 00:00:002024-04-09T19:55:50Z2022-11-29 00:00:002024-04-09T19:55:50Z2022-11-292145-9258https://hdl.handle.net/11323/11389https://doi.org/10.17981/cultedusoc.14.1.2023.0410.17981/cultedusoc.14.1.2023.042389-7724Introducción: La suma de puntajes de elementos de Likert puede no ser significativa ya que no se cumple la propiedad de equidistancia. Esto implica que el cálculo de la media, la desviación estándar, la correlación, la regresión y el alfa de Cronbach utilizando la suma de las varianzas de los elementos y la varianza de la prueba podría ser problemático. Objetivo: Evitar la limitación de las puntuaciones de Likert sumativas transformando las puntuaciones de los ítems sin procesar en puntuaciones monotónicas continuas que satisfagan la propiedad equidistante y evalúen los métodos con respecto a las propiedades deseadas y prueben la normalidad de las puntuaciones de las pruebas transformadas. Metodología: El documento metodológico proporciona tres métodos para transformar puntajes discretos y ordinales de ítems en puntajes continuos por suma ponderada donde los pesos consideran frecuencias de diferentes categorías de respuesta de diferentes ítems y generan datos continuos que satisfacen propiedades equidistantes y monótonas. Resultados y discusión: Todos los métodos propuestos evitaron las principales limitaciones de las puntuaciones de Likert sumativas, generando datos continuos que satisfacen las propiedades equidistantes y monótonas. El método basado en frecuencias de categorías de respuesta para diferentes ítems (Método 3) pasó la prueba de normalidad a diferencia del Método 1 y el Método 2. Las puntuaciones transformadas normalmente distribuidas en el Método 3 facilitan la realización de análisis bajo una configuración paramétrica. Conclusiones: Los métodos propuestos que tienen altas correlaciones con las puntuaciones de Likert sumativas, conservan una estructura factorial similar y brindan reconciliación al debate sobre la naturaleza ordinal frente a la de intervalo de los datos generados a partir de un cuestionario de Likert. Teniendo en cuenta las ventajas teóricas, se recomienda el Método 3 para puntuar elementos de Likert principalmente debido a la distribución normal de las puntuaciones individuales que facilita la significatividad de las operaciones y para realizar análisis estadísticos paramétricos.Introduction: Addition of scores of Likert items may not be meaningful since equidistant property is not satisfied. This implies computation of mean, standard deviation, correlation, regression and Cronbach alpha using sum of item variances and test variance could be problematic. Objective: Avoiding limitation of summative Likert scores by transforming raw item scores to continuous monotonic scores satisfying equidistant property and evaluate the methods with respect to desired properties and testing normality of transformed test scores. Methodology: The methodological paper gives three methods of transforming discrete, ordinal item scores to continuous scores by weighted sum where weights consider frequencies of different response-categories of different items and generate continuous data satisfying equidistant and monotonic properties. Results and discussions: All the proposed methods avoided major limitations of summative Likert scores, generates continuous data satisfying equidistant and monotonic properties. The method based on frequencies of response-categories for different items (Method 3) passed the normality test unlike the Method 1 and Method 2. Normally distributed transformed scores in Method 3 facilitate undertaking analysis under parametric set up. Conclusions: Proposed methods having high correlations with summative Likert scores, retained similar factor structure and provides reconciliation to the debate on ordinal vs. interval nature of data generated from a Likert questionnaire. Considering the theoretical advantages, the Method 3 is recommended for scoring Likert items primarily due to Normal distribution of individual scores facilitating meaningfulness of operations and to undertake parametric statistical analysis.application/pdftext/htmltext/xmlspaUniversidad de la CostaCULTURA EDUCACIÓN Y SOCIEDAD - 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/view/3915Ítems tipo LikertSuma ponderadaMonotónicoEquidistanteDistribución normalLikert itemsWeighted sumMonotonicEquidistantNormal distributionLikert equidistante como suma ponderada de categorías de respuestaEquidistant Likert as weighted sum of Response CategoriesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cultura Educación SociedadArvidsson, R. (2019). On the use of ordinal scoring scales in social life cycle assessment. The International Journal of Life Cycle Assessment, 24(3), 604–606. https://doi.org/10.1007/s11367-018-1557-2Barua, A. (2013). Methods for Decision–making in Survey Questionnaires Based on Likert Scale. Journal of Asian Scientific Research, 3(1), 35–38. https://archive.aessweb.com/index.php/5003/article/view/3446Bürkner, P.C. & Vuorre, M. (2019). Ordinal Regression Models in Psychology: A Tutorial. Advances in Methods and Practices in Psychological Science, 2(1), 77–101. https://doi.org/10.1177/2515245918823199Carifio, J. & Perla, R. (2007). Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences, 3, 106–116. http://dx.doi.org/10.3844/jssp.2007.106.116Chakrabartty, S. N. (2021). Optimum number of Response Categories. Current Psychology, 104(1), 1–15. https://doi.org/10.1007/s12144-021-01866-6Dawes, J. (2007). Do data characteristics change according to the number of scale points used? International Journal of Market Research, 50(1), 61–77. https://doi.org/10.1177/147078530805000106Flora, D. B. & Curran, P. J. (2004). An Empirical Evaluation of Alternative Methods of Estimation for Confirmatory Factor Analysis with Ordinal Data. Psychological Methods, 9(4), 466–491. https://doi.org/10.1037/1082-989X.9.4.466Granberg-Rademacker, J. S. (2010). An Algorithm for Converting Ordinal Scale Measurement Data to Interval/Ratio Scale. Educational and Psychological Measurement, 70(1), 74–90. https://doi.org/10.1177/0013164409344532Harwell, M. R. & Gatti, G. G. (2001). Rescaling ordinal data to interval data in educational research. Review of Educational Research, 71, 105–131. https://doi.org/10.3102/00346543071001105Hinne, M. (2013). Additive conjoint measurement and the resistance toward falsifiability in psychology. Frontiers in Psychology, 4(1), 1–4. https://doi.org/10.3389/fpsyg.2013.00246Huiping, W. & Leung, S-O. (2017). Can Likert Scales be Treated as Interval Scales?—A Simulation Study. Journal of Social Service Research, 43(4), 527–532. https://doi.org/10.1080/01488376.2017.1329775Jamieson, S. (2005, Aug. 11). Likert scale. Encyclopedia Britannica. https://www.britannica.com/topic/Likert-ScaleKuzon, W. M., Urbanchek, M. G. & McCabe, S. (1996). The seven deadly sins of statistical analysis. Annals of Plastic Surgery, 37, 265–272. https://doi.org/10.1097/00000637-199609000-00006Lee, J. A. & Soutar, G. N. (2010). Is Schwartz’s value survey an interval scale, and does it really matter? Journal of Cross-Cultural Psychology, 41(1), 76–86. https://doi.Org/10.1177/0022022109348920Lim, H.-E. (2008). The use of different happiness rating scales: bias and comparison problem? Social Indicators Research, 87, 259–267. https://doi.org/10.1007/s11205-007-9171-xMarcus-Roberts, H. M. & Roberts, F. S. (1987). Meaningless statistics. Journal of Educational Statistics, 12, 383–394. https://doi.org/10.2307/1165056Markus, K. A. & Borsboom, D. (2012). The cat came back: evaluating arguments against psychological measurement. Theory & Psychol, 22(4), 452–466. https://doi.org/10.1177/0959354310381155Michell, J. (1990). An Introduction to the Logic of Psychological Measurement. ErlbaumAssociates.Munshi, J. (2014). A method for constructing Likert scales. Social Science Research Network. https://doi.org/10.2139/ssrn.2419366Sheng, Y. & Sheng, Z. (2012). Is coefficient alpha robust to non-normal data? Frontiers in Psychology, 3(34), 1–13. https://doi.org/10.3389/fpstg.2012.00034Šimkovic, M. & Träuble, B. (2019). Robustness of statistical methods when measure is affected by ceiling and/or floor effect. PloS one, 14(8), 1–47. https://doi.org/10.1371/journal.pone.0220889Simms, L. J., Zelazny, K., Williams, T. F. & Bernstein, L. (2019). Does the number of response options matter? Psychometric perspectives using personality questionnaire data. Psychological Assessment, 31(4), 557–566. https://doi.org/10.1037/pas0000648Snell, E. (1964). A Scaling Procedure for Ordered Categorical Data. Biometrics, 20(3), 592–607. https://doi.org/10.2307/2528498Uyumaz, G. & Sırgancı, G. (2021). Determining the Factors Affecting the Psychological Distance Between Categories in the Rating Scale. International Journal of Contemporary Educational Research, 8(3), 178–190. https://doi.org/10.33200/ijcer.858599Wu, Ch.-H. (2007). An Empirical Study on the Transformation of Likert scale Data to Numerical Scores. Applied Mathematical Sciences, 1(58), 2851–2862. https://doi.org/10.12988/amsYusoff, R. & Janor, R. M. (2014). Generation of an Interval Metric Scale to Measure Attitude. SAGE Open, 4(1), 1–16. https://doi.org/10.1177/21582440135167689275114https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/3915/4485https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/3915/4486https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/3915/4487Núm. 1 , Año 2023 : Cultura Educación y SociedadPublicationOREORE.xmltext/xml2563https://repositorio.cuc.edu.co/bitstreams/0637800a-0277-48fb-aea5-d5149e9685c5/downloade3e282da6c98e50b11a5c225af9e7a94MD5111323/11389oai:repositorio.cuc.edu.co:11323/113892024-09-17 10:56:43.171https://creativecommons.org/licenses/by-nc-nd/4.0/CULTURA EDUCACIÓN Y SOCIEDAD - 2022metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |