A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window

The Vehicle Routing Problem with Time Windows has become a pretty studied optimization problem. Because the time constraint greatly expands the possible solutions; this allow that the model get closer to reality. In this investigation, the restrictions, the conclusions and future works of around two...

Full description

Autores:
Polo-Pichon, Braynner
Troncoso Palacio, Alexander
De-La-Hoz-Franco, Emiro
Tipo de recurso:
Part of book
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10712
Acceso en línea:
https://hdl.handle.net/11323/10712
https://repositorio.cuc.edu.co/
Palabra clave:
Metaheuristic literature review
Metaheuristic algorithms
Time windows
Vehicle routing problem
Restrictions on vehicle routing
Rights
closedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_301f4072eada46a58dce16341c44a817
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10712
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
title A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
spellingShingle A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
Metaheuristic literature review
Metaheuristic algorithms
Time windows
Vehicle routing problem
Restrictions on vehicle routing
title_short A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
title_full A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
title_fullStr A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
title_full_unstemmed A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
title_sort A brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time window
dc.creator.fl_str_mv Polo-Pichon, Braynner
Troncoso Palacio, Alexander
De-La-Hoz-Franco, Emiro
dc.contributor.author.none.fl_str_mv Polo-Pichon, Braynner
Troncoso Palacio, Alexander
De-La-Hoz-Franco, Emiro
dc.subject.proposal.eng.fl_str_mv Metaheuristic literature review
Metaheuristic algorithms
Time windows
Vehicle routing problem
Restrictions on vehicle routing
topic Metaheuristic literature review
Metaheuristic algorithms
Time windows
Vehicle routing problem
Restrictions on vehicle routing
description The Vehicle Routing Problem with Time Windows has become a pretty studied optimization problem. Because the time constraint greatly expands the possible solutions; this allow that the model get closer to reality. In this investigation, the restrictions, the conclusions and future works of around two hundred papers, have been consulted at Web of Science, Scopus and Sage. In these, the most widely used bioinspired metaheuristic algorithms were analyzed to provide solutions in the vehicle routing problem with time windows. The objective of this research is the publication of an article, which serves as a reference or support to give a broad documented vision to future research on Bioinspired Metaheuristics. The findings about them: Few written evidence it found about periodic restriction, and only some papers, involving heterogeneous fleets. From the perspective of metaheuristic techniques, the algorithms that has been most used for solve this problem, are the genetic algorithms. In addition, little information was found on the application of the Buffalo and Cuckoo algorithms. Which can become a great opportunity for new research in this field. Based on these findings, it can be concluded that the application of hybrid algorithms, could be analyzed in depth. Because there is little information, and this represents a wide and interesting spectrum of research, which can be used to increase solutions in these problems.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-03-24
dc.date.accessioned.none.fl_str_mv 2024-02-14T21:23:46Z
dc.date.available.none.fl_str_mv 2024-02-14T21:23:46Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_3248
status_str draft
dc.identifier.citation.spa.fl_str_mv Polo-Pichon, B., Troncoso-Palacio, A., De-La-Hoz-Franco, E. (2022). A Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window. In: Sharma, H., Vyas, V.K., Pandey, R.K., Prasad, M. (eds) Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021). ICIVC 2021. Proceedings in Adaptation, Learning and Optimization, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-97196-0_31
dc.identifier.isbn.spa.fl_str_mv 978-3-030-97195-3
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10712
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-97196-0_31
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
dc.identifier.eisbn.spa.fl_str_mv 978-3-030-97196-0
identifier_str_mv Polo-Pichon, B., Troncoso-Palacio, A., De-La-Hoz-Franco, E. (2022). A Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window. In: Sharma, H., Vyas, V.K., Pandey, R.K., Prasad, M. (eds) Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021). ICIVC 2021. Proceedings in Adaptation, Learning and Optimization, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-97196-0_31
978-3-030-97195-3
10.1007/978-3-030-97196-0_31
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
978-3-030-97196-0
url https://hdl.handle.net/11323/10712
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Proceedings in Adaptation, Learning and Optimization;
dc.relation.ispartofbook.spa.fl_str_mv Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021).
dc.relation.references.spa.fl_str_mv García-Schilardi, M.E.: Collective public transport: transporte publico coletivo Seu papel no processo de inclusão social. Bitacora 24(1), 35–42 (2014)
Mignot, D., Aguiléra, A., Bloy, D., Caubel, D., Madre, J.L.: Formas urbanas, movilidad y segregación. Urban Public Econ. Rev. (12), 73–104 (2010). https://www.redalyc.org/articulo.oa?id=50414006003. ISSN 1697-6223
Kwanele, M.: Las fusiones escolares empeoran el problema del transporte escolar|Molido (2018). https://www.groundup.org.za/article/department-puts-distance-between-children-and-education/. (Accessed 22 Sept 2019)
Robles, Y.: La falta de opciones de transporte significa que la ‘elección’ de la escuela es ilusoria para muchas familias de Denver: Denverite, el sitio de Denver (2017). https://denverite.com/2017/03/22/lack-transportation-options-means-school-choice-illusory-many-denver-families/. (Accessed 22 Sept 2019)
Espíritu Salinas, N.: Transportation and stress in Lima city 1–18 (2018). https://repositorio.urp.edu.pe/handle/URP/1486
OPS/OMS|Contaminación del Aire Ambiental (2017). https://www.paho.org/es/temas/calidad-aire. (Accessed 22 Sept 2019)
Uribe-Martes, C.J., Rivera-Restrepo, D.X., Filippo, A.-D., Silva, J.: Simulation model of internal transportation at a container terminal to determine the number of vehicles required. In: Smys, S., Bestak, R., Rocha, Á. (eds.) ICICIT 2019. LNNS, vol. 98, pp. 912–919. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33846-6_100
Troncoso Palacio, A.: El modelado, la simulación de procesos y los gemelos digitales: soporte para la toma de decisiones. In: Modelado y simulación de procesos. VirtualPro, no. 227, p. 3 (2020). https://www.virtualpro.co/revista/modelado-y-simulacion-de-procesos/3
Golden, B., Raghavan, S., Wasil, E.: The vehicle routing problem latest advances and new challenges (2008). https://link.springer.com/book/10.1007/978-0-387-77778-8
Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016)
Albayrak, N., Allahverdi, M.: Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms. Expert Syst. Appl. 38(3), 1313–1320 (2011)
Menger, K.: Das Botenproblem. In: Ergebnisse eines Mathematischen Kolloquiums 2 (1932)
Laporte, G., Osman, I.H.: Routing problems: a bibliography. Ann. Oper. Res. 61(1), 227–262 (1995)
Guo, X., Liu, Y., Samaranayake, S.: Solving the school bus routing problem at scale via a compressed shareability network. In: IEEE Conference Intelligent Transportation Systems Proceedings, ITSC, vol. 2018-Novem, pp. 1900–1907 (2018)
Dantzig, G., Fulkerson, B., Delbert, R., Johnson, S.M., Cook, W.: Solution of a large-scale traveling-salesman problem. 7–28 (2010)
Applegate, D.L., et al.: Certification of an optimal TSP tour through 85,900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)
Dell'Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S.: The bike sharing rebalancing problem: mathematical formulations and benchmark instances. Omega (United Kingdom) 45, 7–19 (2014)
Ropke, S., Cordeau, J.-F.: Branch and cut and price for the pickup and delivery problem with time windows. Transp. Sci. 43(3), 267–286 (2009). https://doi.org/10.1287/trsc.1090.0272
Gogna, A., Tayal, A.: Metaheuristics: review and application. J. Exp. Theor. Artif. Intell. 25(4), 503–526 (2013)
Significado de Heurística (Qué es, Concepto y Definición) – Significados. https://www.significados.com/heuristica/. (Accessed 15 Nov 2019)
Kahneman, D.: Pensar rápido, pensar despacio (2011)
Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Ops. Res 13(5), 533–549 (1986)
Martínez, C., Medina, D.: Modelación de una heurística para el análisis del desempeño de un modelo determinístico de ruteo de vehículos con múltiples depósitos bajo un ambiente estocástico. Repositorio Institucional CUC (2014). https://repositorio.cuc.edu.co/handle/11323/4854
Melián, B., Pérez, J.A.M., Vega, J.M.M.: Meta heurísticas: una visión global. Iberoamerican J. Artif. Intell. 7, 7–28 (2003). http://journal.iberamia.org/public/Vol.1-14.html#2003
Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 140, 1–19 (2020)
van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Springer Netherlands, Dordrecht (1987)
Sivanandam, S.N., Deepa, S.N.: Genetic algorithms. In: Sivanandam, S.N., Deepa, S.N. (eds.) Introduction to Genetic Algorithms, pp. 15–37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73190-0
Knowles, J.D., Knowles, J., Corne, D.: M-PAES: a memetic algorithm for multiobjective optimization (2000)
Shi, R.C., Eberhart, Y.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1945–1950 (1999)
Dorigo, G., Di Caro, M.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477 (1999)
Yang, M., Xin, S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu: Swarm intelligence and bio-inspired computation: theory and applications - Google Libros (2013).https://www.elsevier.com/books/swarm-intelligence-and-bio-inspired-computation/yang/978-0-12-405163-8
Yang, X.-S.: Cuckoo search and firefly algorithm. Intell. Comput. Int. 516, 1–26 (2014)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization, pp. 65–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6
Odili, J.B., Kahar, M.N.M.: African Buffalo Optimization (ABO) - a new meta-heuristic algorithm. In: National Conference For Postgraduate Research, pp. 1–7 (2015). http://dx.doi.org/https://doi.org/10.13140/RG.2.1.4547.9846
Yang, S., Deb, X.-S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)
Alcaraz, J.J., Caballero-Arnaldos, L., Vales-Alonso, J.: Rich vehicle routing problem with last-mile outsourcing decisions. Transp. Res. Part E: Logist. Transp. Rev. 129, 263–286 (2019). https://doi.org/10.1016/j.tre.2019.08.004
Kim, S.H., Bae, S.H.: Optimal solution to the vehicle routing problem by adopting a meta-heuristic algorithm. Transp. Plan. Technol. 39(6), 574–585 (2016). https://doi.org/10.1080/03081060.2016.1187808
Nowakowski, P., Szwarc, K., Boryczka, U.: Vehicle route planning in e-waste mobile collection on demand supported by artificial intelligence algorithms. Transp. Res. Part D: Transp. Environ. 63, 1–22 (2018). https://doi.org/10.1016/j.trd.2018.04.007
Shi, Y., Boudouh, T., Grunder, O.: A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times. Transp. Res. Part E: Logist. Transp. Rev. 128, 52–95 (2019). https://doi.org/10.1016/j.tre.2019.05.015
Molina, J.C., Eguia, I., Racero, J.: An optimization approach for designing routes in metrological control services: a case study. Flex. Serv. Manuf. J. 30(4), 924–952 (2018)
Niu, Y., Yang, Z., Chen, P., Xiao, J.: Optimizing the green open vehicle routing problem with time windows by minimizing comprehensive routing cost. J. Clean. Prod. 171, 962–971 (2017)
He, P., Li, J., Jiang, Y., Wang, X.: Collaborative transportation planning distinguishing old and new shippers for small-medium enterprise. J. Ind. Prod. Eng. 35(3), 170–180 (2017)
Ye, F., Zhang, D., Si, Y.-W., Zeng, X., Thanh Nguyen, T.: A hybrid algorithm for a vehicle routing problem with realistic constraints. Inf. Sci. 394–395, 167–182 (2017). https://doi.org/10.1016/j.ins.2017.02.028
Yassen, E.T., Ayob, M., Nazri, M.Z.A., Sabar, N.R.: An adaptive hybrid algorithm for vehicle routing problems with time windows. Comput. Ind. Eng. 113, 382–391 (2017). https://doi.org/10.1016/j.cie.2017.09.034
Huang, Z., Huang, W., Guo, F.: Integrated sustainable planning of self-pickup and door-to-door delivery service with multi-type stations. Comput. Ind. Eng. 135, 412–425 (2019). https://doi.org/10.1016/j.cie.2019.06.022
Bernal, J., Escobar, J.W., Linfati, R.: A granular Tabu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows. J. Ind. Eng. Manage. 10(4), 646–662 (2017). Special Issue
Hoogeboom, M., Dullaert, W.: Vehicle routing with arrival time diversification. Eur. J. Oper. Res. 275, 93–107 (2019)
Shiri, S., Huynh, N.: Optimization of drayage operations with time-window constraints. Int. J. Prod. Econ. 176, 7–20 (2016)
He, P., Li, J., Fang, E., deVoil, P., Cao, G.: Reducing agricultural fuel consumption by minimizing inefficiencies. J. Clean. Prod. 236, 1–13 (2019). https://doi.org/10.1016/j.jclepro.2019.117619
Shen, L., Tao, F., Wang, S.: Multi-depot open vehicle routing problem with time windows based on carbon trading. Int. J. Environ. Res. Public Health 15(9), 1–20 (2018)
Lin, S., Bard, J.F., Jarrah, A.I., Zhang, X., Novoa, L.J.: Route design for last-in, first-out deliveries with backhauling. Transp. Res. Part C: Emerg. Technol. 76, 90–117 (2017). https://doi.org/10.1016/j.trc.2017.01.005
Wang, C., Dessouky, M., Ordóñez, F.: Routing courier delivery services with urgent demand. INFOR Inf. Syst. Oper. Res. 53(1), 26–39 (2015)
Grosso, R., Muñuzuri, J., Escudero-Santana, A., Barbadilla-Martín, E.: Mathematical formulation and comparison of solution approaches for the vehicle routing problem with access time windows. Complexity 2018, 1–10 (2018). https://doi.org/10.1155/2018/4621694
Guitián De Frutos, R.M., Casas-Méndez, B.: Routing problems in agricultural cooperatives: a model for optimization of transport vehicle logistics. IMA J. Manage. Math. 30, 387–412 (2019)
Osaba, E., Yang, X.-S., Fister, I., Del Ser, J., Lopez-Garcia, P., Vazquez-Pardavila, A.J.: A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evol. Comput. 44, 273–286 (2019)
Mrowczynska, B., Krol, A., Czech, P.: Artificial immune system in planning deliveries in a short time. Bull. Pol. Acad. Sci. Tech. Sci. 67, 969–980 (2019)
Yousefi, H., Tavakkoli-Moghaddam, R., Taheri, M., Oliaei, B., Mohammadi, M., Mozaffari, A.: Solving a bi-objective vehicle routing problem under uncertainty by a revised multi-choice goal programming approach. Int. J. Ind. Eng. Comput. 8, 283–302 (2017)
Setak, M., Azizi, V., Karimi, H., Jalili, S.: Pickup and delivery supply chain network with semi soft time windows: metaheuristic approach. Int. J. Manage. Sci. Eng. Manage. 12(2), 89–95 (2017)
Chen, J., Shi, J.: A multi-compartment vehicle routing problem with time windows for urban distribution-a comparison study on particle swarm optimization algorithms. Comput. Ind. Eng. 133, 95–106 (2019). https://doi.org/10.1016/j.cie.2019.05.008
Manisri, T., Mungwattana, A., Janssens, G.K., Caris, A.: A hybrid algorithm for the vehicle routing problem with soft time windows and hierarchical objectives. J. Inf. Optim. Sci. 36(3), 283–300 (2015)
Vincent, F.Y., Redi, A.P., Hidayat, Y.A., Wibowo, O.J.: A simulated annealing heuristic for the hybrid vehicle routing problem. Appl. Soft Comput. 53, 119–132 (2017)
Khodabandeh, E., Bai, L., Heragu, S.S., Evans, G.W., Elrod, T., Shirkness, M.: Modelling and solution of a large-scale vehicle routing problem at GE appliances & lighting. Int. J. Prod. Res. 55(4), 1100–1116 (2015)
Wang, C., Mu, D., Zhao, F., Sutherland, J.W.: A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup-delivery and time windows. Comput. Ind. Eng. 83, 111–122 (2015). https://doi.org/10.1016/j.cie.2015.02.005
Küçükoğlu, İ, Ene, S., Aksoy, A., Öztürk, N.: A memory structure adapted simulated annealing algorithm for a green vehicle routing problem. Environ. Sci. Pollut. Res. 22(5), 3279–3297 (2015)
Cruz-Chávez, M.A., Rodríguez-León, A., Rivera-López, R., Cruz-Rosales, M.H.: A grid-based genetic approach to solving the vehicle routing problem with time windows. Appl. Sci. 9(18), 1–23 (2019)
Zheng, J., Zhang, Y.: A fuzzy receding horizon control strategy for dynamic vehicle routing problem. IEEE Access 7, 151239–151251 (2019). https://doi.org/10.1109/ACCESS.2019.2948154
Meng, F., Ding, Y., Li, W., Guo, R.: Customer-oriented vehicle routing problem with environment consideration: two-phase optimization approach and heuristic solution. Math. Probl. Eng. 2019, 1–19 (2019). https://doi.org/10.1155/2019/1073609
Kang, H.Y., Lee, A.H.I.: An enhanced approach for the multiple vehicle routing problem with heterogeneous vehicles and a soft time window. Symmetry (Basel) 10(11), 1–20 (2018)
Hsiao, Y.H., Chen, M.C., Lu, K.Y., Chin, C.L.: Last-mile distribution planning for fruit-and-vegetable cold chains. Int. J. Logist. Manage. 29(3), 862–886 (2018)
Shahparvari, S., Abbasi, B., Chhetri, P.: Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: an Australian case study. Omega 72, 96–117 (2017). https://doi.org/10.1016/j.omega.2016.11.007
Agrawal, V., Lightner, C., Lightner-Laws, C., Wagner, N.: A bi-criteria evolutionary algorithm for a constrained multi-depot vehicle routing problem. Soft Comput. 21(17), 5159–5178 (2016)
Qin, J., Ye, Y., Cheng, B.R., Zhao, X., Ni, L.: The emergency vehicle routing problem with uncertain demand under sustainability environments. Sustainability 9(2), 1–24 (2016)
Escuín, D., Larrodé, E., Millán, C.: A cooperative waiting strategy based on elliptical areas for the Dynamic Pickup and Delivery Problem with Time Windows. J. Adv. Transp. 50(8), 1577–1597 (2016)
Ahkamiraad, A., Wang, Y.: Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput. Ind. Eng. 119, 76–84 (2018). https://doi.org/10.1016/j.cie.2018.03.007
Xu, S.H., Liu, J.P., Zhang, F.H., Wang, L., Sun, L.J.: A combination of genetic algorithm and particle swarm optimization for vehicle routing problem with time windows. Sensors (Switzerland) 15(9), 21033–21053 (2015)
Zhang, Y., Yang, Y., Yang, R.: Distribution path optimization method of gas cylinder based on Genetic-Tabu hybrid algorithm. Int. J. Innov. Comput. 15(2), 773–782 (2019)
Yue, Y.-X., Zhang, T., Yue, Q.-X.: Improved fractal space filling curves hybrid optimization algorithm for vehicle routing problem. Comput. Intell. Neuro-Sci. 2015, 1–10 (2015). https://doi.org/10.1155/2015/375163
Wang, Y., et al.: Collaborative multi-depot logistics network design with time window assignment. Expert. Syst. Appl. 140, 1–24 (2020). https://doi.org/10.1016/j.eswa.2019.112910
Shi, C., Li, T., Bai, Y., Zhao, F.: A heuristics-based parthenogenetic algorithm for the VRP with potential demands and time windows. Sci. Program. 2016, 1–13 (2016). https://doi.org/10.1155/2016/8461857
Shi, Y., Boudouh, T., Grunder, O.: A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand. Expert Syst. Appl. 72, 160–176 (2016)
Barkaoui, M., Berger, J., Boukhtouta, A.: Customer satisfaction in dynamic vehicle routing problem with time windows. Appl. Soft Comput. J. 35, 423–432 (2015)
Rabbani, M., Pourreza, P., Farrokhi-Asl, H., Nouri, N.: A hybrid genetic algorithm for multi-depot vehicle routing problem with considering time window repair and pick-up. J. Model. Manage. 13(3), 698–717 (2018)
Yang, B., Hu, Z.-H., Wei, C., Li, S.-Q., Zhao, L., Jia, S.: Routing with time-windows for multiple environmental vehicle types. Comput. Ind. Eng. 89, 150–161 (2015). https://doi.org/10.1016/j.cie.2015.02.001
Ma, Y., Xu, J.: A cloud theory-based particle swarm optimization for multiple decision maker vehicle routing problems with fuzzy random time windows. Eng. Optim. 47(6), 825–842 (2015)
Zhou, Y., Wang, J.: A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem with time windows. Syst. J. 9, 1100–1113 (2015). https://doi.org/10.1109/JSYST.2014.2300201
Yassen, E.T., Ayob, M., Mohd Zakree, A.N., Sabar, N.R.: Meta-harmony search algorithm for the vehicle routing problem with time windows. Inf. Sci. (Ny) 325, 140–158 (2015)
Oyola, J.: The capacitated vehicle routing problem with soft time windows and stochastic travel times. Rev. Fac. Ing. 28(50), 19–33 (2019)
Zhao, P.X., Luo, W.H., Han, X.: Time-dependent and bi-objective vehicle routing problem with time windows. Adv. Prod. Eng. Manage. 14(2), 201–212 (2019)
Wang, S., Wang, X., Liu, X., Yu, J.: A bi-objective vehicle-routing problem with soft time windows and multiple depots to minimize the total energy consumption and customer dissatisfaction. Sustainability 10(11), 1–21 (2018)
Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L.S., Tiwari, M.K.: Multi-objective modeling of production and pollution routing problem with time window: a self-learning particle swarm optimization approach. Comput. Ind. Eng. 99, 29–40 (2016). https://doi.org/10.1016/j.cie.2015.07.003
Chai, H., He, R., Ma, C., Dai, C., Zhou, K.: Path planning and vehicle scheduling optimization for logistic distribution of hazardous materials in full container load. Discret. Dyn. Nat. Soc. 2017, 1–14 (2017). https://doi.org/10.1155/2017/9685125
Momenikiyai, M., Student, M., Ebrahimnejad, S., Vahdani, B.: A Bi-objective mathematical model for inventory distribution-routing problem under risk pooling effect: robust meta-heuristics approach. J. Econ. Comput. Econ. Cybern. Stud. Res. 52(4), 257–274 (2018). https://doi.org/10.24818/18423264/52.4.18.17
Tikani, H., Setak, M.: Efficient solution algorithms for a time-critical reliable transportation problem in multigraph networks with FIFO property. Appl. Soft Comput. J. 74, 504–528 (2019)
Sivaramkumar, V., Thansekhar, M.R., Saravanan, R., Joe Amali, S.M.: Demonstrating the importance of using total time balance instead of route balance on a multi-objective vehicle routing problem with time windows. Int. J. Adv. Manuf. Technol. 98(5–8), 1287–1306 (2018)
Wang, Y.M., Yin, H.L.: Cost-optimization problem with a soft time window based on an improved fuzzy genetic algorithm for fresh food distribution. Math. Probl. Eng. 2018, 1–17 (2018). https://doi.org/10.1155/2018/5743287
Pierre, D.M., Zakaria, N.: Stochastic partially optimized cyclic shift crossover for multi-objective genetic algorithms for the vehicle routing problem with time-windows. Appl. Soft Comput. 52, 863–876 (2017)
Abdulaal, A., Cintuglu, M.H., Asfour, S., Mohammed, O.A.: Solving the multivariant EV routing problem incorporating V2G and G2V options. IEEE Trans. Transp. Electrification 3(1), 238–248 (2017). https://doi.org/10.1109/TTE.2016.2614385
Wang, X., Sun, X., Dong, J., Wang, M., Ruan, J.: Optimizing terminal delivery of perishable products considering customer satisfaction 1–12 (2017)
Lightner-Laws, C., Agrawal, V., Lightner, C., Wagner, N.: An evolutionary algorithm approach for the constrained multi-depot vehicle routing problem. Int. J. Intell. Comput. Cybern. 9(1), 2–22 (2016)
He, J., Huang, Y., Yan, W.: Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption. Adv. Eng. Inform. 29(1), 59–75 (2015)
Harbaoui Dridi, I., Ben Alaïa, E., Borne, P., Bouchriha, H.: Optimisation of the multi-depots pick-up and delivery problems with time windows and multi-vehicles using PSO algorithm. Int. J. Prod. Res. 58(14) (2020). https://doi.org/10.1080/00207543.2019.1650975
Guo, Y.-N., Cheng, J., Luo, S., Gong, D., Xue, Y.: Robust dynamic multi-objective vehicle routing optimization method. IEEE/ACM Trans. Comput. Biol. Bioinform. 15, 1891–1903 (2018)
Zhang, Y., Shi, L., Chen, J., Li, X.: Analysis of an automated vehicle routing problem in logistics considering path interruption. J. Adv. Transp. 2017, 1–10 (2017). https://doi.org/10.1155/2017/1624328
Kachitvichyanukul, V., Sombuntham, P., Kunnapapdeelert, S.: Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO. Comput. Ind. Eng. 89, 125–136 (2015). https://doi.org/10.1016/j.cie.2015.04.011
Norouzi, N., Sadegh-Amalnick, M., Alinaghiyan, M.: Evaluating of the particle swarm optimization in a periodic vehicle routing problem. Measur. J. Int. Measur. Confed. 62, 162–169 (2015)
Zhang, Q., Xiong, S.: Routing optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithm. Appl. Soft Comput. 71, 917–925 (2018)
Niroomand, I., Nsakanda, A.L.: Improving collection flows in a public postal network with contractor’s obligation considerations. Int. J. Prod. Econ. 198, 79–92 (2018). https://doi.org/10.1016/j.ijpe.2018.01.025
Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.H.: The time-dependent orienteering problem with time windows: a fast ant colony system. Ann. Oper. Res. 254(1–2), 481–505 (2017)
Brito, J., Martínez, F.J., Moreno, J.A., Verdegay, J.L.: An ACO hybrid metaheuristic for close-open vehicle routing problems with time windows and fuzzy constraints. Appl. Soft Comput. J. 32, 154–163 (2015)
López-Santana, E., Rodríguez-Vásquez, W.C., Méndez-Giraldo, G.: A hybrid expert system, clustering and ant colony optimization approach for scheduling and routing problem in courier services. Int. J. Ind. Eng. Comput. 9, 369–396 (2018)
Zhang, H., Zhang, Q., Ma, L., Zhang, Z., Liu, Y.: A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Inf. Sci. (Ny) 490, 166–190 (2019)
Decerle, J., Grunder, O., Hajjam, A., Hassani, E., Barakat, O.: A hybrid memetic-ant colony optimization algorithm for the home health care problem with time window, synchronization and working time balancing. Swarm Evol. Comput. 46, 171–183 (2019)
Ren, X.Y., Chen, C.F., Xiao, Y.L., Du, S.C.: Path optimization of cold chain distribution with multiple distribution centers considering carbon emissions. Appl. Ecol. Environ. Res. 17, 9437–9453 (2019)
Wu, L., He, Z., Chen, Y., Wu, D., Cui, J.: Brainstorming-based ant colony optimization for vehicle routing with soft time windows. IEEE Spec. Sect. Theory Algorithms Appl. Sparse Recover. 7, 19643–19652 (2018)
Rouky, N., Boukachour, J., Boudebous, D., El Alaoui Hilali, A.: A robust metaheuristic for the rail shuttle routing problem with uncertainty: a real case study in the Le Havre Port. Asian J. Shipping Logist. 34(2), 171–187 (2018)
Huang, S.-H., Huang, Y.-H., Blazquez, C.A., Paredes-Belmar, G.: Application of the ant colony optimization in the resolution of the bridge inspection routing problem. Appl. Soft Comput. 65, 443–461 (2018)
Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.-H.: Solving the stochastic time-dependent orienteering problem with time windows. Eur. J. Oper. Res. 255, 699–718 (2016)
Yang, Z., et al.: Dynamic vehicle routing with time windows in theory and practice. Nat. Comput. 16, 119–134 (2016)
Wu, W., Tian, Y., Jin, T.: A label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaul. Appl. Soft Comput. 47, 224–234 (2016)
Gao, J., Gu, F., Hu, P., Xie, Y., Yao, B.: Automobile chain maintenance parts delivery problem using an improved ant colony algorithm. Spec. Issue Artic. Adv. Mech. Eng. 8(9), 1–13 (2016)
Allali, S., Benchaïba, M., Ouzzani, F., Menouar, H.: No-collision grid based broadcast scheme and ant colony system with victim lifetime window for navigating robot in first aid applications. Ad Hoc Netw. 68, 85–93 (2017)
Ju, C., Zhou, G., Chen, T.: Disruption management for vehicle routing problem with time-window changes. Int. J. Shipping Transp. Logist. 9(1), 4–28 (2017)
Iqbal, S., Kaykobad, M., Rahman, M.S.: Solving the multi-objective vehicle routing problem with soft time windows with the help of bees. Swarm Evol. Comput. 24, 50–64 (2015)
Yao, B., Yan, Q., Zhang, M., Yang, Y.: Improved artificial bee colony algorithm for vehicle routing problem with time windows. PloS One. 12, 1–18 (2017). https://doi.org/10.1371/journal.pone.0181275
Yu, S., Tai, C., Liu, Y., Gao, L.: An improved artificial bee colony algorithm for vehicle routing problem with time windows: a real case in Dalian. Spec. Issue Artic. Adv. Mech. Eng. 8(8), 1–9 (2016)
Jawarneh, S., Abdullah, S.: Sequential insertion heuristic with adaptive bee colony optimization algorithm for vehicle routing problem with time windows. PLoS One 10(7) (2015). https://doi.org/10.1371/journal.pone.0130224
Nikolić, M., Teodorović, D.: Vehicle rerouting in the case of unexpectedly high demand in distribution systems. Transp. Res. Part C Emerg. Technol. 55, 535–545 (2015)
dc.relation.citationendpage.spa.fl_str_mv 391
dc.relation.citationstartpage.spa.fl_str_mv 377
dc.rights.eng.fl_str_mv © 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 1 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer, Cham
dc.publisher.place.spa.fl_str_mv Switzerland
dc.source.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-030-97196-0_31#copyright-information
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/20ebc2aa-2b10-4f53-aea2-da0aa83a33db/download
https://repositorio.cuc.edu.co/bitstreams/eb46460f-93a3-40c5-97c3-44b7df2f77f5/download
https://repositorio.cuc.edu.co/bitstreams/a8d07372-de78-4ed7-b057-06326c049368/download
https://repositorio.cuc.edu.co/bitstreams/27f12015-99a5-49eb-94b3-37fbee2c12fc/download
bitstream.checksum.fl_str_mv 8eb0526b3d446eebaaed6afe81def91d
2f9959eaf5b71fae44bbf9ec84150c7a
07e4b8e9251856617101970b983240e6
3709f497e76d39a488d20d164dfdc520
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760756931166208
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPolo-Pichon, BraynnerTroncoso Palacio, AlexanderDe-La-Hoz-Franco, Emiro2024-02-14T21:23:46Z2024-02-14T21:23:46Z2022-03-24Polo-Pichon, B., Troncoso-Palacio, A., De-La-Hoz-Franco, E. (2022). A Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window. In: Sharma, H., Vyas, V.K., Pandey, R.K., Prasad, M. (eds) Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021). ICIVC 2021. Proceedings in Adaptation, Learning and Optimization, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-97196-0_31978-3-030-97195-3https://hdl.handle.net/11323/1071210.1007/978-3-030-97196-0_31Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/978-3-030-97196-0The Vehicle Routing Problem with Time Windows has become a pretty studied optimization problem. Because the time constraint greatly expands the possible solutions; this allow that the model get closer to reality. In this investigation, the restrictions, the conclusions and future works of around two hundred papers, have been consulted at Web of Science, Scopus and Sage. In these, the most widely used bioinspired metaheuristic algorithms were analyzed to provide solutions in the vehicle routing problem with time windows. The objective of this research is the publication of an article, which serves as a reference or support to give a broad documented vision to future research on Bioinspired Metaheuristics. The findings about them: Few written evidence it found about periodic restriction, and only some papers, involving heterogeneous fleets. From the perspective of metaheuristic techniques, the algorithms that has been most used for solve this problem, are the genetic algorithms. In addition, little information was found on the application of the Buffalo and Cuckoo algorithms. Which can become a great opportunity for new research in this field. Based on these findings, it can be concluded that the application of hybrid algorithms, could be analyzed in depth. Because there is little information, and this represents a wide and interesting spectrum of research, which can be used to increase solutions in these problems.1 páginaapplication/pdfengSpringer, ChamSwitzerlandProceedings in Adaptation, Learning and Optimization;Proceedings of the International Conference on Intelligent Vision and Computing (ICIVC 2021).García-Schilardi, M.E.: Collective public transport: transporte publico coletivo Seu papel no processo de inclusão social. Bitacora 24(1), 35–42 (2014)Mignot, D., Aguiléra, A., Bloy, D., Caubel, D., Madre, J.L.: Formas urbanas, movilidad y segregación. Urban Public Econ. Rev. (12), 73–104 (2010). https://www.redalyc.org/articulo.oa?id=50414006003. ISSN 1697-6223Kwanele, M.: Las fusiones escolares empeoran el problema del transporte escolar|Molido (2018). https://www.groundup.org.za/article/department-puts-distance-between-children-and-education/. (Accessed 22 Sept 2019)Robles, Y.: La falta de opciones de transporte significa que la ‘elección’ de la escuela es ilusoria para muchas familias de Denver: Denverite, el sitio de Denver (2017). https://denverite.com/2017/03/22/lack-transportation-options-means-school-choice-illusory-many-denver-families/. (Accessed 22 Sept 2019)Espíritu Salinas, N.: Transportation and stress in Lima city 1–18 (2018). https://repositorio.urp.edu.pe/handle/URP/1486OPS/OMS|Contaminación del Aire Ambiental (2017). https://www.paho.org/es/temas/calidad-aire. (Accessed 22 Sept 2019)Uribe-Martes, C.J., Rivera-Restrepo, D.X., Filippo, A.-D., Silva, J.: Simulation model of internal transportation at a container terminal to determine the number of vehicles required. In: Smys, S., Bestak, R., Rocha, Á. (eds.) ICICIT 2019. LNNS, vol. 98, pp. 912–919. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33846-6_100Troncoso Palacio, A.: El modelado, la simulación de procesos y los gemelos digitales: soporte para la toma de decisiones. In: Modelado y simulación de procesos. VirtualPro, no. 227, p. 3 (2020). https://www.virtualpro.co/revista/modelado-y-simulacion-de-procesos/3Golden, B., Raghavan, S., Wasil, E.: The vehicle routing problem latest advances and new challenges (2008). https://link.springer.com/book/10.1007/978-0-387-77778-8Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I.: The vehicle routing problem: state of the art classification and review. Comput. Ind. Eng. 99, 300–313 (2016)Albayrak, N., Allahverdi, M.: Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms. Expert Syst. Appl. 38(3), 1313–1320 (2011)Menger, K.: Das Botenproblem. In: Ergebnisse eines Mathematischen Kolloquiums 2 (1932)Laporte, G., Osman, I.H.: Routing problems: a bibliography. Ann. Oper. Res. 61(1), 227–262 (1995)Guo, X., Liu, Y., Samaranayake, S.: Solving the school bus routing problem at scale via a compressed shareability network. In: IEEE Conference Intelligent Transportation Systems Proceedings, ITSC, vol. 2018-Novem, pp. 1900–1907 (2018)Dantzig, G., Fulkerson, B., Delbert, R., Johnson, S.M., Cook, W.: Solution of a large-scale traveling-salesman problem. 7–28 (2010)Applegate, D.L., et al.: Certification of an optimal TSP tour through 85,900 cities. Oper. Res. Lett. 37(1), 11–15 (2009)Dell'Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S.: The bike sharing rebalancing problem: mathematical formulations and benchmark instances. Omega (United Kingdom) 45, 7–19 (2014)Ropke, S., Cordeau, J.-F.: Branch and cut and price for the pickup and delivery problem with time windows. Transp. Sci. 43(3), 267–286 (2009). https://doi.org/10.1287/trsc.1090.0272Gogna, A., Tayal, A.: Metaheuristics: review and application. J. Exp. Theor. Artif. Intell. 25(4), 503–526 (2013)Significado de Heurística (Qué es, Concepto y Definición) – Significados. https://www.significados.com/heuristica/. (Accessed 15 Nov 2019)Kahneman, D.: Pensar rápido, pensar despacio (2011)Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Ops. Res 13(5), 533–549 (1986)Martínez, C., Medina, D.: Modelación de una heurística para el análisis del desempeño de un modelo determinístico de ruteo de vehículos con múltiples depósitos bajo un ambiente estocástico. Repositorio Institucional CUC (2014). https://repositorio.cuc.edu.co/handle/11323/4854Melián, B., Pérez, J.A.M., Vega, J.M.M.: Meta heurísticas: una visión global. Iberoamerican J. Artif. Intell. 7, 7–28 (2003). http://journal.iberamia.org/public/Vol.1-14.html#2003Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 140, 1–19 (2020)van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Springer Netherlands, Dordrecht (1987)Sivanandam, S.N., Deepa, S.N.: Genetic algorithms. In: Sivanandam, S.N., Deepa, S.N. (eds.) Introduction to Genetic Algorithms, pp. 15–37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73190-0Knowles, J.D., Knowles, J., Corne, D.: M-PAES: a memetic algorithm for multiobjective optimization (2000)Shi, R.C., Eberhart, Y.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, pp. 1945–1950 (1999)Dorigo, G., Di Caro, M.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477 (1999)Yang, M., Xin, S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu: Swarm intelligence and bio-inspired computation: theory and applications - Google Libros (2013).https://www.elsevier.com/books/swarm-intelligence-and-bio-inspired-computation/yang/978-0-12-405163-8Yang, X.-S.: Cuckoo search and firefly algorithm. Intell. Comput. Int. 516, 1–26 (2014)Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization, pp. 65–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_6Odili, J.B., Kahar, M.N.M.: African Buffalo Optimization (ABO) - a new meta-heuristic algorithm. In: National Conference For Postgraduate Research, pp. 1–7 (2015). http://dx.doi.org/https://doi.org/10.13140/RG.2.1.4547.9846Yang, S., Deb, X.-S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1(4), 330–343 (2010)Alcaraz, J.J., Caballero-Arnaldos, L., Vales-Alonso, J.: Rich vehicle routing problem with last-mile outsourcing decisions. Transp. Res. Part E: Logist. Transp. Rev. 129, 263–286 (2019). https://doi.org/10.1016/j.tre.2019.08.004Kim, S.H., Bae, S.H.: Optimal solution to the vehicle routing problem by adopting a meta-heuristic algorithm. Transp. Plan. Technol. 39(6), 574–585 (2016). https://doi.org/10.1080/03081060.2016.1187808Nowakowski, P., Szwarc, K., Boryczka, U.: Vehicle route planning in e-waste mobile collection on demand supported by artificial intelligence algorithms. Transp. Res. Part D: Transp. Environ. 63, 1–22 (2018). https://doi.org/10.1016/j.trd.2018.04.007Shi, Y., Boudouh, T., Grunder, O.: A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times. Transp. Res. Part E: Logist. Transp. Rev. 128, 52–95 (2019). https://doi.org/10.1016/j.tre.2019.05.015Molina, J.C., Eguia, I., Racero, J.: An optimization approach for designing routes in metrological control services: a case study. Flex. Serv. Manuf. J. 30(4), 924–952 (2018)Niu, Y., Yang, Z., Chen, P., Xiao, J.: Optimizing the green open vehicle routing problem with time windows by minimizing comprehensive routing cost. J. Clean. Prod. 171, 962–971 (2017)He, P., Li, J., Jiang, Y., Wang, X.: Collaborative transportation planning distinguishing old and new shippers for small-medium enterprise. J. Ind. Prod. Eng. 35(3), 170–180 (2017)Ye, F., Zhang, D., Si, Y.-W., Zeng, X., Thanh Nguyen, T.: A hybrid algorithm for a vehicle routing problem with realistic constraints. Inf. Sci. 394–395, 167–182 (2017). https://doi.org/10.1016/j.ins.2017.02.028Yassen, E.T., Ayob, M., Nazri, M.Z.A., Sabar, N.R.: An adaptive hybrid algorithm for vehicle routing problems with time windows. Comput. Ind. Eng. 113, 382–391 (2017). https://doi.org/10.1016/j.cie.2017.09.034Huang, Z., Huang, W., Guo, F.: Integrated sustainable planning of self-pickup and door-to-door delivery service with multi-type stations. Comput. Ind. Eng. 135, 412–425 (2019). https://doi.org/10.1016/j.cie.2019.06.022Bernal, J., Escobar, J.W., Linfati, R.: A granular Tabu search algorithm for a real case study of a vehicle routing problem with a heterogeneous fleet and time windows. J. Ind. Eng. Manage. 10(4), 646–662 (2017). Special IssueHoogeboom, M., Dullaert, W.: Vehicle routing with arrival time diversification. Eur. J. Oper. Res. 275, 93–107 (2019)Shiri, S., Huynh, N.: Optimization of drayage operations with time-window constraints. Int. J. Prod. Econ. 176, 7–20 (2016)He, P., Li, J., Fang, E., deVoil, P., Cao, G.: Reducing agricultural fuel consumption by minimizing inefficiencies. J. Clean. Prod. 236, 1–13 (2019). https://doi.org/10.1016/j.jclepro.2019.117619Shen, L., Tao, F., Wang, S.: Multi-depot open vehicle routing problem with time windows based on carbon trading. Int. J. Environ. Res. Public Health 15(9), 1–20 (2018)Lin, S., Bard, J.F., Jarrah, A.I., Zhang, X., Novoa, L.J.: Route design for last-in, first-out deliveries with backhauling. Transp. Res. Part C: Emerg. Technol. 76, 90–117 (2017). https://doi.org/10.1016/j.trc.2017.01.005Wang, C., Dessouky, M., Ordóñez, F.: Routing courier delivery services with urgent demand. INFOR Inf. Syst. Oper. Res. 53(1), 26–39 (2015)Grosso, R., Muñuzuri, J., Escudero-Santana, A., Barbadilla-Martín, E.: Mathematical formulation and comparison of solution approaches for the vehicle routing problem with access time windows. Complexity 2018, 1–10 (2018). https://doi.org/10.1155/2018/4621694Guitián De Frutos, R.M., Casas-Méndez, B.: Routing problems in agricultural cooperatives: a model for optimization of transport vehicle logistics. IMA J. Manage. Math. 30, 387–412 (2019)Osaba, E., Yang, X.-S., Fister, I., Del Ser, J., Lopez-Garcia, P., Vazquez-Pardavila, A.J.: A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection. Swarm Evol. Comput. 44, 273–286 (2019)Mrowczynska, B., Krol, A., Czech, P.: Artificial immune system in planning deliveries in a short time. Bull. Pol. Acad. Sci. Tech. Sci. 67, 969–980 (2019)Yousefi, H., Tavakkoli-Moghaddam, R., Taheri, M., Oliaei, B., Mohammadi, M., Mozaffari, A.: Solving a bi-objective vehicle routing problem under uncertainty by a revised multi-choice goal programming approach. Int. J. Ind. Eng. Comput. 8, 283–302 (2017)Setak, M., Azizi, V., Karimi, H., Jalili, S.: Pickup and delivery supply chain network with semi soft time windows: metaheuristic approach. Int. J. Manage. Sci. Eng. Manage. 12(2), 89–95 (2017)Chen, J., Shi, J.: A multi-compartment vehicle routing problem with time windows for urban distribution-a comparison study on particle swarm optimization algorithms. Comput. Ind. Eng. 133, 95–106 (2019). https://doi.org/10.1016/j.cie.2019.05.008Manisri, T., Mungwattana, A., Janssens, G.K., Caris, A.: A hybrid algorithm for the vehicle routing problem with soft time windows and hierarchical objectives. J. Inf. Optim. Sci. 36(3), 283–300 (2015)Vincent, F.Y., Redi, A.P., Hidayat, Y.A., Wibowo, O.J.: A simulated annealing heuristic for the hybrid vehicle routing problem. Appl. Soft Comput. 53, 119–132 (2017)Khodabandeh, E., Bai, L., Heragu, S.S., Evans, G.W., Elrod, T., Shirkness, M.: Modelling and solution of a large-scale vehicle routing problem at GE appliances & lighting. Int. J. Prod. Res. 55(4), 1100–1116 (2015)Wang, C., Mu, D., Zhao, F., Sutherland, J.W.: A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup-delivery and time windows. Comput. Ind. Eng. 83, 111–122 (2015). https://doi.org/10.1016/j.cie.2015.02.005Küçükoğlu, İ, Ene, S., Aksoy, A., Öztürk, N.: A memory structure adapted simulated annealing algorithm for a green vehicle routing problem. Environ. Sci. Pollut. Res. 22(5), 3279–3297 (2015)Cruz-Chávez, M.A., Rodríguez-León, A., Rivera-López, R., Cruz-Rosales, M.H.: A grid-based genetic approach to solving the vehicle routing problem with time windows. Appl. Sci. 9(18), 1–23 (2019)Zheng, J., Zhang, Y.: A fuzzy receding horizon control strategy for dynamic vehicle routing problem. IEEE Access 7, 151239–151251 (2019). https://doi.org/10.1109/ACCESS.2019.2948154Meng, F., Ding, Y., Li, W., Guo, R.: Customer-oriented vehicle routing problem with environment consideration: two-phase optimization approach and heuristic solution. Math. Probl. Eng. 2019, 1–19 (2019). https://doi.org/10.1155/2019/1073609Kang, H.Y., Lee, A.H.I.: An enhanced approach for the multiple vehicle routing problem with heterogeneous vehicles and a soft time window. Symmetry (Basel) 10(11), 1–20 (2018)Hsiao, Y.H., Chen, M.C., Lu, K.Y., Chin, C.L.: Last-mile distribution planning for fruit-and-vegetable cold chains. Int. J. Logist. Manage. 29(3), 862–886 (2018)Shahparvari, S., Abbasi, B., Chhetri, P.: Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: an Australian case study. Omega 72, 96–117 (2017). https://doi.org/10.1016/j.omega.2016.11.007Agrawal, V., Lightner, C., Lightner-Laws, C., Wagner, N.: A bi-criteria evolutionary algorithm for a constrained multi-depot vehicle routing problem. Soft Comput. 21(17), 5159–5178 (2016)Qin, J., Ye, Y., Cheng, B.R., Zhao, X., Ni, L.: The emergency vehicle routing problem with uncertain demand under sustainability environments. Sustainability 9(2), 1–24 (2016)Escuín, D., Larrodé, E., Millán, C.: A cooperative waiting strategy based on elliptical areas for the Dynamic Pickup and Delivery Problem with Time Windows. J. Adv. Transp. 50(8), 1577–1597 (2016)Ahkamiraad, A., Wang, Y.: Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows. Comput. Ind. Eng. 119, 76–84 (2018). https://doi.org/10.1016/j.cie.2018.03.007Xu, S.H., Liu, J.P., Zhang, F.H., Wang, L., Sun, L.J.: A combination of genetic algorithm and particle swarm optimization for vehicle routing problem with time windows. Sensors (Switzerland) 15(9), 21033–21053 (2015)Zhang, Y., Yang, Y., Yang, R.: Distribution path optimization method of gas cylinder based on Genetic-Tabu hybrid algorithm. Int. J. Innov. Comput. 15(2), 773–782 (2019)Yue, Y.-X., Zhang, T., Yue, Q.-X.: Improved fractal space filling curves hybrid optimization algorithm for vehicle routing problem. Comput. Intell. Neuro-Sci. 2015, 1–10 (2015). https://doi.org/10.1155/2015/375163Wang, Y., et al.: Collaborative multi-depot logistics network design with time window assignment. Expert. Syst. Appl. 140, 1–24 (2020). https://doi.org/10.1016/j.eswa.2019.112910Shi, C., Li, T., Bai, Y., Zhao, F.: A heuristics-based parthenogenetic algorithm for the VRP with potential demands and time windows. Sci. Program. 2016, 1–13 (2016). https://doi.org/10.1155/2016/8461857Shi, Y., Boudouh, T., Grunder, O.: A hybrid genetic algorithm for a home health care routing problem with time window and fuzzy demand. Expert Syst. Appl. 72, 160–176 (2016)Barkaoui, M., Berger, J., Boukhtouta, A.: Customer satisfaction in dynamic vehicle routing problem with time windows. Appl. Soft Comput. J. 35, 423–432 (2015)Rabbani, M., Pourreza, P., Farrokhi-Asl, H., Nouri, N.: A hybrid genetic algorithm for multi-depot vehicle routing problem with considering time window repair and pick-up. J. Model. Manage. 13(3), 698–717 (2018)Yang, B., Hu, Z.-H., Wei, C., Li, S.-Q., Zhao, L., Jia, S.: Routing with time-windows for multiple environmental vehicle types. Comput. Ind. Eng. 89, 150–161 (2015). https://doi.org/10.1016/j.cie.2015.02.001Ma, Y., Xu, J.: A cloud theory-based particle swarm optimization for multiple decision maker vehicle routing problems with fuzzy random time windows. Eng. Optim. 47(6), 825–842 (2015)Zhou, Y., Wang, J.: A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem with time windows. Syst. J. 9, 1100–1113 (2015). https://doi.org/10.1109/JSYST.2014.2300201Yassen, E.T., Ayob, M., Mohd Zakree, A.N., Sabar, N.R.: Meta-harmony search algorithm for the vehicle routing problem with time windows. Inf. Sci. (Ny) 325, 140–158 (2015)Oyola, J.: The capacitated vehicle routing problem with soft time windows and stochastic travel times. Rev. Fac. Ing. 28(50), 19–33 (2019)Zhao, P.X., Luo, W.H., Han, X.: Time-dependent and bi-objective vehicle routing problem with time windows. Adv. Prod. Eng. Manage. 14(2), 201–212 (2019)Wang, S., Wang, X., Liu, X., Yu, J.: A bi-objective vehicle-routing problem with soft time windows and multiple depots to minimize the total energy consumption and customer dissatisfaction. Sustainability 10(11), 1–21 (2018)Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L.S., Tiwari, M.K.: Multi-objective modeling of production and pollution routing problem with time window: a self-learning particle swarm optimization approach. Comput. Ind. Eng. 99, 29–40 (2016). https://doi.org/10.1016/j.cie.2015.07.003Chai, H., He, R., Ma, C., Dai, C., Zhou, K.: Path planning and vehicle scheduling optimization for logistic distribution of hazardous materials in full container load. Discret. Dyn. Nat. Soc. 2017, 1–14 (2017). https://doi.org/10.1155/2017/9685125Momenikiyai, M., Student, M., Ebrahimnejad, S., Vahdani, B.: A Bi-objective mathematical model for inventory distribution-routing problem under risk pooling effect: robust meta-heuristics approach. J. Econ. Comput. Econ. Cybern. Stud. Res. 52(4), 257–274 (2018). https://doi.org/10.24818/18423264/52.4.18.17Tikani, H., Setak, M.: Efficient solution algorithms for a time-critical reliable transportation problem in multigraph networks with FIFO property. Appl. Soft Comput. J. 74, 504–528 (2019)Sivaramkumar, V., Thansekhar, M.R., Saravanan, R., Joe Amali, S.M.: Demonstrating the importance of using total time balance instead of route balance on a multi-objective vehicle routing problem with time windows. Int. J. Adv. Manuf. Technol. 98(5–8), 1287–1306 (2018)Wang, Y.M., Yin, H.L.: Cost-optimization problem with a soft time window based on an improved fuzzy genetic algorithm for fresh food distribution. Math. Probl. Eng. 2018, 1–17 (2018). https://doi.org/10.1155/2018/5743287Pierre, D.M., Zakaria, N.: Stochastic partially optimized cyclic shift crossover for multi-objective genetic algorithms for the vehicle routing problem with time-windows. Appl. Soft Comput. 52, 863–876 (2017)Abdulaal, A., Cintuglu, M.H., Asfour, S., Mohammed, O.A.: Solving the multivariant EV routing problem incorporating V2G and G2V options. IEEE Trans. Transp. Electrification 3(1), 238–248 (2017). https://doi.org/10.1109/TTE.2016.2614385Wang, X., Sun, X., Dong, J., Wang, M., Ruan, J.: Optimizing terminal delivery of perishable products considering customer satisfaction 1–12 (2017)Lightner-Laws, C., Agrawal, V., Lightner, C., Wagner, N.: An evolutionary algorithm approach for the constrained multi-depot vehicle routing problem. Int. J. Intell. Comput. Cybern. 9(1), 2–22 (2016)He, J., Huang, Y., Yan, W.: Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption. Adv. Eng. Inform. 29(1), 59–75 (2015)Harbaoui Dridi, I., Ben Alaïa, E., Borne, P., Bouchriha, H.: Optimisation of the multi-depots pick-up and delivery problems with time windows and multi-vehicles using PSO algorithm. Int. J. Prod. Res. 58(14) (2020). https://doi.org/10.1080/00207543.2019.1650975Guo, Y.-N., Cheng, J., Luo, S., Gong, D., Xue, Y.: Robust dynamic multi-objective vehicle routing optimization method. IEEE/ACM Trans. Comput. Biol. Bioinform. 15, 1891–1903 (2018)Zhang, Y., Shi, L., Chen, J., Li, X.: Analysis of an automated vehicle routing problem in logistics considering path interruption. J. Adv. Transp. 2017, 1–10 (2017). https://doi.org/10.1155/2017/1624328Kachitvichyanukul, V., Sombuntham, P., Kunnapapdeelert, S.: Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO. Comput. Ind. Eng. 89, 125–136 (2015). https://doi.org/10.1016/j.cie.2015.04.011Norouzi, N., Sadegh-Amalnick, M., Alinaghiyan, M.: Evaluating of the particle swarm optimization in a periodic vehicle routing problem. Measur. J. Int. Measur. Confed. 62, 162–169 (2015)Zhang, Q., Xiong, S.: Routing optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithm. Appl. Soft Comput. 71, 917–925 (2018)Niroomand, I., Nsakanda, A.L.: Improving collection flows in a public postal network with contractor’s obligation considerations. Int. J. Prod. Econ. 198, 79–92 (2018). https://doi.org/10.1016/j.ijpe.2018.01.025Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.H.: The time-dependent orienteering problem with time windows: a fast ant colony system. Ann. Oper. Res. 254(1–2), 481–505 (2017)Brito, J., Martínez, F.J., Moreno, J.A., Verdegay, J.L.: An ACO hybrid metaheuristic for close-open vehicle routing problems with time windows and fuzzy constraints. Appl. Soft Comput. J. 32, 154–163 (2015)López-Santana, E., Rodríguez-Vásquez, W.C., Méndez-Giraldo, G.: A hybrid expert system, clustering and ant colony optimization approach for scheduling and routing problem in courier services. Int. J. Ind. Eng. Comput. 9, 369–396 (2018)Zhang, H., Zhang, Q., Ma, L., Zhang, Z., Liu, Y.: A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows. Inf. Sci. (Ny) 490, 166–190 (2019)Decerle, J., Grunder, O., Hajjam, A., Hassani, E., Barakat, O.: A hybrid memetic-ant colony optimization algorithm for the home health care problem with time window, synchronization and working time balancing. Swarm Evol. Comput. 46, 171–183 (2019)Ren, X.Y., Chen, C.F., Xiao, Y.L., Du, S.C.: Path optimization of cold chain distribution with multiple distribution centers considering carbon emissions. Appl. Ecol. Environ. Res. 17, 9437–9453 (2019)Wu, L., He, Z., Chen, Y., Wu, D., Cui, J.: Brainstorming-based ant colony optimization for vehicle routing with soft time windows. IEEE Spec. Sect. Theory Algorithms Appl. Sparse Recover. 7, 19643–19652 (2018)Rouky, N., Boukachour, J., Boudebous, D., El Alaoui Hilali, A.: A robust metaheuristic for the rail shuttle routing problem with uncertainty: a real case study in the Le Havre Port. Asian J. Shipping Logist. 34(2), 171–187 (2018)Huang, S.-H., Huang, Y.-H., Blazquez, C.A., Paredes-Belmar, G.: Application of the ant colony optimization in the resolution of the bridge inspection routing problem. Appl. Soft Comput. 65, 443–461 (2018)Verbeeck, C., Vansteenwegen, P., Aghezzaf, E.-H.: Solving the stochastic time-dependent orienteering problem with time windows. Eur. J. Oper. Res. 255, 699–718 (2016)Yang, Z., et al.: Dynamic vehicle routing with time windows in theory and practice. Nat. Comput. 16, 119–134 (2016)Wu, W., Tian, Y., Jin, T.: A label based ant colony algorithm for heterogeneous vehicle routing with mixed backhaul. Appl. Soft Comput. 47, 224–234 (2016)Gao, J., Gu, F., Hu, P., Xie, Y., Yao, B.: Automobile chain maintenance parts delivery problem using an improved ant colony algorithm. Spec. Issue Artic. Adv. Mech. Eng. 8(9), 1–13 (2016)Allali, S., Benchaïba, M., Ouzzani, F., Menouar, H.: No-collision grid based broadcast scheme and ant colony system with victim lifetime window for navigating robot in first aid applications. Ad Hoc Netw. 68, 85–93 (2017)Ju, C., Zhou, G., Chen, T.: Disruption management for vehicle routing problem with time-window changes. Int. J. Shipping Transp. Logist. 9(1), 4–28 (2017)Iqbal, S., Kaykobad, M., Rahman, M.S.: Solving the multi-objective vehicle routing problem with soft time windows with the help of bees. Swarm Evol. Comput. 24, 50–64 (2015)Yao, B., Yan, Q., Zhang, M., Yang, Y.: Improved artificial bee colony algorithm for vehicle routing problem with time windows. PloS One. 12, 1–18 (2017). https://doi.org/10.1371/journal.pone.0181275Yu, S., Tai, C., Liu, Y., Gao, L.: An improved artificial bee colony algorithm for vehicle routing problem with time windows: a real case in Dalian. Spec. Issue Artic. Adv. Mech. Eng. 8(8), 1–9 (2016)Jawarneh, S., Abdullah, S.: Sequential insertion heuristic with adaptive bee colony optimization algorithm for vehicle routing problem with time windows. PLoS One 10(7) (2015). https://doi.org/10.1371/journal.pone.0130224Nikolić, M., Teodorović, D.: Vehicle rerouting in the case of unexpectedly high demand in distribution systems. Transp. Res. Part C Emerg. Technol. 55, 535–545 (2015)391377https://link.springer.com/chapter/10.1007/978-3-030-97196-0_31#copyright-informationA brief literature review about bioinspired metaheuristics to solve vehicle routes problem with time windowCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceMetaheuristic literature reviewMetaheuristic algorithmsTime windowsVehicle routing problemRestrictions on vehicle routingPublicationORIGINALA Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window.pdfA Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window.pdfArtículoapplication/pdf78470https://repositorio.cuc.edu.co/bitstreams/20ebc2aa-2b10-4f53-aea2-da0aa83a33db/download8eb0526b3d446eebaaed6afe81def91dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/eb46460f-93a3-40c5-97c3-44b7df2f77f5/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTA Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window.pdf.txtA Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window.pdf.txtExtracted texttext/plain1803https://repositorio.cuc.edu.co/bitstreams/a8d07372-de78-4ed7-b057-06326c049368/download07e4b8e9251856617101970b983240e6MD53THUMBNAILA Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window.pdf.jpgA Brief Literature Review About Bioinspired Metaheuristics to Solve Vehicle Routes Problem with Time Window.pdf.jpgGenerated Thumbnailimage/jpeg15341https://repositorio.cuc.edu.co/bitstreams/27f12015-99a5-49eb-94b3-37fbee2c12fc/download3709f497e76d39a488d20d164dfdc520MD5411323/10712oai:repositorio.cuc.edu.co:11323/107122024-09-17 11:00:07.813https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AGopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=