Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus

Nowadays enzymatic synthesis of nucleic acid derivatives is gaining momentum over traditional chemical synthetic processes. Biotransformations catalyzed by whole cells or enzymes offer an ecofriendly and efficient alternative to the traditional multistep chemical methods, avoiding the use of chemica...

Full description

Autores:
del Arco, Jon
Galindo, Javier
Clemente Suárez, Vicente Javier
Corrales, Amaira
Fernández-Lucas, Jesús
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5139
Acceso en línea:
https://hdl.handle.net/11323/5139
https://repositorio.cuc.edu.co/
Palabra clave:
Biocatalysis
Enzyme immobilization
Phosphoribosyltransferase
Nucleic acid derivatives
Active pharmaceutical ingredients
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_2fae9bbdcf0804450e3fbed041fc7536
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5139
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
title Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
spellingShingle Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
Biocatalysis
Enzyme immobilization
Phosphoribosyltransferase
Nucleic acid derivatives
Active pharmaceutical ingredients
title_short Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
title_full Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
title_fullStr Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
title_full_unstemmed Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
title_sort Sustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus
dc.creator.fl_str_mv del Arco, Jon
Galindo, Javier
Clemente Suárez, Vicente Javier
Corrales, Amaira
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv del Arco, Jon
Galindo, Javier
Clemente Suárez, Vicente Javier
Corrales, Amaira
Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Biocatalysis
Enzyme immobilization
Phosphoribosyltransferase
Nucleic acid derivatives
Active pharmaceutical ingredients
topic Biocatalysis
Enzyme immobilization
Phosphoribosyltransferase
Nucleic acid derivatives
Active pharmaceutical ingredients
description Nowadays enzymatic synthesis of nucleic acid derivatives is gaining momentum over traditional chemical synthetic processes. Biotransformations catalyzed by whole cells or enzymes offer an ecofriendly and efficient alternative to the traditional multistep chemical methods, avoiding the use of chemical reagents and organic solvents that are expensive and environmentally harmful. Herein we report for the first time the covalent immobilization a uracil phosphoribosyltransferase (UPRT). In this sense, UPRT from Thermus thermophilus HB8 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles (MTtUPRT). According to the catalyst load experiments, MTtUPRT3 was selected as optimal biocatalyst for further studies. MTtUPRT3 was active and stable in a broad range of temperature (70–100 °C) and in the pH interval 6–8, displaying maximum activity at 100 °C and pH 7 (activity 968 IU/gsupport, retained activity 100%). In addition, MTtUPRT3 could be reused up to 8 times in the synthesis of uridine-5′-monophosphate (UMP). Finally, MTtUPRT3 was successfully applied in the sustainable synthesis of different 5-modified uridine-5′-monophosphates at short times. Taking into account these results, MTtUPRT3 would emerge as a valuable biocatalyst for the synthesis of nucleoside monophosphates through an efficient and environmentally friendly methodology.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-08-09T15:38:21Z
dc.date.available.none.fl_str_mv 2019-08-09T15:38:21Z
dc.date.issued.none.fl_str_mv 2019-07-09
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5139
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5139
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.1016/j.bbapap.2019.07.004
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/083f87bd-9231-4aca-a8c5-84097ab8e801/download
https://repositorio.cuc.edu.co/bitstreams/e93a82a6-a41a-4ef8-8b43-88017612cf58/download
https://repositorio.cuc.edu.co/bitstreams/c6db5f4c-9181-4e93-97b7-80ef5af8583e/download
https://repositorio.cuc.edu.co/bitstreams/53de432d-5972-4f2c-90b9-687e8260df22/download
https://repositorio.cuc.edu.co/bitstreams/1411e20c-f186-491a-9f1b-caf62a70085d/download
bitstream.checksum.fl_str_mv 8c96129db8fe0c7bb1d9df69716765c8
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
527e9dbb3b21b1f37a01296e87086583
82b7bf8c1cfc54634c9c9a697f6dd755
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166811222278144
spelling del Arco, JonGalindo, JavierClemente Suárez, Vicente JavierCorrales, AmairaFernández-Lucas, Jesús2019-08-09T15:38:21Z2019-08-09T15:38:21Z2019-07-09https://hdl.handle.net/11323/5139Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays enzymatic synthesis of nucleic acid derivatives is gaining momentum over traditional chemical synthetic processes. Biotransformations catalyzed by whole cells or enzymes offer an ecofriendly and efficient alternative to the traditional multistep chemical methods, avoiding the use of chemical reagents and organic solvents that are expensive and environmentally harmful. Herein we report for the first time the covalent immobilization a uracil phosphoribosyltransferase (UPRT). In this sense, UPRT from Thermus thermophilus HB8 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles (MTtUPRT). According to the catalyst load experiments, MTtUPRT3 was selected as optimal biocatalyst for further studies. MTtUPRT3 was active and stable in a broad range of temperature (70–100 °C) and in the pH interval 6–8, displaying maximum activity at 100 °C and pH 7 (activity 968 IU/gsupport, retained activity 100%). In addition, MTtUPRT3 could be reused up to 8 times in the synthesis of uridine-5′-monophosphate (UMP). Finally, MTtUPRT3 was successfully applied in the sustainable synthesis of different 5-modified uridine-5′-monophosphates at short times. Taking into account these results, MTtUPRT3 would emerge as a valuable biocatalyst for the synthesis of nucleoside monophosphates through an efficient and environmentally friendly methodology.del Arco, JonGalindo, JavierClemente Suárez, Vicente Javier-0000-0002-2397-2801-600Corrales, AmairaFernández-Lucas, JesúsengUniversidad de la Costahttps://doi.org/10.1016/j.bbapap.2019.07.004CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiocatalysisEnzyme immobilizationPhosphoribosyltransferaseNucleic acid derivativesActive pharmaceutical ingredientsSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilusPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus.pdfSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus.pdfapplication/pdf186282https://repositorio.cuc.edu.co/bitstreams/083f87bd-9231-4aca-a8c5-84097ab8e801/download8c96129db8fe0c7bb1d9df69716765c8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/e93a82a6-a41a-4ef8-8b43-88017612cf58/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c6db5f4c-9181-4e93-97b7-80ef5af8583e/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus.pdf.jpgSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus.pdf.jpgimage/jpeg47615https://repositorio.cuc.edu.co/bitstreams/53de432d-5972-4f2c-90b9-687e8260df22/download527e9dbb3b21b1f37a01296e87086583MD55TEXTSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus.pdf.txtSustainable synthesis of uridine-5′-monophosphate analogues by immobilized uracil phosphoribosyltransferase from Thermus thermophilus.pdf.txttext/plain1829https://repositorio.cuc.edu.co/bitstreams/1411e20c-f186-491a-9f1b-caf62a70085d/download82b7bf8c1cfc54634c9c9a697f6dd755MD5611323/5139oai:repositorio.cuc.edu.co:11323/51392024-09-17 14:12:42.842http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=