Forecast of operational data in electric energy plants using adaptive algorithm

Traditional time series methods offer models whose parameters remain constant over time. However, industrial supply and demand processes require timely decisions based on a dynamic reality. A change in configuration, turning off, or on a production line or process, modifies the problem and the varia...

Full description

Autores:
Viloria, Amelec
García Guiliany, Jesús Enrique
Hernandez-P, Hugo
CABAS VASQUEZ, LUIS CARLOS
Pineda, Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7726
Acceso en línea:
https://hdl.handle.net/11323/7726
https://doi.org/10.1007/978-981-15-3125-5_48
https://repositorio.cuc.edu.co/
Palabra clave:
Time series models
Estimation
Forecasts
Data analysis
Data mining
Statistical learning
Decision trees
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_2e9bea0fcd23e838b43cc33e63f7c840
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7726
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Forecast of operational data in electric energy plants using adaptive algorithm
title Forecast of operational data in electric energy plants using adaptive algorithm
spellingShingle Forecast of operational data in electric energy plants using adaptive algorithm
Time series models
Estimation
Forecasts
Data analysis
Data mining
Statistical learning
Decision trees
title_short Forecast of operational data in electric energy plants using adaptive algorithm
title_full Forecast of operational data in electric energy plants using adaptive algorithm
title_fullStr Forecast of operational data in electric energy plants using adaptive algorithm
title_full_unstemmed Forecast of operational data in electric energy plants using adaptive algorithm
title_sort Forecast of operational data in electric energy plants using adaptive algorithm
dc.creator.fl_str_mv Viloria, Amelec
García Guiliany, Jesús Enrique
Hernandez-P, Hugo
CABAS VASQUEZ, LUIS CARLOS
Pineda, Omar
dc.contributor.author.spa.fl_str_mv Viloria, Amelec
García Guiliany, Jesús Enrique
Hernandez-P, Hugo
CABAS VASQUEZ, LUIS CARLOS
Pineda, Omar
dc.subject.spa.fl_str_mv Time series models
Estimation
Forecasts
Data analysis
Data mining
Statistical learning
Decision trees
topic Time series models
Estimation
Forecasts
Data analysis
Data mining
Statistical learning
Decision trees
description Traditional time series methods offer models whose parameters remain constant over time. However, industrial supply and demand processes require timely decisions based on a dynamic reality. A change in configuration, turning off, or on a production line or process, modifies the problem and the variables to be predicted. Decision support systems must dynamically adapt in order to respond quickly and appropriately to operations and their processes. This methodology is based on obtaining, for each period, the model that best fits the data, evaluating many alternatives and using statistical learning techniques. In this way, the model will adapt to the data in practice and make decisions based on experience. With three months of testing for the estimation of variables associated with supply and demand processes, predictions that differ less than 8 hundredths (less than 0.08) or 0.1% of the measured value were obtained. This indicates that data science and statistical learning represent an important area of research for variable prediction and process optimization.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-20T18:36:18Z
dc.date.available.none.fl_str_mv 2021-01-20T18:36:18Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7726
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-3125-5_48
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7726
https://doi.org/10.1007/978-981-15-3125-5_48
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Sanchez L, Vásquez C, Viloria A, Cmeza-Estrada (2018) Conglomerates of Latin American Countries and public policies for the sustainable development of the electric power generation sector. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Berlin
2. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging. Springer, Berlin, pp 174–185
3. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 1–11
4. Chakraborty S, Das S (2018) Simultaneous variable weighting and determining the number of clusters—a weighted Gaussian algorithm means. Stat Probab Lett 137:148–156.
5. Bontempi G, Ben Taieb S, Borgne YA (2013) Machine learning strategies for time series forecasting. In: Aufaure MA, Zimányi E (eds) Lecture notes in business information processing, vol 138, no 1. Springer, Heidelberg, pp 70–73
6. Abdul Masud M, Zhexue Huang J, Wei C, Wang J, Khan I, Zhong M (2018) Inice: a new approach for identifying the number of clusters and initial cluster centres. Inf Sci.
7. Sánchez L, Vásquez C, Viloria A, Rodríguez Potes L (2018) Greenhouse gases emissions and electric power generation in Latin American Countries in the period 2006–2013. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Berlin
8. Sun M, Konstantelos I, Strbac G (2017) C-vine copula mixture model for clustering of residential electrical load pattern data. Power Syst IEEE Trans On 32(3):2382–2393
9. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Berlin
10. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, pp 618–625
11. Kim M, Park S, Han K, Kim N, Kyun Choi J (2018) Dynamics of electricity consumers for classifying power consumption data using PCA.In: 2018 IEEE international conference on big data and smart computing (BigComp), pp 697–700
12. Chen S, Liu CC (2016) From demand response to transactive energy: state of the art. J Mod Power Syst Clean Energy
13. Sun M, Teng F, Konstantelos I, Strbac G (2018) An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources. Energy
14. Capizzi G, Sciuto GL, Napoli C, Tramontana E (2017) An advanced neural network based solution to enforce dispatch continuity in smart grids. Appl Soft Comput
15. Melzi F, Same A, Zayani M, Oukhellou L (2017) A dedicated mixture model for clustering smart meter data: identification and analysis of electricity consumption behaviors. Energies 10:1446
16. Chen T, Alsafasfeh Q, Pourbabak H, Su W (2017) The next-generation US retail electricity market with customers and prosumers—a bibliographical survey. Energies 11:8
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Electrical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-3125-5_48
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/3c280413-b10b-442d-a36a-509ac604d642/download
https://repositorio.cuc.edu.co/bitstreams/a88fb34a-f71f-47f7-bc1f-363a0b90fc5a/download
https://repositorio.cuc.edu.co/bitstreams/de8286bb-b85b-4f26-8e9e-37c658cb09fa/download
https://repositorio.cuc.edu.co/bitstreams/f2ff4445-453b-4eae-8a46-79d8783be223/download
https://repositorio.cuc.edu.co/bitstreams/6aeb30c5-6ecf-458d-8e06-56b62f9189df/download
https://repositorio.cuc.edu.co/bitstreams/77cf72c3-6a3a-4b96-8d05-4f056fa8a7a8/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
df7d58ac6641a6a526056edbe11d90a9
e30e9215131d99561d40d6b0abbe9bad
d4c05b3d73de18bb39d9139b3ac656a9
d4c05b3d73de18bb39d9139b3ac656a9
53aaf537c478e3f9cee1ad1eebded100
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760723915702272
spelling Viloria, AmelecGarcía Guiliany, Jesús EnriqueHernandez-P, HugoCABAS VASQUEZ, LUIS CARLOSPineda, Omar2021-01-20T18:36:18Z2021-01-20T18:36:18Z2020https://hdl.handle.net/11323/7726https://doi.org/10.1007/978-981-15-3125-5_48Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Traditional time series methods offer models whose parameters remain constant over time. However, industrial supply and demand processes require timely decisions based on a dynamic reality. A change in configuration, turning off, or on a production line or process, modifies the problem and the variables to be predicted. Decision support systems must dynamically adapt in order to respond quickly and appropriately to operations and their processes. This methodology is based on obtaining, for each period, the model that best fits the data, evaluating many alternatives and using statistical learning techniques. In this way, the model will adapt to the data in practice and make decisions based on experience. With three months of testing for the estimation of variables associated with supply and demand processes, predictions that differ less than 8 hundredths (less than 0.08) or 0.1% of the measured value were obtained. This indicates that data science and statistical learning represent an important area of research for variable prediction and process optimization.Viloria, AmelecGarcía Guiliany, Jesús Enrique-will be generated-orcid-0000-0003-3777-3667-600Hernandez-P, HugoCABAS VASQUEZ, LUIS CARLOS-will be generated-orcid-0000-0003-0524-7945-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Electrical Engineeringhttps://link.springer.com/chapter/10.1007/978-981-15-3125-5_48Time series modelsEstimationForecastsData analysisData miningStatistical learningDecision treesForecast of operational data in electric energy plants using adaptive algorithmArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Sanchez L, Vásquez C, Viloria A, Cmeza-Estrada (2018) Conglomerates of Latin American Countries and public policies for the sustainable development of the electric power generation sector. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Berlin2. Perez R, Inga E, Aguila A, Vásquez C, Lima L, Viloria A, Henry MA (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International conference on sensing and imaging. Springer, Berlin, pp 174–1853. Perez R, Vásquez C, Viloria A (2019) An intelligent strategy for faults location in distribution networks with distributed generation. J Intell Fuzzy Syst 1–114. Chakraborty S, Das S (2018) Simultaneous variable weighting and determining the number of clusters—a weighted Gaussian algorithm means. Stat Probab Lett 137:148–156.5. Bontempi G, Ben Taieb S, Borgne YA (2013) Machine learning strategies for time series forecasting. In: Aufaure MA, Zimányi E (eds) Lecture notes in business information processing, vol 138, no 1. Springer, Heidelberg, pp 70–736. Abdul Masud M, Zhexue Huang J, Wei C, Wang J, Khan I, Zhong M (2018) Inice: a new approach for identifying the number of clusters and initial cluster centres. Inf Sci.7. Sánchez L, Vásquez C, Viloria A, Rodríguez Potes L (2018) Greenhouse gases emissions and electric power generation in Latin American Countries in the period 2006–2013. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Berlin8. Sun M, Konstantelos I, Strbac G (2017) C-vine copula mixture model for clustering of residential electrical load pattern data. Power Syst IEEE Trans On 32(3):2382–23939. Perez R et al (2018) Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. ICSI 2018. Lecture notes in computer science, vol 10942. Springer, Berlin10. Silva V, Jesús A (2013) Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced materials research, vol 601. Trans Tech Publications, pp 618–62511. Kim M, Park S, Han K, Kim N, Kyun Choi J (2018) Dynamics of electricity consumers for classifying power consumption data using PCA.In: 2018 IEEE international conference on big data and smart computing (BigComp), pp 697–70012. Chen S, Liu CC (2016) From demand response to transactive energy: state of the art. J Mod Power Syst Clean Energy13. Sun M, Teng F, Konstantelos I, Strbac G (2018) An objective-based scenario selection method for transmission network expansion planning with multivariate stochasticity in load and renewable energy sources. Energy14. Capizzi G, Sciuto GL, Napoli C, Tramontana E (2017) An advanced neural network based solution to enforce dispatch continuity in smart grids. Appl Soft Comput15. Melzi F, Same A, Zayani M, Oukhellou L (2017) A dedicated mixture model for clustering smart meter data: identification and analysis of electricity consumption behaviors. Energies 10:144616. Chen T, Alsafasfeh Q, Pourbabak H, Su W (2017) The next-generation US retail electricity market with customers and prosumers—a bibliographical survey. Energies 11:8PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/3c280413-b10b-442d-a36a-509ac604d642/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALForecast of operational data in electric energy plants using adaptive algorithm.pdfForecast of operational data in electric energy plants using adaptive algorithm.pdfapplication/pdf97920https://repositorio.cuc.edu.co/bitstreams/a88fb34a-f71f-47f7-bc1f-363a0b90fc5a/downloaddf7d58ac6641a6a526056edbe11d90a9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/de8286bb-b85b-4f26-8e9e-37c658cb09fa/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILForecast of operational data in electric energy plants using adaptive algorithm.pdf.jpgForecast of operational data in electric energy plants using adaptive algorithm.pdf.jpgimage/jpeg33625https://repositorio.cuc.edu.co/bitstreams/f2ff4445-453b-4eae-8a46-79d8783be223/downloadd4c05b3d73de18bb39d9139b3ac656a9MD54THUMBNAILForecast of operational data in electric energy plants using adaptive algorithm.pdf.jpgForecast of operational data in electric energy plants using adaptive algorithm.pdf.jpgimage/jpeg33625https://repositorio.cuc.edu.co/bitstreams/6aeb30c5-6ecf-458d-8e06-56b62f9189df/downloadd4c05b3d73de18bb39d9139b3ac656a9MD54TEXTForecast of operational data in electric energy plants using adaptive algorithm.pdf.txtForecast of operational data in electric energy plants using adaptive algorithm.pdf.txttext/plain1436https://repositorio.cuc.edu.co/bitstreams/77cf72c3-6a3a-4b96-8d05-4f056fa8a7a8/download53aaf537c478e3f9cee1ad1eebded100MD5511323/7726oai:repositorio.cuc.edu.co:11323/77262024-09-17 10:48:53.458http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==