Enrichment of metabolic routes through Big Data

The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway is a database that contains a graphical representation of cellular processes. Cellular processes are basic systems involving biochemical reactions at the cellular level such as transport, catabolism, metabolism, growth and cell death. The KE...

Full description

Autores:
amelec, viloria
Torres, Marisela
Vargas, Jesus
Bonerge Pineda, Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6468
Acceso en línea:
https://hdl.handle.net/11323/6468
https://repositorio.cuc.edu.co/
Palabra clave:
Chemical-biological
Chemical compound
Data analytics
Metabolic pathways
Target fishing
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_2e3a2625e9990d3fc5659522cc56ac03
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6468
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Enrichment of metabolic routes through Big Data
title Enrichment of metabolic routes through Big Data
spellingShingle Enrichment of metabolic routes through Big Data
Chemical-biological
Chemical compound
Data analytics
Metabolic pathways
Target fishing
title_short Enrichment of metabolic routes through Big Data
title_full Enrichment of metabolic routes through Big Data
title_fullStr Enrichment of metabolic routes through Big Data
title_full_unstemmed Enrichment of metabolic routes through Big Data
title_sort Enrichment of metabolic routes through Big Data
dc.creator.fl_str_mv amelec, viloria
Torres, Marisela
Vargas, Jesus
Bonerge Pineda, Omar
dc.contributor.author.spa.fl_str_mv amelec, viloria
Torres, Marisela
Vargas, Jesus
Bonerge Pineda, Omar
dc.subject.spa.fl_str_mv Chemical-biological
Chemical compound
Data analytics
Metabolic pathways
Target fishing
topic Chemical-biological
Chemical compound
Data analytics
Metabolic pathways
Target fishing
description The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway is a database that contains a graphical representation of cellular processes. Cellular processes are basic systems involving biochemical reactions at the cellular level such as transport, catabolism, metabolism, growth and cell death. The KEGG Pathway information is shown through the use of graphs, in which the molecular interactions between genes, processes and chemical compounds are represented. This paper proposes to perform Data Analytics using the Big Data Analytics Life Cycle methodology to enrich the metabolic pathways of the KEGG Pathway database by applying the Target Fishing technique.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-06T20:18:49Z
dc.date.available.none.fl_str_mv 2020-07-06T20:18:49Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1877-0509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6468
dc.identifier.doi.spa.fl_str_mv 10.1016/j.procs.2020.03.113
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1877-0509
10.1016/j.procs.2020.03.113
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6468
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] T. Erl, W. Khattak y P. Buhler, Big Data Fundamentals: Concepts, Drivers & Techniques, Indiana: Prentice Hall, 2016, p. 19.
[2] J. D. J. Durán, F. Astier y S. Banov, «Bases de Datos vs Sistemas de Archivos,» 22 enero 2014. [En línea]. Available: https://prezi.com/jgrydc9ncude/bases-de-datos-vs-sistema-de- archivos/. [Último acceso: 12 Noviembre 2018].
[3] A. Sulaiman, «File System vs. Database, » 27 Abril 2017. [En línea]. Available: https://dzone.com/articles/which-is-better-saving-files-in- database-or-in-fil. [Último acceso: 12 Noviembre 2018].
[4] Fundamentos de Bases de Datos, «1.4 Sistemas de bases de datos frente a los sistemas de archivos,» mayo 2010. [En línea]. Available: https://fundamentosdebasededatos.files.wordpress.com/2010/05/equipo2.pdf. [Último acceso: 12 noviembre 2018].
[5] International Multimedia Resource Center, «RAM vs. Hard Drive Memory, » 2018. [En línea]. Available: https://www.lehigh.edu/~inimr/computer-basics- tutorial/ramvsdiskspacehtm.htm. [Último acceso: 13 noviembre 2018].
[6] Kanehisa Laboratories, «KEGG: Kyoto Encyclopedia of Genes and Genome, » 2018. [En línea]. Available: https://www.genome.jp/kegg/. [Último acceso: 25 07 2018].
[7] United States Environmental Protection Agency, Appendix F. SMILES Notation Tutorial, Washington D.C., 2017.
[8] United States Environmental Protection Agency, «SMILES Tutorial,» 21 febrero 2016. [En línea]. Available: https://archive.epa.gov/med/med_archive_03/web/html/smiles.html. [Último acceso: 26 Julio 2018].
[9] Daylight Chemical Information Systems, «4. SMARTS - A Language for Describing Molecular Patterns, » 2008. [En línea]. Available: http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. [Último acceso: 26 Julio 2018].
[10] TOCRIS, «Cell Biology,» 2018. [En línea]. Available: https://www.tocris.com/cell-biology. [Último acceso: 16 octubre 2018].
[11] Kyoto Encyclopedia of Genes and Genomes, «KEGG PATHWAY Database, » 21 Agosto 2018. [En línea]. Available: https://www.genome.jp/kegg/pathway.html. [Último acceso: 16 octubre 2018].
[12] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
[13] Gamero, W. M., Ramírez, M. C., Parody, A., Viloria, A., López, M. H. A., & Kamatkar, S. J. (2018, June). Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In International Conference on Data Mining and Big Data (pp. 244-253). Springer, Cham.
[14] Kyoto Encyclopedia of Genes and Genomes, «KEGG release history, » 2018. [En línea]. Available: https://www.genome.jp/kegg/docs/upd_all.html. [Último acceso: 17 octubre 2018].
[15] M. Linderman, J. Sorenson, L. Lee y G. Nolan, «Computational solutions to large-scale data management and analysis, » Nature Reviews Genetics, vol. 11, pp. 647-657, 2010.
[16] L. Wang y X. Qung Xie, «Computational target fishing: what should chemogenomics researchers expect for the future of in silico drug design and discovery? » Future Med Chem, vol. 6, nº 3, pp. 247-249, 2014
[17] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.
[18] J. Swamidass† y P. Baldi, «Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval, » Journal of Chemical Information and Modeling, vol. 47, nº 1, pp. 952-964, 2006.
[19] S. Arif, J. Holliday y P. Willett, «Comparison of chemical similarity measures using different numbers of query structures, » Journal of Information Science, vol. 39, nº 1, pp. 1-8, 2013.
[20] G. Landrum, «RDKit Documentation,» 01 marzo 2018. [En línea]. Available: https://www.rdkit.org/RDKit_Docs.current.pdf. [Último acceso: 10 septiembre 2018].
[21] L. Sánchez, «Distribución hipergeométrica de probabilidad,» 29 octubre 2014. [En línea]. Available: https://estadisticayadministracion.wordpress.com/2014/10/29/distribucion- hipergeometrica-de-probabilidad-cero-complicada/. [Último acceso: 16 Noviembre 2018].
[22] X. Su, «Introduction to Big Data, » 29 Agosto 2017. [En línea]. Available: https://www.ntnu.no/iie/fag/big/lessons/lesson2.pdf. [Último acceso: 16 enero 2018].
[23] K. Minoru y G. Susumu, «KEGG: Kyoto Encyclopedia of Genes and Genomes, » Nucleic Acids Research, vol. 28, nº 1, pp. 27-30, 2000.
[24] The UniProt Consortium, «UniProt: the universal protein knowledgebase, » Nucleic Acids Research, vol. 45, nº 5, p. 2699, 2018.
[25] The UniProt Consortium, «UniProt: the Universal Protein, » [En línea]. Available: https://www.uniprot.org/docs/uniprot_flyer.pdf. [Último acceso: 29 Julio 2018].
[26] A. Gaulton, L. Bellis, P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani y J. Overington, «ChEMBL: a large-scale bioactivity database for drug discovery, » Nucleic Acids Research, vol. 40, nº 1, pp. 1100-1107, 2012.
[27] F. Haseltine, M. Huerta, Y. Liu, G. Downing y B. Seto, «NIH Working Definition of Bioinformatics and Computational Biology, » 17 Julio 2000. [En línea]. Available: http://www.bisti.nih.gov/docs/CompuBioDef.pdf. [Último acceso: 6 agosto 2018].
[28] M. Cruz Monteagudo, E. Tejera, Y. Pérez, J. Medina Fronco, A. Sánchez Rodríguez y F. Borges, «Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery, » Drug Discovery Today, vol. 22, nº 7, pp. 994-1007, 2017.
[29] N. Wale y G. Karypis, «Target Fishing for Chemical Compounds Using Target-Ligand Activity Data and Ranking Based Methods, » Journal of Chemical Information and Modeling, vol. 49, nº 10, p. 2190–2201, 2009.
[30] El Pasante, «Ventajas y desventajas de las bases de datos,» 17 junio 2015. [En línea]. Available: https://educacion.elpensante.com/ventajas- y-desventajas-de-las-bases-de- datos/. [Último acceso: 12 Noviembre 2018].
[31] Probability Formula, «Hypergeometric Distribution,» [En línea]. Available: http://www.probabilityformula.org/hypergeometric- distribution.html. [Último acceso: 16 noviembre 2018].
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Procedia Computer Science
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/19309b51-c8fd-40f2-9519-1915cc666417/download
https://repositorio.cuc.edu.co/bitstreams/a35509bb-6dc1-4b58-b705-16b1738b6f6e/download
https://repositorio.cuc.edu.co/bitstreams/815cd1b6-51d1-437b-bb74-5d6d44116201/download
https://repositorio.cuc.edu.co/bitstreams/ac13ad31-3dc9-4a0e-b32f-af2d1ca51910/download
https://repositorio.cuc.edu.co/bitstreams/15bfe4be-8a03-420a-9864-859df71e7db7/download
https://repositorio.cuc.edu.co/bitstreams/33c08f13-ae6b-48ec-b7e2-70880a52204f/download
bitstream.checksum.fl_str_mv bb5f989ab47c318f8a8374772ed96cef
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
9be04a131bb1858810c9cf1ab3f01531
9be04a131bb1858810c9cf1ab3f01531
881b422e6a331c82a0e670eb1b75d37e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166894121648128
spelling amelec, viloriaTorres, MariselaVargas, JesusBonerge Pineda, Omar2020-07-06T20:18:49Z2020-07-06T20:18:49Z20201877-0509https://hdl.handle.net/11323/646810.1016/j.procs.2020.03.113Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway is a database that contains a graphical representation of cellular processes. Cellular processes are basic systems involving biochemical reactions at the cellular level such as transport, catabolism, metabolism, growth and cell death. The KEGG Pathway information is shown through the use of graphs, in which the molecular interactions between genes, processes and chemical compounds are represented. This paper proposes to perform Data Analytics using the Big Data Analytics Life Cycle methodology to enrich the metabolic pathways of the KEGG Pathway database by applying the Target Fishing technique.amelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Torres, MariselaVargas, JesusBonerge Pineda, OmarengProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chemical-biologicalChemical compoundData analyticsMetabolic pathwaysTarget fishingEnrichment of metabolic routes through Big DataArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] T. Erl, W. Khattak y P. Buhler, Big Data Fundamentals: Concepts, Drivers & Techniques, Indiana: Prentice Hall, 2016, p. 19.[2] J. D. J. Durán, F. Astier y S. Banov, «Bases de Datos vs Sistemas de Archivos,» 22 enero 2014. [En línea]. Available: https://prezi.com/jgrydc9ncude/bases-de-datos-vs-sistema-de- archivos/. [Último acceso: 12 Noviembre 2018].[3] A. Sulaiman, «File System vs. Database, » 27 Abril 2017. [En línea]. Available: https://dzone.com/articles/which-is-better-saving-files-in- database-or-in-fil. [Último acceso: 12 Noviembre 2018].[4] Fundamentos de Bases de Datos, «1.4 Sistemas de bases de datos frente a los sistemas de archivos,» mayo 2010. [En línea]. Available: https://fundamentosdebasededatos.files.wordpress.com/2010/05/equipo2.pdf. [Último acceso: 12 noviembre 2018].[5] International Multimedia Resource Center, «RAM vs. Hard Drive Memory, » 2018. [En línea]. Available: https://www.lehigh.edu/~inimr/computer-basics- tutorial/ramvsdiskspacehtm.htm. [Último acceso: 13 noviembre 2018].[6] Kanehisa Laboratories, «KEGG: Kyoto Encyclopedia of Genes and Genome, » 2018. [En línea]. Available: https://www.genome.jp/kegg/. [Último acceso: 25 07 2018].[7] United States Environmental Protection Agency, Appendix F. SMILES Notation Tutorial, Washington D.C., 2017.[8] United States Environmental Protection Agency, «SMILES Tutorial,» 21 febrero 2016. [En línea]. Available: https://archive.epa.gov/med/med_archive_03/web/html/smiles.html. [Último acceso: 26 Julio 2018].[9] Daylight Chemical Information Systems, «4. SMARTS - A Language for Describing Molecular Patterns, » 2008. [En línea]. Available: http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. [Último acceso: 26 Julio 2018].[10] TOCRIS, «Cell Biology,» 2018. [En línea]. Available: https://www.tocris.com/cell-biology. [Último acceso: 16 octubre 2018].[11] Kyoto Encyclopedia of Genes and Genomes, «KEGG PATHWAY Database, » 21 Agosto 2018. [En línea]. Available: https://www.genome.jp/kegg/pathway.html. [Último acceso: 16 octubre 2018].[12] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.[13] Gamero, W. M., Ramírez, M. C., Parody, A., Viloria, A., López, M. H. A., & Kamatkar, S. J. (2018, June). Concentrations and size distributions of fungal bioaerosols in a municipal landfill. In International Conference on Data Mining and Big Data (pp. 244-253). Springer, Cham.[14] Kyoto Encyclopedia of Genes and Genomes, «KEGG release history, » 2018. [En línea]. Available: https://www.genome.jp/kegg/docs/upd_all.html. [Último acceso: 17 octubre 2018].[15] M. Linderman, J. Sorenson, L. Lee y G. Nolan, «Computational solutions to large-scale data management and analysis, » Nature Reviews Genetics, vol. 11, pp. 647-657, 2010.[16] L. Wang y X. Qung Xie, «Computational target fishing: what should chemogenomics researchers expect for the future of in silico drug design and discovery? » Future Med Chem, vol. 6, nº 3, pp. 247-249, 2014[17] Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J. P., Parody, A., Bent, D. E. S., & López, L. A. B. (2018, June). Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In International Conference on Data Mining and Big Data (pp. 304-313). Springer, Cham.[18] J. Swamidass† y P. Baldi, «Mathematical Correction for Fingerprint Similarity Measures to Improve Chemical Retrieval, » Journal of Chemical Information and Modeling, vol. 47, nº 1, pp. 952-964, 2006.[19] S. Arif, J. Holliday y P. Willett, «Comparison of chemical similarity measures using different numbers of query structures, » Journal of Information Science, vol. 39, nº 1, pp. 1-8, 2013.[20] G. Landrum, «RDKit Documentation,» 01 marzo 2018. [En línea]. Available: https://www.rdkit.org/RDKit_Docs.current.pdf. [Último acceso: 10 septiembre 2018].[21] L. Sánchez, «Distribución hipergeométrica de probabilidad,» 29 octubre 2014. [En línea]. Available: https://estadisticayadministracion.wordpress.com/2014/10/29/distribucion- hipergeometrica-de-probabilidad-cero-complicada/. [Último acceso: 16 Noviembre 2018].[22] X. Su, «Introduction to Big Data, » 29 Agosto 2017. [En línea]. Available: https://www.ntnu.no/iie/fag/big/lessons/lesson2.pdf. [Último acceso: 16 enero 2018].[23] K. Minoru y G. Susumu, «KEGG: Kyoto Encyclopedia of Genes and Genomes, » Nucleic Acids Research, vol. 28, nº 1, pp. 27-30, 2000.[24] The UniProt Consortium, «UniProt: the universal protein knowledgebase, » Nucleic Acids Research, vol. 45, nº 5, p. 2699, 2018.[25] The UniProt Consortium, «UniProt: the Universal Protein, » [En línea]. Available: https://www.uniprot.org/docs/uniprot_flyer.pdf. [Último acceso: 29 Julio 2018].[26] A. Gaulton, L. Bellis, P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-Lazikani y J. Overington, «ChEMBL: a large-scale bioactivity database for drug discovery, » Nucleic Acids Research, vol. 40, nº 1, pp. 1100-1107, 2012.[27] F. Haseltine, M. Huerta, Y. Liu, G. Downing y B. Seto, «NIH Working Definition of Bioinformatics and Computational Biology, » 17 Julio 2000. [En línea]. Available: http://www.bisti.nih.gov/docs/CompuBioDef.pdf. [Último acceso: 6 agosto 2018].[28] M. Cruz Monteagudo, E. Tejera, Y. Pérez, J. Medina Fronco, A. Sánchez Rodríguez y F. Borges, «Systemic QSAR and phenotypic virtual screening: chasing butterflies in drug discovery, » Drug Discovery Today, vol. 22, nº 7, pp. 994-1007, 2017.[29] N. Wale y G. Karypis, «Target Fishing for Chemical Compounds Using Target-Ligand Activity Data and Ranking Based Methods, » Journal of Chemical Information and Modeling, vol. 49, nº 10, p. 2190–2201, 2009.[30] El Pasante, «Ventajas y desventajas de las bases de datos,» 17 junio 2015. [En línea]. Available: https://educacion.elpensante.com/ventajas- y-desventajas-de-las-bases-de- datos/. [Último acceso: 12 Noviembre 2018].[31] Probability Formula, «Hypergeometric Distribution,» [En línea]. Available: http://www.probabilityformula.org/hypergeometric- distribution.html. [Último acceso: 16 noviembre 2018].PublicationORIGINALEnrichment of metabolic routes through Big Data.pdfEnrichment of metabolic routes through Big Data.pdfapplication/pdf351067https://repositorio.cuc.edu.co/bitstreams/19309b51-c8fd-40f2-9519-1915cc666417/downloadbb5f989ab47c318f8a8374772ed96cefMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a35509bb-6dc1-4b58-b705-16b1738b6f6e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/815cd1b6-51d1-437b-bb74-5d6d44116201/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEnrichment of metabolic routes through Big Data.pdf.jpgEnrichment of metabolic routes through Big Data.pdf.jpgimage/jpeg43646https://repositorio.cuc.edu.co/bitstreams/ac13ad31-3dc9-4a0e-b32f-af2d1ca51910/download9be04a131bb1858810c9cf1ab3f01531MD54THUMBNAILEnrichment of metabolic routes through Big Data.pdf.jpgEnrichment of metabolic routes through Big Data.pdf.jpgimage/jpeg43646https://repositorio.cuc.edu.co/bitstreams/15bfe4be-8a03-420a-9864-859df71e7db7/download9be04a131bb1858810c9cf1ab3f01531MD54TEXTEnrichment of metabolic routes through Big Data.pdf.txtEnrichment of metabolic routes through Big Data.pdf.txttext/plain27185https://repositorio.cuc.edu.co/bitstreams/33c08f13-ae6b-48ec-b7e2-70880a52204f/download881b422e6a331c82a0e670eb1b75d37eMD5511323/6468oai:repositorio.cuc.edu.co:11323/64682024-09-17 14:23:07.513http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==