Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas
El objetivo de este trabajo es emplear un algoritmo de optimización estocástico ASAM (Algoritmo Simulated Annealing Modificado) para optimizar (minimización de peso) cerchas planas con variables discretas. ASAM se basa en el proceso de enfriamiento de metales empleado en el Simulated Annealing (SA)...
- Autores:
-
Millán Páramo, Carlos
Millán Romero, Euriel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/2485
- Acceso en línea:
- https://hdl.handle.net/11323/2485
https://doi.org/10.17981/ingecuc.12.2.2016.01
https://repositorio.cuc.edu.co/
- Palabra clave:
- Algoritmo simulated annealing modificado
Modified simulated annealing algorithm
Optimization
Discrete variables
Plane truss
Weight minimization
Optimización
Variables discretas
Cercha plana
Minimización de peso
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RCUC2_2c975a39ac02a5f07836e2f2017854cc |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/2485 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
dc.title.translated.eng.fl_str_mv |
Modified simulated annealing algorithm (MSAA) for plane trusses weight minimization with discrete variables |
title |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
spellingShingle |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas Algoritmo simulated annealing modificado Modified simulated annealing algorithm Optimization Discrete variables Plane truss Weight minimization Optimización Variables discretas Cercha plana Minimización de peso |
title_short |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
title_full |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
title_fullStr |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
title_full_unstemmed |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
title_sort |
Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretas |
dc.creator.fl_str_mv |
Millán Páramo, Carlos Millán Romero, Euriel |
dc.contributor.author.spa.fl_str_mv |
Millán Páramo, Carlos Millán Romero, Euriel |
dc.subject.proposal.eng.fl_str_mv |
Algoritmo simulated annealing modificado Modified simulated annealing algorithm Optimization Discrete variables Plane truss Weight minimization |
topic |
Algoritmo simulated annealing modificado Modified simulated annealing algorithm Optimization Discrete variables Plane truss Weight minimization Optimización Variables discretas Cercha plana Minimización de peso |
dc.subject.proposal.spa.fl_str_mv |
Optimización Variables discretas Cercha plana Minimización de peso |
description |
El objetivo de este trabajo es emplear un algoritmo de optimización estocástico ASAM (Algoritmo Simulated Annealing Modificado) para optimizar (minimización de peso) cerchas planas con variables discretas. ASAM se basa en el proceso de enfriamiento de metales empleado en el Simulated Annealing (SA) clásico pero posee tres características fundamentales (exploración preliminar, paso de búsqueda y probabilidad de aceptación) que lo diferencian de este. Para evaluar y validar el desempeño de ASAM se abordaron tres problemas de minimización de peso en cerchas planas con variables discretas reportados en la literatura especializada y los resultados son comparados con los obtenidos por otros autores empleando diferentes algoritmos de optimización. Se concluyó que el algoritmo ASAM presentado en este estudio puede ser utilizado eficazmente en la minimización de peso de cerchas planas. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016-08-29 |
dc.date.accessioned.none.fl_str_mv |
2019-02-14T01:31:26Z |
dc.date.available.none.fl_str_mv |
2019-02-14T01:31:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
C. Millán y E. Millán, “Algoritmo Simulated Annealing Modificado ASAM para Minimizar Peso en Cerchas Planas con Variables Discretas”, INGE CUC, vol. 12, No.2, pp. 9-16, 2016. DOI: http://dx.doi.org/10.17981/ingecuc.12.2.2016.01 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/2485 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.12.2.2016.01 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.12.2.2016.01 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
C. Millán y E. Millán, “Algoritmo Simulated Annealing Modificado ASAM para Minimizar Peso en Cerchas Planas con Variables Discretas”, INGE CUC, vol. 12, No.2, pp. 9-16, 2016. DOI: http://dx.doi.org/10.17981/ingecuc.12.2.2016.01 10.17981/ingecuc.12.2.2016.01 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/2485 https://doi.org/10.17981/ingecuc.12.2.2016.01 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 12, Núm. 2 (2016) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
[1] Z.W. Geem, J.H. Kim, and G.V. Loganathan, "A new heuristic optimization algorithm: Harmony search," Simulation, vol. 76, no. 2, pp. 60-68, 2001. http://dx.doi.org/10.1177/003754970107600201 [2] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, "optimization by simulated annealing," science, vol. 220, no. 4598, pp. 671-680, 1983. [3] J. Holland, adaptation in natural and artificial systems. Massachusetts: the mit press, 1975. [4] D.E. Goldberg, Genetic algorithms in search optimization and machine learning. Boston, MA: Addison-Wesley, 1989. [5] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant system: optimization by a colony of cooperating agents," Ieee Trans Syst Man Cybern, vol. B26, no. 1, pp. 29-41, 1996. http://dx.doi.org/10.1109/3477.484436 [6] J. Kennedy and R. Eberhart, "particle swarm optimization," proc. Ieee int. Conf. Neural networks, vol. 4, pp. 1942-1948, 1995. [7] C. Millan, O. Begambre, and E. Millan, "Propuesta y validación de un algoritmo simulated annealing modificado para la solución de problemas de optimización," Rev. Int. Métodos Numér. Cálc. Diseño ing., vol. 30, no. 4, pp. 264–270, 2014. [8] M. Sonmez, "Discrete optimum design of truss structures using artificial bee colony algorithm," struct. Multidisc optim., vol. 43, pp. 85-97, 2011. [9] K.A. Dowsland and B.A. Diaz, "Diseño de heuristica y fundamentos del Simulated Annealing," Revista Iberoamericana de Inteligencia Artificial, vol. 19, pp. 93-102, 2003. [10] P. Capriles, l. Fonseca, H. Barbosa, and A. Lemonge, "Rank-based ant colony algorithms for truss weight minimization with discrete variables," communications in numerical methods in engineering, vol. 23, pp. 553-575, 2007. [11] C.V. Camp, "Design of space trusses using big bang–big crunch optimization," J. Struct. Eng. 2007, vol. 133, no. 7, pp. 999–1008, 2007. [12] C.V. Camp and M. Farshchin, "Design of space trusses using modified teaching–learning based optimization," Engineering Structures, vol. 62-63, pp. 87-97, 2014. http://dx.doi.org/10.1016/j.engstruct.2014.01.020 [13] H.J.C Barbosa, A.C.C. Lemonge, and C.C.H Borges, "A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization," Eng. Struct. 2008, vol. 30, no. 12, pp. 3708–3723, 2008. [14] L.J Li, Z.B Huang, and F.A. LIU, "A heuristic particle swarm optimization method for truss structures with discrete variables," Computer and Structures, vol. 87, pp. 435-443, 2009. http://dx.doi.org/10.1016/j.compstruc.2009.01.004 [15] T. Dede, "Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures," ksce journal of civil engineering, vol. 18, no. 6, pp. 1759-1767, 2014. [16] Y. Zhang, J. Liu, B. Liu, C. Zhu, and Y. Li, "Application of improved hybrid genetic algorithm to optimize," j south china univ. Technol, vol. 33, no. 3, pp. 66-72, 2003. [17] M.H. Sabour, H. Eskandar, and P. Salehi, "Imperialist competitive ant colony algorithm for truss structures," world applied sciences journal, vol. 12, no. 1, pp. 105-2011, vol. 12, no. 1, pp. 94-105, 2011. [18] A Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Computers and Structures, vol. 87, no. 5-6, pp. 267–283, 2009. http://dx.doi.org/10.1016/j.compstruc.2009.01.003 [19] A. Kaveh, B. Mirzaei, and A. Jafarvand, "an improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," applied soft computing, vol. 28, pp. 400-410, 2015. |
dc.relation.citationendpage.spa.fl_str_mv |
16 |
dc.relation.citationstartpage.none.fl_str_mv |
9 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
12 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/801 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/bb913ab6-0b37-4e48-a0e1-1233e23b3e85/download https://repositorio.cuc.edu.co/bitstreams/3a179c88-34ec-4bbf-ac64-95f1445c23df/download https://repositorio.cuc.edu.co/bitstreams/7fcd8ca8-30b9-461d-a592-30359eb2b531/download https://repositorio.cuc.edu.co/bitstreams/04ce06e3-d4c7-46c4-8100-c4983b538a1d/download |
bitstream.checksum.fl_str_mv |
8073179671217625b10f884283f40f8b 8a4605be74aa9ea9d79846c1fba20a33 3b46484917dd18e8ee7bd5b7f037da9e ca1a43d862c4b41bde708f24f2769ce5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166843923169280 |
spelling |
Millán Páramo, CarlosMillán Romero, Euriel2019-02-14T01:31:26Z2019-02-14T01:31:26Z2016-08-29C. Millán y E. Millán, “Algoritmo Simulated Annealing Modificado ASAM para Minimizar Peso en Cerchas Planas con Variables Discretas”, INGE CUC, vol. 12, No.2, pp. 9-16, 2016. DOI: http://dx.doi.org/10.17981/ingecuc.12.2.2016.01https://hdl.handle.net/11323/2485https://doi.org/10.17981/ingecuc.12.2.2016.0110.17981/ingecuc.12.2.2016.012382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/El objetivo de este trabajo es emplear un algoritmo de optimización estocástico ASAM (Algoritmo Simulated Annealing Modificado) para optimizar (minimización de peso) cerchas planas con variables discretas. ASAM se basa en el proceso de enfriamiento de metales empleado en el Simulated Annealing (SA) clásico pero posee tres características fundamentales (exploración preliminar, paso de búsqueda y probabilidad de aceptación) que lo diferencian de este. Para evaluar y validar el desempeño de ASAM se abordaron tres problemas de minimización de peso en cerchas planas con variables discretas reportados en la literatura especializada y los resultados son comparados con los obtenidos por otros autores empleando diferentes algoritmos de optimización. Se concluyó que el algoritmo ASAM presentado en este estudio puede ser utilizado eficazmente en la minimización de peso de cerchas planas.The aim of this study is to use stochastic optimization algorithm MSAA (Modified Simulated Annealing Algorithm) for trusses plane optimization (weight minimization) with discrete variables. MSAA is based on the cooling process of metal used in the Simu-lated Annealing (SA) classic, but it has three funda-mental characteristics (preliminary exploration, search step and acceptance probability) that differentiate this. To evaluate and validate the MSAA performance were studied three problems plane trusses weight minimiza-tion with discrete variables reported in the literature and the results are compared with those obtained by other authors using different optimization algorithms. It is concluded that the MSAA algorithm presented in this study can be effectively used in the weight minimi-zation of truss structures.Millán Páramo, Carlos-bd3a390a-0bcf-45ea-8c61-41dbfc908203-0Millán Romero, Euriel-331ba2da-ff6b-4bc8-8f54-cfbc2af65c79-08 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 12, Núm. 2 (2016)INGE CUCINGE CUC[1] Z.W. Geem, J.H. Kim, and G.V. Loganathan, "A new heuristic optimization algorithm: Harmony search," Simulation, vol. 76, no. 2, pp. 60-68, 2001. http://dx.doi.org/10.1177/003754970107600201[2] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, "optimization by simulated annealing," science, vol. 220, no. 4598, pp. 671-680, 1983.[3] J. Holland, adaptation in natural and artificial systems. Massachusetts: the mit press, 1975.[4] D.E. Goldberg, Genetic algorithms in search optimization and machine learning. Boston, MA: Addison-Wesley, 1989.[5] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant system: optimization by a colony of cooperating agents," Ieee Trans Syst Man Cybern, vol. B26, no. 1, pp. 29-41, 1996. http://dx.doi.org/10.1109/3477.484436[6] J. Kennedy and R. Eberhart, "particle swarm optimization," proc. Ieee int. Conf. Neural networks, vol. 4, pp. 1942-1948, 1995.[7] C. Millan, O. Begambre, and E. Millan, "Propuesta y validación de un algoritmo simulated annealing modificado para la solución de problemas de optimización," Rev. Int. Métodos Numér. Cálc. Diseño ing., vol. 30, no. 4, pp. 264–270, 2014.[8] M. Sonmez, "Discrete optimum design of truss structures using artificial bee colony algorithm," struct. Multidisc optim., vol. 43, pp. 85-97, 2011.[9] K.A. Dowsland and B.A. Diaz, "Diseño de heuristica y fundamentos del Simulated Annealing," Revista Iberoamericana de Inteligencia Artificial, vol. 19, pp. 93-102, 2003.[10] P. Capriles, l. Fonseca, H. Barbosa, and A. Lemonge, "Rank-based ant colony algorithms for truss weight minimization with discrete variables," communications in numerical methods in engineering, vol. 23, pp. 553-575, 2007.[11] C.V. Camp, "Design of space trusses using big bang–big crunch optimization," J. Struct. Eng. 2007, vol. 133, no. 7, pp. 999–1008, 2007.[12] C.V. Camp and M. Farshchin, "Design of space trusses using modified teaching–learning based optimization," Engineering Structures, vol. 62-63, pp. 87-97, 2014. http://dx.doi.org/10.1016/j.engstruct.2014.01.020[13] H.J.C Barbosa, A.C.C. Lemonge, and C.C.H Borges, "A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization," Eng. Struct. 2008, vol. 30, no. 12, pp. 3708–3723, 2008.[14] L.J Li, Z.B Huang, and F.A. LIU, "A heuristic particle swarm optimization method for truss structures with discrete variables," Computer and Structures, vol. 87, pp. 435-443, 2009. http://dx.doi.org/10.1016/j.compstruc.2009.01.004[15] T. Dede, "Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures," ksce journal of civil engineering, vol. 18, no. 6, pp. 1759-1767, 2014.[16] Y. Zhang, J. Liu, B. Liu, C. Zhu, and Y. Li, "Application of improved hybrid genetic algorithm to optimize," j south china univ. Technol, vol. 33, no. 3, pp. 66-72, 2003.[17] M.H. Sabour, H. Eskandar, and P. Salehi, "Imperialist competitive ant colony algorithm for truss structures," world applied sciences journal, vol. 12, no. 1, pp. 105-2011, vol. 12, no. 1, pp. 94-105, 2011.[18] A Kaveh and S. Talatahari, "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures," Computers and Structures, vol. 87, no. 5-6, pp. 267–283, 2009. http://dx.doi.org/10.1016/j.compstruc.2009.01.003[19] A. Kaveh, B. Mirzaei, and A. Jafarvand, "an improved magnetic charged system search for optimization of truss structures with continuous and discrete variables," applied soft computing, vol. 28, pp. 400-410, 2015.169212INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/801Algoritmo simulated annealing modificado (ASAM) para minimizar peso en cerchas planas con variables discretasModified simulated annealing algorithm (MSAA) for plane trusses weight minimization with discrete variablesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Algoritmo simulated annealing modificadoModified simulated annealing algorithmOptimizationDiscrete variablesPlane trussWeight minimizationOptimizaciónVariables discretasCercha planaMinimización de pesoPublicationORIGINALAlgoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas.pdfAlgoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas.pdfapplication/pdf306059https://repositorio.cuc.edu.co/bitstreams/bb913ab6-0b37-4e48-a0e1-1233e23b3e85/download8073179671217625b10f884283f40f8bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3a179c88-34ec-4bbf-ac64-95f1445c23df/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILAlgoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas.pdf.jpgAlgoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas.pdf.jpgimage/jpeg53387https://repositorio.cuc.edu.co/bitstreams/7fcd8ca8-30b9-461d-a592-30359eb2b531/download3b46484917dd18e8ee7bd5b7f037da9eMD54TEXTAlgoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas.pdf.txtAlgoritmo simulated annealing modificado para minimizar peso en cerchas planas con variables discretas.pdf.txttext/plain27285https://repositorio.cuc.edu.co/bitstreams/04ce06e3-d4c7-46c4-8100-c4983b538a1d/downloadca1a43d862c4b41bde708f24f2769ce5MD5511323/2485oai:repositorio.cuc.edu.co:11323/24852024-09-17 14:17:08.462open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |